
Adaptive Supporting
Prioritized Soft Handoff Calls for

Power-Controlled DS-CDMA Cellular Networks

Wen Chen1, Feiyu Lei1, Weinong Wang1, and Xi Chen2

1 Network Information Center, Computer Science & Engineering Dept.,
Shanghai Jiao Tong University,

1954 Huashan Road, Shanghai 200030, China
wen.chenwen@gmail.com

{fylei,wnwang}@sjtu.edu.cn
2 Computer Center, China ShipBuilding Industry Corporation -

No.701 Research and Development Institute, Wuhan Hubei 430070, China
cx040504@gmail.com

Abstract. We present feedback control techniques to intelligently sup-
port priorities of soft handoff calls during call admission control (CAC) in
power-controlled DS-CDMA multicellular networks. We design a classic
proportional controller to dynamically solve resource management prob-
lems, which arise during run-time adaptation, via continuously moni-
toring real-time system performance to adjust system parameters ac-
cordingly. Performance evaluation reveals that the solution not only has
excellent stability behavior, but also meets zero steady state error and
settling time requirements.

1 Introduction

It is well known that rejection of a handoff request causes forced termination of an
ongoing service and wasting wireless resources due to retransmission. Therefore,
the dropping of a handoff call is generally considered more serious than blocking
of a new call. A basic approach to reduce handoff probability is to give handoff
calls priority over new calls. In 2G TDMA/FDMA wireless networks, the popular
guard channels (GC) [1] scheme and its numerous variants [2] exclusively reserve
a fixed number of channels for handoff calls to make it. But the fundamental
premise of the fixed GC schemes [3] is that the network behavior can be made to
be deterministic through extensive a priori knowledge about network parameters.
Therefore, they perform poorly in unpredictable dynamic systems.

Currently, emerging mobile wireless network such as DS-CDMA cellular net-
works are characterized by significant uncertainties in mobile user population
and system resource state (i.e. soft capacity, soft handoff). Then, any solution
for reducing handoff dropping in DS-CDMA systems must be highly adaptive
for adherence to the desired system performance requirements, and cannot rely
on the assumptions of traffic or mobility patterns. Feedback control theory can
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just be the theoretical basis for the design of adaptation-based architectures
that handle QoS-aware services for current wireless networks with parametric,
structural and environmental uncertainties.

Although several recent studies [4][5] have been conducted concerning the
forced-termination of calls due to soft handoff failure in DS-CDMA networks,
the adaptation mechanisms are not considered at all. And that some adaptive
QoS schemes such as [6] realize the adaptive control only by a predefined fixed
stepwise way, which cannot react to the system changes efficiently.

In this paper, we propose a radically different approach to adaptively re-
duce soft handoff failure probability in DS-CDMA cellular networks based on
feedback control theory. The main contribution of this paper is that adaptive
system performance optimization and feedback control techniques are combined
for modeling the unpredictability of the environment, handling imprecise or in-
complete knowledge, reacting to overload and unexpected failures, and achieving
the required performance levels. Our contribution can be summarized as follows:

• Formulating the reducing handoff dropping problem as a feedback control
loop. And we choose to use a P(Proportional) control function to adjust some
system parameter adaptively according to the real-time change of network
performance, not as previous stepwise way (such as [6]). And that we use the
Root Locus method to tune the controller so as to satisfy the performance
specs.

• Through comparing real-time soft handoff failure probability with new call
blocking probability in the controller, we not only characterize real-time
system performance variances accurately but also achieve a satisfied tradeoff
between them.

• Using system identification to design a mathematical model that describes
the dynamic behavior of CAC process in a cellular network.

• Achieving the desired network performance with traffic conditions and user
mobility that are unknown a priori.

2 Reference CDMA Cellular Network

We consider a multicellular network with spread signal bandwidth of WHz.
We only focus on the uplink since it is generally accepted that it has inferior
performance over the downlink.

2.1 Traffic Classes

We consider cellular networks that support both voice and data services. As-
sumed that there are K(K ≥ 1) different traffic classes with different QoS re-
quirements. Namely, each class specifies their own transmission rate, activity
factor, desired SIR requirement, and maximum power limit that can be received
at the base station. We assume that traffic from the same service class has the
same QoS requirements. We define a mapping σ : Z+ → {1, · · · ,K} to indicate
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that the nth connection is from the service class σ(n), where Z+ denotes the set
of nonnegative integers. Also, call requests are classified into soft handoff call
and new call requests. In this paper, we give higher priority to soft handoff calls
than new calls within the same class.

