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Abstract. The scientific community has accumulated an immense experience in 
processing data represented in finite-dimensional linear spaces of numerical fea-
tures of entities, whereas the kit of mathematical instruments for dissimilarity-
based processing of data in metric spaces representing distances between enti-
ties, for which sufficiently informative features cannot be found, is much 
poorer. In this work, the problem of embedding the given set of entities into a 
linear space with inner product by choosing an appropriate kernel function is 
considered as the major challenge in the featureless approach to estimating de-
pendences in data sets of arbitrary kind. As a rule, several kernels may be 
heuristically suggested within the bounds of the same data analysis 
problem. We treat several kernels on a set of entities as Cartesian product of 
the respective number of linear spaces, each supplied with a specific kernel 
function as a specific inner product. The main requirement here is to avoid dis-
crete selection in eliminating redundant kernels with the purpose of achieving 
acceptable computational complexity of the fusion algorithm. 

1 Introduction 

The problem of finding empirical dependences ( ) :y Yω Ω→ in a set of entities of 
arbitrary kind ω∈Ω is one of the glowing problems of modern data mining. Let a given 
data set be the set of experimentally measured values of a characteristic ( )j jy y Y= ω ∈

within an accessible subset of entities 1{ , ..., }N
∗Ω = ω ω ⊂ Ω . It is required to continue 

this function onto the entire set Ω for it would be possible to estimate this characteristic 
ˆ( )y ω for entities \ ∗ω∈Ω Ω not represented in the original (training) data set [1,2]. In 

particular, if ( )y ω takes values from a finite set, for instance, { }1, 1Y = − , the problem 
is usually called the pattern recognition problem, and in the case of a real-valued charac-
teristic Y = R it is referred to as the problem of regression estimation. 
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It is clear that the problem of function continuation is meaningless until some as-
sumptions are taken about the relations between the values )(ωy and other characteris-
tics of entities Ω∈ω that are more accessible to observation than the goal characteris-
tic. There exist many practical problems of data analysis, including pattern recognition 
and regression estimation, in which it is relatively easy to evaluate the degree of dissimi-
larity of any pair of entities. The modern machine learning theory is based on the so-
called compactness hypothesis, which consists in the assumption that if two entities are 
close to each other in the sense of an appropriate metric then so are also, in most cases, 
the respective values of the goal characteristic. This fact, actually, underlies the feature-
less (relational, similarity-based) approach to data analysis proposed by R. Duin and his 
colleagues [3,4,5]. In the featureless situation, a natural mathematical model of the gen-
eral set of entities is a metric space, in which the compactness hypothesis can be ex-
pressed directly in terms of the given metric.  

At the same time, the mathematically most advanced methods of machine learning es-
sentially exploit the assumption that the universe of entities can be represented as a linear 
space. As the simplest instrument of introducing linear operations in the set of entities 
ω∈Ω , the vector of some observable numerical features ( ) nω ∈x R was traditionally 

considered, and the Euclidean metric produced by it ( , ) ( ) ( )′ ′′ ′ ′′ρ ω ω = ω − ωx x  served as 
the basis of function continuation in respective machine learning techniques.  

It became apparent soon that what immediately determines the result of training is the 
configuration of the training-set points, represented in nR by their pair-wise inner prod-
ucts ( ) ( ) ( )T′ ′′ ′ ′′ω ⋅ω = ω ωx x , rather than the values of features. This observation re-
sulted in the potential function method of machine learning [2], which later was named 
the kernel method [1]. The idea of a kernel ( , )K ′ ′′ω ω consists in understanding it as 

inner product of two entities ( , ) ( )K ′ ′′ ′ ′′ω ω = ω ⋅ω in a linear space, maybe, a hypo-

thetical one. If a kernel function ( , )K ′ ′′ω ω is defined in an arbitrary set of entities Ω ,
it produces a Euclidean metric in it  

 [ ]1 2( , ) ( , ) ( , ) 2 ( , )K K K′ ′′ ′ ′ ′′ ′′ ′ ′′ρ ω ω = ω ω + ω ω − ω ω  (1) 
which expresses a specific compactness hypothesis without the intervening notion of 
features.  

