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Abstract. We determine the gain that can be achieved by incorporat-
ing movement prediction information in the session admission control
process in mobile cellular networks. The gain is obtained by evaluat-
ing the performance of optimal policies achieved with and without the
predictive information, while taking into account possible prediction er-
rors. We evaluate the impact of predicting only incoming handovers,
only outgoing or both types together. The prediction agent is able to de-
termine the handover instants both stochastically and deterministically.
Two different approaches to compute the optimal admission policy were
studied: dynamic programming and reinforcement learning. Numerical
results show significant performance gains when the predictive informa-
tion is used in the admission process, and that higher gains are obtained
when deterministic handover instants can be determined.

1 Introduction

Session Admission Control (SAC) is a key aspect in the design and operation of
mobile cellular networks that provide QoS guarantees. Terminal mobility makes
it very difficult to guarantee that the resources available at the time of session
setup will be available in the cells visited during the session lifetime, unless a
SAC policy is exerted. The design of the SAC system must take into account
not only packet level issues (like delay, jitter or losses) but also session level
issues (like loss probabilities of both session setup and handover requests). This
paper explores the second type of issues from a novel optimization approach
that exploits the availability of movement prediction information. To the best
of our knowledge, applying optimization techniques to this type of problem has
not been sufficiently explored. The results provided define theoretical limits for
the gains that can be expected if handover prediction is used, which could not
be established by deploying heuristic SAC approaches.

In systems that do not have predictive information available, both heuristic
and optimization approaches have been proposed to improve the performance
of the SAC at the session level. A optimization approach without using pre-
dictive information has been studied in [1–4]. In systems that have predictive
information available, most of the proposed approaches to improve performance
are heuristic, see for example [5, 6] and references therein.
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Our work has been motivated in part by the study in [5]. Briefly, the authors
propose a sophisticated movement prediction system and a SAC scheme that
taking advantage of movement prediction information is able to improve system
performance. One of the novelties of the proposal is that the SAC scheme takes
into consideration not only incoming handovers to a cell but also the outgoing
ones. The authors justify it by arguing that considering only the incoming ones
would led to reserve more resources than required, given that during the time
elapsed since the incoming handover is predicted and resources are reserved
until it effectively occurs, outgoing handovers might have provided additional
free resources, making the reservation unnecessary.

This paper can be considered an extension of the work presented in [7], in-
corporating new contributions. One of them is the comparative performance
evaluation of incorporating different types of predictive information to the SAC
optimization process, like only incoming, only outgoing and both types of han-
dovers together. In [7] only the incoming handover prediction was studied. An-
other contribution is the evaluation of the impact that predicting deterministi-
cally the future handover instants have on the system performance. In [7] only
stochastic prediction was modeled.

In a previous study [7] we considered a scenario with several service types
and no qualitative differences were found between single and multiservice cases.
On the other hand, the higher complexity of multiservice scenarios could hide
the insight into the performance implications of using handover prediction in-
formation, which is the focus of this paper.

The rest of the paper is structured as follows. In Section 2 we describe the
models of the system and the two prediction agents deployed. The two optimiza-
tion approaches are presented in Section 3. A numerical evaluation comparing
the performance obtained when using different types of information and when
handovers instants are deterministically or stochastically predicted is provided
in Section 4. Finally, a summary of the paper and some concluding remarks are
given in Section 5.

2 Model Description

We consider a single cell system and its neighborhood, where the cell has a total
of C resource units, being the physical meaning of a unit of resources dependent
on the specific technological implementation of the radio interface. Only one
service is offered but new and handover session arrivals are distinguished, making
a total of two arrival types.

For mathematical tractability we make the common assumptions. New and
handover sessions arrive according to a Poisson process with rates λn and λh

respectively. The duration of a session and the cell residence time are exponen-
tially distributed with rates µs and µr respectively, hence the resource holding
time in a cell is also exponentially distributed with rate µ = µs + µr. Without
loss of generality, we will assume that each session consumes one unit of resource
and that only one session is active per MT.
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Fig. 1. IPA and classifier models.

We used a model of the prediction agent, given that the focus of our study
was not the design of it.

2.1 Prediction Agent for Incoming Handovers

An active MT entering the cell neighborhood is labeled by the prediction agent
for incoming handovers (IPA) as “probably producing a handover” (H) or the
opposite (NH), according to some of its characteristics (position, trajectory, ve-
locity, historic profile,...) and/or some other information (road map, hour of the
day,...). After an exponentially distributed time, the actual destiny of the MT
becomes definitive and either a handover into the cell occurs or not (for instance
because the session ends or the MT moves to another cell) as shown in Fig. 1(a).
The SAC system is aware of the number of MTs labeled as H at any time.