2.2 Uplink Capacity in Power Controlled Multicellular Networks

As the uplink is more critical to total capacity than downlink [7], we consider
only the uplink capacity of a reference cell in a multicellular DS-CDMA network.
Let N be the number of connections served by BS currently. The power received
at the base station from the user (mobile station, MS) of the nth connection
is denoted by Sn, n = 1, · · · , N . In an SIR-based power-controlled DS-CDMA
network [8], the maximum received power at BS is determined by maximum
power limit Hk for connections from service class k = σ(n), then

0 < Sn ≤ Hk, ∀n = {1, · · · , N}. (1)

The maximum power limits Hk, k = 1, · · · ,K, principally depend on [8] the
maximum power pk that can be transmitted by a MS of class-k and the expected
value of path loss for class-k Ek[L] from the cell boundary to the base station.
Then, we can choose Hk = pkEk[L], k = 1, · · · ,K. In this paper, the cases when
Sn > Hσ(n) for some received call n, BS will reject the call since otherwise either
some MS (mobile station) would be required to transmit more power than they
can possibly do or the acceptance of the new call will severely damage the QoS
of existing connections.

Let αk be the activity factor of a Class-k user, the bit-energy-to-interference
ratio Eb/No for the nth connection at the BS can be expressed in terms of the
received power of various connections existing in the considered cell (intra-cell)
and the surrounding cells (inter-cell) as [8]:

(Eb
No

)
n

=
SnW

Rσ(n)

(∑N
i=1,i 6=n ασ(i)Si + Iother

n + ηn

) , (2)

where Si is the power level of the ith connection received at the base station,
Rσ(n) is the data rate of service class σ(n), Iother

n is the total interference from
neighboring cells, ηn is the background(or thermal) noise. In [8], it had been
shown that the total interference from neighboring cells, Iother

n , can be reckoned
by

Iother
n = f

N∑

i=1,i 6=n

ασ(i)Si, (3)

where f is called the inter-cell interference factor with a typical value of 0.55
[8]. The value of f may not always be constant and can be updated properly to
reflect changes in traffic conditions and distributions.

The soft capacity of CDMA systems is limited by the level of multiaccess
interference measured by the SIR. In general, since SIR drops and the probability
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of packet error increases as the number of users increases, it appears reasonable
to maintain SIR above set thresholds γk, k = 1, · · · ,K by limiting the number
of users. For example, the QoS requirement for voice users with a maximum bit
error rate of 10−3 can be satisfied by the power control mechanism setting γ at a
required value of 7dB [8]. Then we must hold (Eb/No)n ≥ γσ(n) for all current
calls to maintain BER (bit error rate) below a certain limit as the following
inequality:

SnW

Rσ(n)γσ(n)
≥ (1 + f)

N∑

i=0,i 6=n

ασ(i)Si + ηn, ∀n ∈ {1, · · · , N}. (4)

2.3 The Scheme for Assign Priority to Soft Handoff Requests

In general, handoff calls are payed more attention than new calls and we have
to give priority to handoff calls [4][5][8]. The main idea of the present approach
is as follows [8], we can choose a fixed threshold Tk < Hk, k = 1, · · · ,K, for
new calls of class-k to allow higher priority for handoff calls of class-k. Thus, BS
would admit less new calls in the case Tk < Hk than in the case Tk = Hk. The
call admission policy is given as follows:

1. if a new call marked by connection-(N + 1) arrives,then
if SN+1 ≤ Tσ(N+1) and inequality(4) is satisfied ∀n = {1, 2, · · · , N,N + 1},

accept the call;
otherwise, reject the call;

2. if a soft-handoff call marked by connection-(N + 1) arrives,then
if SN+1 ≤ Hσ(N+1) and inequality(4) is satisfied ∀n = {1, 2, · · · , N,N +1},

accept the soft-handoff call;
otherwise, reject the soft-handoff call.

In the above algorithm, new call thresholds Tk, k = 1, · · · ,K are key design
parameters which effect the new call blocking probability and handoff failure
probability at first hand. With highly variable conditions, any solution for re-
ducing handoff dropping probability in a system must be highly adaptive. In our
scheme, the main contribution is that we apply feedback control theory to adjust
the thresholds Tk adaptively, so as to achieve satisfactory network performance
and response to the system’s real-time dynamic. In the next section, we will
introduce the development of the feedback controller.