There is usually much freedom in measuring similarity or dissimilarity of entities, 
and, thus, several heuristic kernels may be heuristically suggested within the bounds of 
the same data analysis problem. However, the choice of features ( )ix ω ∈R , each of 

which defines, actually, a simplest kernel ( , )iK ′ ′′ω ω = ( ) ( )i ix x′ ′′ω ω , is also ever 
heuristic. The aim of this work is to study the ways of fusing the given set of kernels and 
to organize, thereby, a concurrence of several compactness hypotheses in finding empiri-
cal regularities in the given set of entities. The main requirement here is to avoid discrete 
selection of kernels with the purpose of achieving acceptable computational complexity 
of the fusion algorithm. We use here the main idea of embedding the discrete problem of 
choosing a subset into a continuous problem of finding optimal nonnegative weights as-
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signed to the elements of the initial set. This idea was originally proposed in [6] as a means 
of constructing Relevance Vector Machines (RVM). 

2 The linear space produced by a kernel  

A kernel ( , )K ′ ′′ω ω on a set of entities of arbitrary kind ω∈Ω can be defined as a 
real-valued function Ω×Ω→R possessing two principal properties – symmetry 

( , )K ′ ′′ω ω = ( , )K ′′ ′ω ω and positive semi-definiteness of the matrix 

( , ); , 1,...,i jK i j m ω ω =  for any finite collection of entities 1{ ,..., }mω ω ⊂Ω . The 

function ( , )′ ′′ρ ω ω (1) produced by a kernel is a metric [7], and, so, the set of entities Ω
supplied with a kernel function becomes a metric space.  

Any kernel function ( , )K ′ ′′ω ω allows for mentally embedding the set Ω into a 

real linear space with inner product Ω⊆Ω
~ . The null element φ∈Ω and linear op-

erations ( ):′ ′′ω +ω Ω×Ω→Ω� � � and ( ):cω ×Ω→Ω� �R are defined in Ω� in a 
special way, whereas the role of inner product is played by the kernel function itself 
( , ) ( , )K′ ′′ ′ ′′ω ω = ω ω .

As the basis for introducing linear operations in the extended set Ω� , serves the no-
tion of coaxiality of elements in a metric space [7]. Let ,′ ′′<ω ω > be an ordered pair 

of elements ,′ ′′ω ω∈Ω� . We shall say that the element ω∈Ω� is coaxial to the pair 

,′ ′′<ω ω > with coefficient c∈R if ( , ) | | ( , )c′ ′ ′′ρ ω ω = ρ ω ω and 

( , ) |1 | ( , )c′′ ′ ′′ρ ω ω = − ρ ω ω .This fact will be denoted by the symbol 

( )coax , ; c′ ′′ω = <ω ω > . The triangle inequality turns into equality for any three 

coaxial elements ′ω , ′′ω and ω .
A metric space will be said to be unboundedly convex if for any ordered pair 

,′ ′′< α α > and any c∈R it contains at least one element coaxial to this pair with 
coefficient c . It is proved in [7] that the coaxial element is unique if the metric form-
ing an unboundedly convex metric space is produced by a kernel function (1). Such 
metric spaces are called Euclidean metric spaces. It is assumed that the given set of 
entities Ω is embedded into a greater setΩ⊆Ω� in which a kernel function is defined 
and which is, so, a Euclidean metric space.  

It is possible to define linear operations in the Euclidean metric space Ω� in the 
following way (see [7] for details):  

- the null element is a hypothetical element φ∈Ω� for which ( , ) 0K φ φ = ;

- multiplying by real coefficient ( )coax , ;c cω = < φ ω > ;

- summation ( )2coax , ;1 2′ ′′ ′ ′′ω+ω = <ω ω > ;
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- inner product and norm ( ) ( , )K′ ′′ ′ ′′ω ⋅ω = ω ω , [ ]1 2|| || ( , )Kω = ω ω .

