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Abstract. Modern scientific repositories are growing rapidly in size. Scientists
are increasingly interested in viewing the latest data as part of query results.
Current scientific middleware cache systems, however, assume repositories are
static. Thus, they cannot answer scientific queries with the latest data. The
queries, instead, are routed to the repository until data at the cache is refreshed.
In data-intensive scientific disciplines, such as astronomy, indiscriminate query
routing or data refreshing often results in runaway network costs. This severely
affects the performance and scalability of the repositories and makes poor use
of the cache system. We present Delta a dynamic data middleware cache system
for rapidly-growing scientific repositories. Delta’s key component is a decision
framework that adaptively decouples data objects—choosing to keep some data
object at the cache, when they are heavily queried, and keeping some data ob-
jects at the repository, when they are heavily updated. Our algorithm profiles
incoming workload to search for optimal data decoupling that reduces network
costs. It leverages formal concepts from the network flow problem, and is ro-
bust to evolving scientific workloads. We evaluate the efficacy of Delta, through
a prototype implementation, by running query traces collected from a real as-
tronomy survey.
Keywords: dynamic data, middleware cache, network traffic, vertex cover, ro-
bust algorithms

1 Introduction

Data collection in science repositories is undergoing a transformation. This is re-
markably seen in astronomy. Earlier surveys, such as the Sloan Digital Sky Survey
(SDSS) [33, 40] collected data at an average rate of 5GB/day. The collected data was
added to a database repository through an off-line process; the new repository was
periodically released to users. However, recent surveys such as the Panoramic Survey
Telescope & Rapid Response System (Pan-STARRS) [30] and the Large Synoptic Sur-
vey Telescope (LSST) [23] will add new data at an average rate considerably more



than 100 GB/day! Consequently, data collection pipelines have been revised to facili-
tate continuous addition of data to the repository [18]. Such a transformation in data
collection impacts how data is made available to users when remote data middleware
systems are employed.

Organizations deploy data middleware systems to improve data availability by re-
ducing access times and network traffic [3, 34]. A critical component of middlewares
systems are database caches that store subsets of repository data in close proximity to
users and answer most user queries on behalf of the remote repositories. Such caches
worked well with the old, batch method of data collection and release. But when data
is continuously added to the repositories, cached copies of the data rapidly become
stale. Serving stale data is unacceptable in sciences such as astronomy where users are
increasingly interested in the latest observations. Latest observations of existing and
new astronomical bodies play a fundamental role in time-domain studies and light-
curve analysis [17,32]. To keep the cached copies of the data fresh, the repository could
continuously propagate updates to the cache. But this results in runaway network costs
in data-intensive applications.

Indeed, transforming data middlewares to cache dynamic subsets of data for rapidly
growing scientific repositories is a challenge. Scientific applications have dominant char-
acteristics that render dynamic data caches proposed for other applications untenable.
Firstly, scientific applications are data intensive. In PAN-STARRS for instance, as-
tronomers expect daily data additions of atleast 100GB and a query traffic of 10TB
each day. Consequently a primary concern is minimizing network traffic. Previously
proposed dynamic data caches for commercial applications such as retail on the Web
and stock market data dissemination have a primary goal of minimizing response time
and minimizing network traffic is orthogonal. Such caches incorporate latest changes by
either (a) invalidating subsets of cached data and then propagating updates or shipping
queries, or (b) by proactively propagating updates at a fixed rate. Such mechanisms are
blind to actual queries received and thus generate unacceptable amounts of network
traffic.

Secondly, scientific query workloads exhibit a constant evolution in the queried data
objects and the query specification; a phenomenon characteristic of the serendipitous
nature of science [25, 35, 42]. The evolution often results in entirely different sets of
data objects being queried in a short time period. In addition, there is no single query
template that dominates the workload. Thus, it is often hard to extract a representative
query workload. For an evolving workload, the challenge is in making robust decisions—
that save network costs and remain profitable over a long workload sequence. Previously
proposed dynamic data caches often assume a representative workload of point or range
queries [5, 9, 10].

In this paper, we present Delta a dynamic data middleware cache system for rapidly
growing scientific repositories. Delta addresses these challenges by incorporating two
crucial design choices:

(A) Unless a query demands, no new data addition to the repository is propagated
to the cache system, If a query demands the latest change, Delta first invalidates the
currently available stale data at the cache. The invalidation, unlike previous systems [6,
34], is not followed by indiscriminate shipping of queries or updates; Delta incorporates



a decision framework that continually compares the cost of propagating new data
additions to the cache with the cost of shipping the query to the server, and adaptively
decides whether it is profitable to ship queries or to ship updates.