2.4 Network Performance Parameters

In this paper, we basically consider two performance measures in each service
class, i.e. new call blocking probability of class-k Pk,b and soft handoff call
failure probability of class-k Pk,h. According to [5][9], we evaluate the network
performance by grade of service (GoS), which is defined as

GoSk = Pk,b + ωPk,h, for k = {1, · · · ,K}, (5)
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where ω is a weighting factor to put greater importance on soft handoff call drop-
ping probability and is set to 10 in most work [5][9]. Since the system capacity
depends on the QoS difference between the two performance measures, it has
been shown [5] that for a given service class, the system capacity is maximal when
the new call blocking probability is equal to the weighted soft handoff failure
probability. And in every monitoring period, defined the time interval [tm−1, tm]
as the mth monitoring period, we compute the two performance measures for
each class.

3 Our Feedback Control Approach

In the next-generation wireless network, the resource requirements and the ar-
rival state of service requests occur over time, so it is even more difficult to
model because none of them is known a priori. These problems call for mecha-
nisms that can control them effectively, without depending on detailed insight
into their internal structure or on precise models of their behavior. Whereas feed-
back control strategy can be applied for behavior optimization in unpredictable
or poorly modelled environments.

In our feedback control architecture, we define a set of control related variable
for each service class k = 1, · · · ,K in the following:

♦ Controlled Variable 4Pk: 4Pk = ωPk,h − Pk,b. It means network perfor-
mance output, which is measured and controlled. This way can balance the
two performance measures simply and efficiently.

♦ Set Point: 0. It represents that system capacity arrives maximal when the
new call blocking probability is equal to the weighted soft handoff failure
probability [5].

♦ Error Ek: Ek = 0 −4Pk = −4Pk. It shows the difference between the set
point and the current value of the controlled variable.

♦ Manipulated Variable4Tk: It is the quantity of the new call power threshold
that is adjusted by the controller.

And a feedback loop of our architecture [12] is 1) the system periodically moni-
tors and compares the controlled variable to the set point to determine the error;
2) the controller computes the required control with the control function of the
system based on the error; 3) the actuators changes the value of the manipulated
variable to control the system.

Note that for each service class, there is an independent feedback loop with
the identical design process. For convenience, we will only discuss the whole
design process for some service class k, k = 1, · · · ,K, in later development.

4 Threshold Feedback Loop Design

We utilize feedback control theory and methodology [10] to design an adaptive
new call power threshold adjuster for each service class with proven performance
guarantees. The corresponding design methodology includes



6 Wen Chen, Feiyu Lei, Weinong Wang and Xi Chen

1. Choosing P control as the basic controller model for each class-k to compute
the change to the power threshold of class-k 4Tk;

2. Using system identification to design the open-loop system model;
3. Tuning the control parameters and meeting performance specs requirements

of adaptive system with Root Locus methods;

4.1 P Controller

We choose P control as the basic feedback control techniques in adaptive thresh-
old adjustment for the following reasons [11][12]. The rationale for using a P
controller instead of a more sophisticated Controller, such as PID (Proportional-
Integral-Derivative) Controller, is that the controlled system includes an integra-
tor in the adjustment of the new call power threshold (see the following (8)) such
that zero steady state error can be achieved without an I (Integral) term in the
Controller. The D (Derivative) term is not appropriate for controlling real-time
systems because Derivative control may amplify the noise in new call blocking
probability and soft handoff failure probability due to random workloads [10].

A basic form P control formula for controlling the change of the new call
power threshold for some service class-k in our scheme is

4Tk(t) = Ck,P Ek(t), (6)

where Ck,P is a tunable parameter (see Sect. 6). At each sampling instant m, P
controller periodically monitors the difference between new call blocking prob-
ability and weighted soft handoff probability for each class, and computes the
manipulated variable 4Tk(m) with the following control formula:

4Tk(m) = −Ck,P4Pk(m), (7)

If 4Tk(m) > 0, the new call power threshold of class-k should be increased.
Otherwise, the new call power threshold of class-k should be decreased. Namely,

Tk(m) = Tk(m− 1) +4Tk(m). (8)

In our work, the controller’s tuning process needs to base on a linear model
of the controlled system. It will be addressed in the following.