It is just this system of linear operations which is produced in the extended set Ω� by a 
kernel function defined in the original set of entities Ω⊆Ω� .

The dimensionality of the linear space Ω� is the maximum number of elements 

1{ ,..., }mω ω ⊂Ω� for which the matrix ( , ); , 1,...,i jK i j m ω ω =  can be positive 

definite. We do not study here the question of the dimensionality of this space, which 
may be finite or infinite, but this issue is extremely important for the generalization 
performance of the decision rules inferred from a training set.  

3 The class of linear decision rules in the linear space produced 
by a kernel function 

The convenience of a kernel function as a means of measuring dissimilarity of any two 
entities by the respective Euclidean metric (1) consists in that it involves the notion of a 
linear function ( ) :y ω Ω→R in the set of entities of any kind. This circumstance 
makes it possible to develop very simple algorithms of estimating dependencies between, 
generally speaking, arbitrary entities by exploiting, in the featureless situation, practically 
all known methods which had been worked up for linear spaces. 

In this Section, we consider the commonly adopted class of kernel-based decision 
rules as a class of linear functions in the extended set of entities Ω� supplied with linear 
operations and inner product produced by a continuation of the given kernel function. 
The class of linear functions in Ω� is defined by two parameters ϑ∈Ω� and b∈R

( | , ) ( , )y b K bω ϑ = ϑ ω + ,ω∈Ω . (2) 
We shall call parameter ϑ the direction element of the linear function.  

If the real value of the linear function is immediately treated as the goal characteristic 
of an entity, the choice of parameters ϑ∈Ω� and b∈R determines a regression de-
pendence. If the sign of the linear function is understood as the goal characteristic, the 
parameters specify a classification of the set of entities into two classes: 

( ) ( , ) 0y K bω = ϑ ω + > → class 1, ( ) 0y ω ≤ → class 2.  
Such a way of specifying a linear function may appear nonconstructive because it in-

volves a hypothetical element of a linear space Ω∈ϑ
~

as direction element in (2), which 
is nothing else than product of our imagination. But when solving the problem of infer-
ring the regression dependence or decision rule of pattern recognition from a training set 
{ }Njy jj ,...,1);,( =ω by the principles of Support Vector Machines [1] or Relevance 
Vector Machines [6], the only reasonable choice of ϑ will be a linear combination of 

really existing objects ∑ =
ω=ϑ N

j jja
1

ˆ in accordance with the linear operations induced 

in the extended set Ω
~

by the kernel function ),( ω′′ω′K [8]. As inner product in Ω
~

, the 
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kernel function is linear with respect to its arguments, hence, the linear function resulting 
from training will include the values of the kernel function only for objects existing in 
reality =ω)(ŷ ∑ = ωωN

j jj Ka1 ),( .  

4 Cartesian product of linear spaces produced by several kernel 
functions 

It is natural to expect that different experts skilled in the specific knowledge area will 
propose different kernel function. The main idea of this work is to shift the burden of the 
final choice onto the training algorithm by concurrently fusing the given set of heuristi-
cally chosen kernels.  

Let ( , )iK ′ ′′ω ω , 1,...,i n= , be the kernel functions defined on the same set of enti-
ties ω∈Ω by different experts. These kernel functions embed the set Ω into different 
linear spaces iΩ⊂Ω� , 1,...,i n= , with different inner products and, respectively, dif-
ferent linear operations. It is convenient to treat the n linear spaces jointly as Cartesian 
product  

 { }1 1... ,..., :n n i iΩ=Ω × ×Ω = ω =<ω ω > ω∈Ω� � � (3) 

formed by ordered n -tuples of elements from 1,..., nΩ Ω� � . The kernel function (i.e. inner 
product) in this linear space can be defined as the sum of the kernel functions (inner 
products) of the corresponding components in any two n -tuples 1, ..., n′ ′ ′ω=< ω ω > and 

1,..., n′′ ′′ ′′ω =< ω ω > :

1
( , ) ( , )n

i i ii
K K

=
′ ′′ ′ ′′ω ω = ω ω∑ , ,′ ′′ω ω ∈Ω� . (4) 

The dimensionality of the combined linear space Ω� (3) will not exceed the sum of di-
mensionalities of the particular linear spaces.  