The model of the classifier is shown in Fig. 1(b) where the square (with a
surface equal to one) represents the population of active MTs to be classified.
The shaded area represents the fraction of MTs (SH) that will ultimately move
into the cell, while the white area represents the rest of active MTs. Notice
that part of the MTs that will move into the cell can finish their active sessions
before doing so. The classifier sets a threshold (represented by a vertical dashed
line) to discriminate between those MTs that will likely produce a handover
and those that will not. The fraction of MTs falling on the left side of the
threshold (ŜH) are labeled as H and those on the right side as NH. There exists
an uncertainty zone, of width U , which produces classification errors: the white
area on the left of the threshold (Ŝe

H) and the shaded area on the right of

the threshold (Ŝe
NH). The parameter x represents the relative position of the

classifier threshold within the uncertainty zone. Although for simplicity we use
a linear model for the uncertainty zone it would be rather straightforward to
consider a different model.
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Fig. 2. Basic operation of the OPA.

As shown in Fig. 1(a), the model of the IPA is characterized by three pa-
rameters: the average sojourn time of the MT in the predicted stage µ−1

p , the
probability p of producing a handover if labeled as H and the probability q of
producing a handover if labeled as NH. Note that 1 − p and q model the false-
positive and non-detection probabilities and in general q 6= 1−p. It can be shown
that

1−p =
Ŝe

H

ŜH

=
x2

(U(2SH − U + 2x))
; q =

Ŝe
NH

(1 − ŜH)
=

(U − x)
2

(U(2 − 2SH + U − 2x))

(1)

2.2 Prediction Agent for Outgoing Handovers

The model of the prediction agent for outgoing handovers (OPA) is shown in
Fig. 2. The OPA labels active sessions in the cell as H if they will produce a
handover or as NH otherwise. The classification is performed for both handover
sessions that enter the cell and new sessions that initiate in the cell, and are
carried out by a classifier which model is the same as the one used in the IPA.
The time elapsed since the session is labeled until the actual destiny of the MT
becomes definitive is the cell residence time that, as defined, is exponentially
distributed with rate µr. The fraction of sessions that effectively execute an out-
going handover is given by SH = µr/(µs +µr). The OPA model is characterized
by only two parameters 1 − p and q, which meaning is the same as in the IPA
model. Note that 1 − p and q can be related to the classifier parameters by the
expressions in (1).

3 Optimizing the SAC Policy

We formulate the optimization problem as an infinite-horizon finite-state Markov
decision process under the average cost criterion, which is more appropriate
for the problem under study than other discounted cost approaches. When the
system starts at state x and follows policy π then the average expected cost
rate over time t, as t → ∞, is denoted by γπ(x) and defined as: γπ(x) =
limt→∞

1
t
E [wπ(x, t)], where wπ(x, t) is a random variable that expresses the

total cost incurred in the interval [0, t] . For the systems we are considering, it is
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not difficult to see that for every deterministic stationary policy the embedded
Markov chain has a unichain transition probability matrix, and therefore the
average expected cost rate does not vary with the initial state [8]. We call it the
“cost” of the policy π, denote it by γπ and consider the problem of finding the
policy π∗ that minimizes γπ, which we name the optimal policy.

In our model the cost structure is chosen so that the average expected cost
represents a weighted sum of the loss rates, i.e. γπ = ωnPnλn + ωhPhλh, where
ωn (ωh) is the cost incurred when the loss of a new (handover) request occurs and
Pn (Ph ) is the loss probability of new (handover) requests. In general, ωn < ωh

since the loss of a handover request is less desirable than the loss of a new session
setup request.

Two different optimization approaches have been used to find the optimal
SAC policy: a dynamic programming (DP) approach and an automatic learning
approach based on the theory of Reinforcement Learning (RL) [9]. DP gives
an exact solution and allows to evaluate the theoretical limits of incorporating
handover prediction in the SAC system, whereas RL tackles more efficiently the
curse of dimensionality. In both approaches handover sessions have priority over
new sessions and they are accepted as long as resources are available.