4.2 The Open-Loop System Model

As a basis for the analytical design of a controller, we must establish a dynamic
model to describe the mathematical relationship between the input and the out-
put of a system. Here, the input of the open-loop model is the change to the
new call power threshold of class-k 4Tk(m). The output of the model (i.e. the
controlled variable) is the difference between the new call blocking probability
and soft handoff probability of class-k 4Pk(m). However, modeling computing
systems with unknown dynamics has been a major barrier for applying feedback
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control in adaptive resource management of such system. As system identifica-
tion methodology [11] provides a practical solution for solving such modeling
problems, we utilize it to establish a linear model for the controlled system with
differential or difference equations.

Model Structure. We observe that the output of an open-loop network
model depends on previous input and outputs of the model. Then, the reference
cellular network of some service class-k is modelled as a nth order difference
equation with some unknown parameters,

4Pk(m) =
n∑

j=1

ak,j4Pk(m− j) +
n∑

j=1

bk,j4Tk(m− j). (9)

There are 2n parameters {ak,j , bk,j |1 ≤ j ≤ n} that need to be decided in an
nth order model of service class-k. Next, we will apply least squares estimator
to solve the problem.

Least Squares Estimator. Least-squares estimator [13] can estimate un-
known parameters by recursion formula, if only a system is modelled to be the
following standard structure,

y(m) = ΦT (m)Θ(m) + e(m), (10)

where ΦT (m) denotes the input-output observation vector, Θ(m) denotes the
unknown parameters vector, e(m) represents noise. White noise input has been
commonly used for system identification [13]. The estimator is invoked periodi-
cally at every sampling instant. At the mth sampling instant, according to the
above (10), we define the vectors Φk(m) and Θk(m) for service class-k:

Φk(m) = (4Pk(m− 1) · · ·4Pk(m− n)4Tk(m− 1) · · ·4Tk(m− n))T ,
Θk(m) = (ak,1 · · · ak,n bk,1 · · · bk,n)T .

Let R(m) be a square matrix whose initial value is set to a diagonal matrix
with the diagonal elements set to 10. The recursion formulas of the estimator’s
equations for class-k at sampling instant m are [13]:

γk(m) = [1 + ΦT
k (m)R(m− 1)Φk(m)]−1 (11)

Θk(m) = Θk(m− 1) + γk(m)R(m− 1)Φk(m)[4Pk(m)−
ΦT

k (m)Θk(m− 1)] (12)

R(m) = R(m− 1)− γk(m)R(m− 1)Φk(m)ΦT
k (m)R(m− 1). (13)

At sampling instant m, we substitute the current estimates Θk(m) (reckoned
by (12) ) into (9), the estimator ′′predicts′′ a value of the model output 4P̂k(m).
The estimate error is 4Pk(m) − 4P̂k(m). The objective of the least squares
estimator is iteratively update the parameter estimates at each sampling instant
so as to minimize

∑
0≤i≤m(4Pk(m)−4P̂k(m))2.

Our experimental results (Sect. 5) establish a second order difference equation
of class-k to approximate the input-output relation of the dynamic open-loop
model,

4Pk(m) = ak,14Pk(m−1)+ak,24Pk(m−2)+bk,14Tk(m−1)+bk,24Tk(m−2).
(14)
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4.3 The Closed-Loop Feedback Design

In this section, we obtain the transfer function of the closed-loop system model to
analyze the system dynamic. First, we convert the open-loop controlled system
model for class-k in (14) to a transfer function Gk,o(z) in z-domain:

Gk,o(z) =
4Pk(z)
4Tk(z)

=
bk,1z + bk,2

z2 − ak,1z − ak,2
. (15)

Second, the transfer function of the class-k P controller in z-domain is also given
by

Dk(z) = Ck,P . (16)

Thus, given the open-loop model and the controller model, we achieve the trans-
fer function Gk,c(z) of the closed-loop model:

Gk,c(z) =
Dk(z)Gk,o(z)

1 + Dk(z)Gk,o(z)
=

Ck,P (bk,1z + bk,2)
z2 + (bk,1Ck,P − ak,1)z + (bk,2Ck,P − ak,2)

.