A really existing entity ω∈Ω will be represented by its n -fold repetition 

,...,ω =< ω ω >∈Ω� . Then any real-valued linear function Ω→R is specified by the 

choice of parameters ϑ∈Ω� and b∈R

1
( ) ( , ) ( , )n

i ii
y K b K b

=
ω = ϑ ω + = ϑ ω +∑ , (5) 

where ϑ is a combination of hypothetical elements of particular linear spaces 

1,..., nϑ=< ϑ ϑ > , i iϑ ∈Ω� , produced by particular kernel functions ( , )iK ′ ′′ω ω in iΩ� .
Thus, to define a numerical dependence over a set of entities of any kind by combin-

ing several kernel functions ( , )iK ′ ′′ω ω , we have, first of all, to choose, as parameters, 

one element in each of linear spaces i iϑ∈Ω� into which the kernel functions embed the 

original set iΩ⊆ Ω� . It should be marked that the less the norm of the i th parameter in 
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its linear space 2|| || ( , )i i i iKϑ = ϑ ϑ , the less the influence of the respective summand on 

the value of the function (5). If ( , ) 0i iK ϑ ϑ → , i.e. i i iϑ ≅ φ ∈Ω� , the i th kernel will 
practically not affect the goal function.  

This means that the parametric family of numerical functions (5) implies also an in-
strument of emphasizing “adequate” kernels with respect to the available observations 
and suppressing “inadequate” ones. Which kernels should be considered as adequate is 
the key question for providing a good generalization performance of the decision rule 
when it is applied to entities not represented in the training set.  

5 Fusion of kernel functions 

If the total dimensionality of the combined extended linear space Ω� (3) is greater than 
the number of entities in the training set {( , );j jyω }1,...,jy j N∈ =R, or 

{ }( , ); { 1,1}, 1,...,j j jg g j Nω ∈ − = there always exist linear functions (5) that exactly 

reproduce the trainer’s data. Following the widely adopted principle [1], we shall prefer 
the function with the minimum norm of the direction element under the constraints of the 
training set: 

 

2
1

1

1

|| || min, ,..., ,

( , )

or ( , ) const.

n
n

i i j ji
n

j i i ji

K b y

g K b
=

=

 ϑ → ϑ =< ϑ ϑ >∈Ω
 ϑ ω + =


ϑ ω + ≥

∑
∑

�

(6) 

However, the norm in Ω
~

can be measured in several ways. The simplest version of 
norm follows from (4)  

 2|| ||ϑ =
1

( , )n
i i ii

K
=

ϑ ϑ∑ , (7) 

but any linear combination of kernel functions with nonnegative coefficients also possesses all 

the properties of norm 2
1

|| || (1 ) ( , )n
i i i ii

r K
=

ϑ = ϑ ϑ∑ . In this case, the criterion (6) will 

try to avoid kernels with small i . If 0ir = , the respective kernel does not participate in 
forming the goal function.  

The idea of adaptive training consists in jointly inferring the direction elements iϑ
and the weights i from the training set by additionally penalizing large weights [6]: 

 

[ ]1

1

1

(1 ) ( , ) log min( , ),

( , )

or ( , ) const, 1,..., .

n
i i i i i i ii

n
i i j ji

n
j i i ji

r K r r

K b y

g K b j N

=

=

=

 ϑ ϑ + → ϑ

 ϑ ω + =


ϑ ω + ≥ =

∑
∑
∑

(8) 



Lecture Notes in Computer Science      7

This adaptive training criterion displays a pronounced tendency to emphasize the kernel 
functions which are “adequate” to the trainer’s data and to suppress up to negligibly 
small values the weights ir at “redundant” ones. 