3.1 Dynamic Programming

We apply DP to the scenario that only considers the incoming handovers, in
which case the system state space is S := {x = (i, j) : 0 ≤ i ≤ C; 0 ≤ j ≤ Cp},
where i is the number of active sessions in the cell , j is the number of MTs
labeled as H in the cell neighborhood and Cp is the maximum number of MT
that can be labeled as H at a given time. We use a large value for Cp so that it has
no practical impact in our results. At each state (i, j), i < C, the set of possible
actions is defined by A := {a : a = 0, 1}, being a = 0 the action that rejects
an incoming new session and a = 1 the action that accepts an incoming new
session. The system can be described as a continuous-time Markov chain which
state transition diagram is shown in Fig. 3, where λ′

h = qλ(1− ŜH)µp/(µp + µs)
denotes the average arrival rate of unpredicted handovers. It is converted to
a discrete time Markov chain (DTMC) by applying uniformization. It can be
shown that Γ = Cp(µp + µs) + C(µr + µs) + λ + λn is an uniform upper-bound
for the outgoing rate of all the states, being λ the input rate to the classifier.
If rxy(a) denotes the transition rate from state x to state y when action a is
taken at state x, then the transition probabilities of the resulting DTMC are
given by pxy(a) = rxy(a)/Γ (y 6= x) and pxx(a) = 1−

∑

y∈S pxy(a). We define
the incurred cost rate at state x when action a is selected by c(x, a), which can
take any of the following values: 0 (i < C, a = 1), ωnλn (i < C, a = 0) or
ωnλn + ωh(λ′

h + jpµp) (i = C, a = 0).

If we denote by h(x) the relative cost rate of state x under policy π, then we
can write

h(x) = c(x, π(x)) − γπ +
∑

y

pxy(π(x))h(y) ∀x (2)
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Fig. 3. State transition diagram.

from which we can obtain the average cost and the relative costs h(x) up to an
undetermined constant. Thus we arbitrarily set h(0, 0) = 0 and then solve the
linear system of equations (2) to obtain γπ and h(x), ∀x. Having obtained the
average and relative costs under policy π an improved policy π′ can be calculated
as

π′(x) = argmin
a=0,1

{

c(x, a) − γπ +
∑

y

pxy(a)h(y)
}

so that the following relation holds γπ′

≤ γπ. Moreover, if the equality holds
then π′ = π = π∗, where π∗ denotes the optimal policy, i.e. γπ∗

≤ γπ ∀π.
We repeat iteratively the solution of system (2) and the policy improvement

until we obtain a policy which does not change after improvement. This process
is called Policy Iteration [8, Section 8.6] and it leads to the average optimal
policy in a finite — and typically small — number of iterations.

3.2 Reinforcement Learning

We formulate the optimization problem as an infinite-horizon finite-state semi-
Markov decision process (SMDP) under the average cost criterion. The decision
epochs correspond only to the time instants at which new session arrivals occur,
given no decisions are taken for handover arrivals. Only arrival events are relevant
to the optimization process because no actions are taken at session departures.
The state space for the scenario that only considers the incoming handovers
is defined as S := {x = (x0, xin) : x0 ≤ C; xin ≤ Cp}, where x0 and xin

represent, respectively, the number of resource units occupied by sessions in
the cell and by sessions in the neighborhood which are labeled as H. The state
space for the scenario that only considers the outgoing handovers is defined as
S := {x = (x0, xout) : x0, xout ≤ C}, where xout represents the number of
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resource units occupied by sessions in the cell labeled as H. The state space for
the scenario that considers both the incoming and outgoing handovers is defined
as S := {x = (x0, xin, xout) : x0, xout ≤ C; xin ≤ Cp}. At each decision epoch
the system has to select an action from the set A := {0, 1}.

The cost structure is defined as follows. At any decision epoch, the cost
incurred by accepting a new session request is zero and by rejecting it is ωn.
Further accrual of cost occurs when the system has to reject handover requests
between two decision epochs, incurring a cost of ωh per rejection.

The Bellman optimality recurrence equations for a SMDP under the average
cost criterion can be written as

h∗(x, a) = min
a∈Ax

{w(x, a) − γ∗τ(x, a) +
∑

x∈S

pxy(a) min
a′∈Ay

h∗(y, a′)}

where h∗(x, a) is the average expected relative cost of taking the optimal action
a in state x and then continuing indefinitely by choosing actions optimally,
w(x, a) is the average cost of taking action a in state x, τ(x, a) is the average
sojourn time in state x under action a and pxy(a) is the probability of moving
from state x to state y under action a = π(x). The greedy policy π∗ defined
by selecting actions that minimize the right-hand side of the above equation is
gain-optimal [10].