(17)
In summary, we present the block diagram of the adaptive new call power thresh-
old of class-k feedback control system in Fig.1.
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Fig 1. New call power threshold of class-k feedback control loop

4.4 Performance Specs

To design adaptive systems, it is necessary to devise specifications for the adap-
tive process itself. The following metrics [10] of a closed-loop system are used to
describe the quality of adaptation:

• Stability: BIBO (bounded-input bounded-output) stability, which means
that the system output is always bounded for bounded references, is satisfied
to avoid uncontrollable performance degradation in a system. In the context
of our system, this means stability is a necessary condition to prevent the
controlled variables 4P1 from severe deviations with reference values 0. For
example, although P1,b and P1,h exceed some limit values to make the link
availability low, the controlled variable 4P1 unexpectedly reaches the set
point. To satisfy the stability, it avoids the situation happening.
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• Setting time Ts: Ts is the time it takes the output to converge to within
2% of the reference and enter steady state. It represents the efficiency of the
controller. We assume that our system requires the settling time Ts < 10sec.

• Steady state error: For a closed-loop system, the steady state error rep-
resents the accuracy of the basic controller in achieving the desired perfor-
mance. And zero steady state error means our closed-loop controller can
bring performance parameters to their set points in steady state with zero
error.

5 System Identification Experiment

We first conduct simulation studies for a network with single class of service
(e.g., voice). And the value of threshold T1 (assumed that k=1 denotes voice
class) changes in the range of 0.75 · 10−14W to 1.0 · 10−14W as the parameters
used in [8]. We use the System Identification Toolbox of MATLAB to run the
system identification experiments to respectively estimate a first order, a second
order, a third order and a forth order model. Figure 2 demonstrates that the
estimated first order model has larger prediction error than the second order
model, while an estimated third/forth model does not tangibly improve the
modeling accuracy. Hence the second order model is chosen as the best comprise
between accuracy and complexity. The corresponding estimation parameters are
(a1,1, a1,2, b1,1, b1,2) = (0.6209,−0.06977, 3.813e010,−2.645e007).

0 500 1000 1500 2000 2500 3000
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x 10
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Time(s)

Measured and simulated model output

4th order

3rd order

1st order

Actual
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Fig 2. System Identification Results of voice class
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We can conduct estimation for cellular network with two or more than classes
of services using the same way, for each class has a completely dependent con-
troller and model with only relatively different network parameters (see [8]).
Similarly, the following turning process of the controller for voice class also gives
a demonstration.

6 Control Tuning and Performance Analysis

According to control theory, the performance profile of a system depends on the
poles of its closed-loop transfer function. We can place the pole at the desired
location by choosing the right vale for the control parameter C1,P (voice class)
to achieve desired performance spec.

The Root Locus is a graphical technique that plots the traces of poles of
a closed-loop system on the z−plane (or s−plane) as its controller parameters
change. We use the Root Locus tool of MATLAB to tune the control parameter
C1,P so that the performance specs can be satisfied. For the closed-loop model
(17)(based on the estimated model parameters above), the traces of its closed-
loop poles are illustrated on the z−plane in Fig.3. The closed-loop poles are
placed at

l1 = 0.4721, l2 = 0.1478 (18)

by setting the controller parameter to

C1,P = 2.7097e− 014. (19)
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Fig 3. Root Locus of the Closed-Loop Model

Hence, our closed-loop system obtains the following performance profile:
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• Stability: The closed-loop system with the power threshold controller (based
on the parameters in (19)) guarantees BIBO stability because the real roots
of all the closed-loop poles are in the unit circle, i.e. |lj | < 1(j = 1, 2) (see
(18) and Fig.3).

• Setting time Ts: From Fig.4, we observe that the controller achieves a
settling time of 6sec, lower than the required settling time (10sec).

• Steady state error: In our design, the controller achieves zero steady state
error, i.e. Es ≈ 0 (see Fig.4). This means the closed-loop system can guar-
antee the desired performance in steady state.

Step Response
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Fig 4. Step Response of the Closed-Loop Model

In brief, the performance specs of our closed-loop system are proved to be sat-
isfied. It demonstrates our adaptive architecture achieves robust QoS guarantee
even when the environment varies considerably.

7 Conclusion

We have developed an novel adaptive new call power threshold adjustment al-
gorithm based on feedback control theory. We have shown that the algorithm
is stable and meets desired network performance. The algorithm is based both
on a novel analytical model and employing standard feedback control design
techniques using that model. This would be a new paradigm for adaptive QoS
control in uncertain environments.
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