The reasoning for the adaptive training criterion (8) is the view on the unknown di-
rection elements ii Ω∈ϑ

~
in each of the linear spaces iΩ

~
as hidden independent random 

variables whose mathematical expectations coincide with the respective null elements 

iii Ω∈φ=ϑ
~

)(M . The parameter ir has the sense of the unknown mean-square distance 
of the random direction element from the null element in the sense of metric (1). Then 
(8) is equivalent to finding the joint maximum-likelihood estimate of the variables 

nϑϑ ,...,1 and their variances nrr ,...,1 under the additional assumption that the dimen-

sionality of each of linear spaces iΩ
~

is, maybe, very large but finite, and the respective 
direction element is normally distributed in it. 

Since ϑ is element of an abstract linear space but not a vector, for minimizing the 
Lagrangian of the respective constrained optimization problem (8) we have to use the 
notion of Frechet differential instead of that of gradient [9]. The Frechet differential of a 
real-valued function over a linear space is element of this space: ( , )Kϑ∇ ϑ ω =ω ,

( , ) 2Kϑ∇ ϑ ϑ = ϑ . It can be shown that the following iterative procedure solves both 
regression estimation and pattern recognition problem: 

 ( ) ( 1) ( )
1

Nk k k
i i j jj

r −
=

ϑ = λ ω∑ or  ( ) ( 1) ( )
1

,Nk k k
i i j j jj

r g−
=

ϑ = λ ω∑ (9) 

 ( ) ( 1) 2 ( ) ( )
1 1

( ) ( , )N Nk k k k
i i i j l j lj l

r r K−
= =

= ω ω λ λ∑ ∑ , (10) 

where the real numbers ( ) ( )
1 ,...,k k

Nλ λ are the Lagrange multipliers (nonnegative in the 
case of pattern recognition) found as solutions of the respective dual problem. Updating 
the constant ( )kb doesn’t offer any difficulty.  

As we see, the abstract variables ( )k
i iϑ ∈Ω� (9) are linear combinations of the entities 

of the training set in the sense of linear operations induced by the kernel functions as 
inner products in the respective linear spaces. Substitution of (9) and (10) into (5) elimi-
nates ( )k

iϑ and gives the completely constructive estimate of the sought function, respec-
tively, for regression estimation and pattern recognition: 

 

( ) ( ) ( ) ( )
1 1

( ) ( ) ( ) ( )
1 1

ˆ ( ) ( , ) ,

0,
ˆ ( ) ( , )

0.

N nk k k k
j i i jj i

N nk k k k
j j i i jj i

y r K b

y g r K b

= =

= =

ω = λ ω ω +

>
ω = λ ω ω + <

∑ ∑

∑ ∑
 (11) 

As a rule, the process converges in 10-15 steps and displays a pronounced tendency to 
suppressing the weights at “redundant” kernel functions 0ir → along with emphasizing 

0ir � the kernel functions which are “adequate” to the trainer’s data. This fact pro-
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vides a computationally effective selection of kernel functions without straightforward 
discrete choice of their subsets.  

6 A particular case: Feature selection as kernel fusion 

There is no insurmountable barrier between the featureless kernel-based way of 
forming parametric families of numerical functions on a set of entities of any 
kind and the usual parametric family of linear functions on the set of entities 
represented by vectors of their numerical features. The latter way is particular 
case of the former one. 

Indeed, a numerical feature ( ):x ω Ω→R is equivalent to the simplest kernel 

function in the form of product ( , )K ′ ′′ω ω = ( ) ( )x x′ ′′ω ω that embeds the set of 

entities into a one-dimensional linear space Ω⊆Ω� . Respectively, a vector of 

features [ ]1( ) ( ) ( )nx xω = ω ωx � gives n kernel functions at once 

( , )iK ′ ′′ω ω = ( ) ( )i ix x′ ′′ω ω and n versions of such an embedding iΩ⊆Ω� . The 

choice of one entity in each of these spaces i iϑ∈Ω� , 1,...,i n= , namely, n real 

numbers ( )1 1( ) ( ) n
n nx xϑ ϑ ∈� R , along with a numerical constant b∈R speci-

fies a linear function on the set of entities: ( )y ω =
1

( , )n
i ii

K b
=

ϑ ω + =∑
1

( )n
i ii

a x b
=

ω +∑ where ( )i i ia x= ϑ .