In systems where the number of states can be large, RL tackles more effi-
ciently the curse of dimensionality and offers the important advantage of being a
model-free method, i.e. transition probabilities and average costs are not needed
in advance. We deploy the SMART algorithm [10], which estimates h∗(x, a)
by simulation using a temporal difference method (TD(0)). If at the (m − 1)th

decision epoch the system is in state x, action a is taken and the system is
found in state y at the mth decision epoch then we update the relative state-
action values as follows: hnew(x, a) = (1 − αm)hold(x, a) + αm{wm(x, a, y) −
γmτm(x, a, y) + mina′∈Ay

hold(y, a′)}, where wm(x, a, y) is the actual cumula-
tive cost incurred between the two successive decision epochs, τm(x, a, y) is the
actual sojourn time between the decision epochs, αm is the learning rate para-
meter at the mth decision epoch and γm is the average cost rate estimated as:
γm =

∑m

k=1 wk

(

x(k), a(k), y(k)

)

/
∑m

k=1 τk

(

x(k), a(k), y(k)

)

.

4 Numerical Evaluation

We evaluated the performance gain when introducing prediction by the ratio
γπ

wp/γπ
p , where γπ

p (γπ
wp) is the average expected cost rate of a policy that is

optimal in a system with (without) prediction. We assume a circular-shaped cell
of radio r and a holed-disk-shaped neighborhood with inner (outer) radio 1.0r
(1.5r).

The values of the parameters that define the scenario are: C = 10 and Cp =
60, Nh = µr/µs = 1, µr/µp = 0.5, λn = 2, µ = µs + µr = 1, SH = 0.4, x = U/2,
wn = 1, and wh = 20. The value of the input rate to the PA λ is chosen so that
the system is in statistical equilibrium, i.e. the rate at which handover sessions
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Fig. 4. Performance gain when using stochastic handover prediction.

enter the cell is equal to the rate at which handover sessions exit the cell. It can
be easily shown that for our scenario λ = (1−Pn)(1−Pft)λn(Nh+µr/µp)(1/SH),
where Pft = Ph/(Ph +µs/µr) is the probability of forced termination. Note that
in our numerical experiments the values of the arrival rates are chosen to achieve
realistic operating values for Pn(≈ 10−2) and Pft(≈ 10−3). For such values, we
make the approximation λ ≈ 0.989λn(Nh + µr/µp)(1/SH).

For the RL simulations, the ratio of arrival rates of new sessions to the cell
neighborhood (ng) and to the cell (nc) is made equal to the ratio of their surfaces,
λng = 1.25λnc. The ratio of handover arrival rates to the cell neighborhood from
the outside of the system (ho) and from the cell (hc) is made equal to ratio
of their perimeters, λho = 1.5λhc. Using the flow equilibrium property, we can
write λhc = (1−Pn)(1−Pft)(µr/µs)λnc ≈ 0.989(µr/µs)λnc. With regard to the
RL algorithm, we use a constant learning rate αm = 0.01 but the exploration
rate pm is decayed to zero by using the following rule pm = p0/(1 + u), where
u = m2/(ϕ + m). We used ϕ = 1.0 · 1011 and p0 = 0.1. The exploration of the
state space is a common RL technique used to accept non-improving solutions
in order to avoid being trapped at local minima.

Figure 4 shows the gain when introducing prediction for different values of the
uncertainty U . When using RL, for each value of U we run 10 simulations with
different seeds and display the averages. As observed, using incoming handover
prediction induces a gain and that gain decreases as the prediction uncertainty
(U) increases.

From Fig. 4 it is clear that the knowledge of the number of resources that will
become available is not relevant for the determination of optimum SAC policies,
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being even independent of the degree of uncertainty. It can also be observed that
the optimization algorithm founds slightly worse solutions when using informa-
tion related to the outgoing handovers (γπ

wp/γπ
p < 1). This is probably due to the

difficulty that the algorithm has to find good solutions in a bigger space state.
This observation seems to be corroborated when comparing the results obtained
using only the incoming handover information and using both the incoming and
outgoing handover information together. As shown, the solutions found in the
second case are slightly worse than the ones found in the first one.

4.1 Deterministic Prediction

The prediction agents described in Sections 2.1 and 2.2 predict the time instants
at which handovers will occur only stochastically. In this section we evaluate the
impact on performance that more precise knowledge of the future handover time
instants have. Intuitively, it seems obvious that handovers taking place in a near
future would be more relevant for the SAC process than those occurring in an
undetermined far future. More precisely, in this section both the IPA and OPA
operate as before but they label the sessions T time units before handovers take
place, i.e. the component xin (xout) of the different state spaces represent the
number of incoming (outgoing) handovers that will take place in less than T
time units. A similar approach is used in [5], where authors predict the incoming
and outgoing handovers that will take place in a time window of fixed size.

For the performance evaluation, the same scenarios, parameters and method-
ology described before in this same Section where used, except that we set the
uncertainty to a constant value U = 0.2, which we consider it might be a prac-
tical value. Figure 5 shows the variation of the gain for different values of T . As
observed, there exists an optimum value for T , which is close to the mean time
between call arrivals (λ−1), although it will probably depend on other system
parameters as well. As T goes beyond its optimum value, the gain decreases,
probably because the temporal information becomes less significant for the SAC
decision process. As expected, when T → ∞ the gain is identical to the one in
the stochastic prediction case because the labeling of sessions occur at the same
time instants, i.e. when handover sessions enter the cell or new sessions are initi-
ated in the cell. When T is lower than its optimum value the gain also decreases,
probably because the system has not enough time to react. When T = 0 the
gain is null because there is no prediction at all.

Figure 5 shows that the information provided by the OPA is again not rel-
evant for the optimization process. For values of T close to its optimum the
gain is similar when using incoming handover prediction or incoming and outgo-
ing prediction together, and it is significantly higher than when stochastic time
prediction is used.

In an earlier version of the IPA we were providing the optimization process
with state information of the neighboring cells and obtained that the gain was
not significant, possibly because the information was not sufficiently specific. The
authors in [11] reached the same conclusion but using a genetic algorithm to find
near-optimal policies. In the version described in this paper, we are providing the
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optimization process with state information of a sufficiently close neighborhood,
obtaining significant gains. For the design of the OPA we were faced with the
same dilemma but in this case we decided not to use more specific information.
Defining a holed-disk-shaped neighborhood with outer (inner) radio r (< r)
for the outgoing handovers and an exponentially distributed sojourn time in it,
would had open the possibility of having terminals that could go in and out of this
area, making the cell residence time not exponential. This would had made the
models with the IPA and with the OPA not comparable. Besides, providing the
optimization process with more specific information of the outgoing handovers
does not help to improve the performance either, as observed in Fig. 5.

Finally it is worth noting that the main challenge in the design of efficient
bandwidth reservation techniques for mobile cellular networks is to balance two
conflicting requirements: reserving enough resources to achieve a low forced ter-
mination probability and keeping the resource utilization high by not blocking
too many new setup requests. Figure 6, which shows the utilization gain for
different values of U, justifies the efficiency of our optimization approach. It
has also been verified that the resource utilization obtained when deterministic
time prediction is deployed is identical to the utilization achieved when the SAC
policy is optimized without using predictive information.

As a conclusion, it looks clear that when using optimization techniques to
determine the optimum policy, the information related to outgoing handovers
is not relevant. This result would seem to contradict the conclusions in [5], but
there the predictive information is integrated in the reservation scheme by means
of heuristics and therefore their approximation and ours are not comparable.
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Fig. 6. Utilization gain when using stochastic handover prediction.

5 Conclusions

In this paper we evaluate the performance gain that can be expected when
the SAC optimization process is provided with information related to incoming,
outgoing and incoming and outgoing handovers together, in a mobile cellular
network scenario. The prediction information is provided by two types of pre-
diction agents that label active mobile terminals in the cell or its neighborhood
which will probably execute a handover. The prediction agents also provide in-
formation about the future time instants at which handovers will occur, being
this information either stochastic or deterministic. The optimization problem
is formulated as a Markov or semi-Markov decision process, for which different
solving methods can be used. In this case we deployed dynamic programming
and reinforcement learning. A general model of the prediction agents has been
considered and as such it cannot be used to obtain concrete results for specific
systems nor evaluate the added complexity of deploying a particular prediction
method in operational systems. Nevertheless, the generality of the prediction
model together with the optimization-based approach permit to obtain bounds
for the gain of specific prediction schemes used in conjunction with SAC.

Numerical results show that the information related to the incoming han-
dovers is more relevant than the one related to the outgoing handovers in the
optimization framework deployed. Additional performance gain can be obtained
when more specific information is provided about the handover time instants,
i.e. when their prediction is deterministic instead of stochastic. The gain ob-
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tained has been as high as 25% in the studied scenario even when the prediction
uncertainty is 20%.

In a future work we will study reinforcement learning algorithms different
from SMART, which hopefully will be able to find better solutions in less time,
even with more complex state spaces. Another aspect that deserves a closer
study is the identification of the parameters that affect the optimum value of T
and the study of its sensitivity.
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