The less the i th coefficient, i.e. the norm of the i th imaginary entity 
|| || ( )i i ixϑ = ϑ , the less is the contribution of this feature ( )ix ω to the value of the 
function. 

7 Experimental results 

As the essence of feature selection is shown to be the same as that of kernel fusion, we 
tested the proposed approach, for obviousness sake, on a set 

{ }( , ); 1,...,j jy j N=x of 300N = pairs consisting of randomly chosen feature 

vectors n
j ∈x R , 100n = , and scalars obtained by the rule 1 ,1 2 ,2j j j jy a x a x= + +ξ

with 1 2 1a a= = and jξ as normal white noise with zero mean value and some vari-

ance 2σ . So, only 2n′ = features of 100n = were rational in the simulated data. In 
the experiment with regression estimation this set was taken immediately, whereas for 

the experiment with pattern recognition we took the set { }( , ); 1,...,j jg j N=x where 

1jg =− if 0jy < and 1jg = if 0jy ≥ .
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In both experiments, we randomly chose 20trN = pairs for training. So, the size of 
the training set was ten times greater than the number of rational features, but five 
times less than the full dimensionality of the feature vector. The remaining 280testN =
pairs we used as the test set.  

The comparative results of training with equal weights at features (6)-(7) and with 
adaptive weights (8) are presented in the following two tables: 

 

Regression estimation 
Error rate: ratio of the root-mean-square error in the test set 
to the actual root variance of the observation noise σ

Training procedure 
Feature set 

equal weights adaptive weights 

2 rational features 1.01 inapplicable 
all 100 features 166.75 2.16 

Pattern recognition  
Error rate: misclassification percentage in the test set 

Training procedure 
Feature set 

equal weights adaptive weights 
2 rational features 0.36% inapplicable 

all 100 features 26.8% 0.36% 

As was expected, the classical training criterion with equal weights shows a drastic 
increase in the error rate in both cases when confusing features (i.e. confusing kernel 
functions) participate in training. At the same time, the error rate with weights adapta-
tion is little sensitive to the presence of purely noisy features. In both experiments, the 
weights at redundant features turned practically into computer zeros after 10 itera-
tions.  

8 Conclusions 

A numerical feature, when assigned to entities of a certain kind, embeds the set of 
these entities into a one-dimensional linear space. The essence of assigning a kernel 
function in a set of entities is also embedding it into a hypothetical linear space 
through the notion of coaxiality of elements of a Euclidean metric space.  

The important difference is that the dimensionality of the space induced by a ker-
nel function will be, as a rule, greater than one, if not infinite at all. The main point of 
the way of fusing several kernels is the idea to consider the Cartesian product of the 
respective linear spaces, just as the multidimensional feature space formed by a vector 
of features is the Cartesian product of the respective one-dimensional ones.  
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Thus, treating the universal set of “all feasible” entities as a linear space practically 
wipes out the difference between a set of kernels and a set of features and, so, between 
the featureless and feature-based approach to data analysis. The featureless multi-
kernel approach replaces the problem of choosing the features by that of choosing the 
kernels. According to which of these two problems is easier, the feature-based or the 
featureless approach should be preferred.  

However, fusing too many kernels, just as training with too many features, will in-
evitably worsen the generalization performance of the decision rule inferred from a 
small training set unless some regularization measures are taken. The technique of 
kernel selection proposed here is only one of possible principles of kernel fusion and 
has its shortcomings. In particular, such a technique should involve elements of testing 
on a separate set immediately in the course of training, for instance, on the basis of the 
leave-one-out principle.  
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