(B) In Delta, decisions are not made based on assuming some degree of workload
stability. Often frameworks assume prior workload to be an indicator of future ac-
cesses. Such assumptions of making statistical correlation on workload patterns lead to
inefficient decisions, especially in the case of scientific workloads that exhibit constant
evolution.

To effectively implement the design choices, the decision framework in Delta decou-
ples data objects; it chooses to host data objects for which it is cheaper to propagate
updates, and not host data objects for which it is cheaper to ship queries. The decou-
pling approach naturally minimizes network traffic. If each query and update accesses a
single object, the decoupling problem requires simple computation: if the cost of query-
ing an object from the server exceeds the cost of keeping it updated at the cache, then
cache it at the middleware, otherwise not. However, scientific workloads consist of SQL
queries that reference multiple data objects. A general decoupling problem consists of
updates and queries on multiple data objects. We show how the general decoupling
problem is a combinatorial optimization problem that is NP-hard.

We develop a novel algorithm, VCover, for solving the general decoupling problem.
VCover is an incremental algorithm developed over an offline algorithm for the network
flow problem. VCover minimizes network traffic by profiling costs of incoming workload;
it makes the best network cost optimal decisions as are available in hindsight. It is
robust to changes in workload patterns as its decision making is grounded in online
analysis. The algorithm also adapts well to a space constrained cache. It tracks an
object’s usage and makes load and eviction decisions such that at any given time the
set of objects in cache satisfy the maximum number of queries from the cache. We
demonstrate the advantage of VCover for the data decoupling framework in Delta by
presenting Benefit, a heuristics based greedy algorithm that can also decouple data
objects. Algorithms similar to Benefit are commonly employed in commercial dynamic
data caches [21].

We perform a detailed experimental analysis to test the validity of the decoupling
framework in real astronomy surveys. We have implemented both VCover and Benefit and
experimentally evaluated their performance using more than 3 Terabyte of astronomy
workload collected from the Sloan Digital Sky Survey. We also compare them against
three yardsticks: NoCache, Replica and SOptimal. Our experimental results show that
Delta (using VCover) reduces the traffic by nearly half even with a cache that is one-
fifth the size of the server repository. Further, VCover outperforms Benefit by a factor
that varies between 2-5 under different conditions. It’s adaptability helps it maintain
a steady performance in the scientific real-world, where queries do not follow any clear
patterns.
RoadMap: We discuss related works in Section 2. The science application, i.e., the
definition of data objects, and the specification of queries and updates is described
in Section 3. In this Section, we also describe the problem of decoupling data objects
between the repository and the cache. An offline approach to the data decoupling
problem is described in Section 3.1. In Section 4, we describe an online approach,



VCover, to the data decoupling problem. This approach does not make any assumptions
about workload stability. An alternative approach, Benefit, which is based on workload
stability is described in Section 5. We demonstrate the effectiveness of VCover over
Benefit in Section 6. Finally, in Section 7 we present our conclusions and future work.

2 Related Work

The decoupling framework proposed in Delta to minimize network traffic and improve
access latency is similar to the hybrid shipping model of Mariposa [38,39]. In Mariposa,
processing sites either ship data to the client or ship query to the server for processing.
This paradigm has also been explored in OODBMSs [11,22] More recently, applications
use content distribution networks for efficiently delivering data over the Internet [31].
However, none of these systems consider propagating updates on the data [28]. In Delta
the decoupling framework includes all aspects of data mobility, which include query
shipping, update propagation and data object loading.

Deolasee et al. [10] consider a proxy cache for stock market data in which, adaptively,
either updates to a data object are pushed by the server or are pulled by the client. Their
method is limited primarily to single valued objects, such as stock prices and point
queries. The tradeoff between query shipping and update propagation are explored
in online view materialization systems [20, 21]. The primary focus is on minimizing
response time to satisfy currency of queries. In most systems an unlimited cache size
is assumed. To compare, in Benefit we have developed an algorithm that uses workload
heuristics similar to the algorithm developed in [21]. The algorithm minimizes network
traffic instead of response time. Experiments show that such algorithms perform poorly
on scientific workloads.

More recent work [16] has focused on minimizing the network traffic. However the
problem is focused on communicating just the current value of a single object. As a
result the proposed algorithms do not scale for scientific repositories in which objects
have multiple values. Alternatively, Olston et al. [27, 29] consider the precision-based
approach to reduce network costs. In their approach, users specify precision require-
ments for each query, instead of currency requirements or tolerance for staleness. In
scientific applications such as the SDSS, users have zero tolerance for approximate or
incorrect values for real attributes as an imprecise result directly impacts scientific
accuracy.

Finally, there are several dynamic data caches that maintain currency of cached
data. These include DBProxy [1], DBCache [3], MTCache [14] and TimesTen [41] and
the more recent [13]. These systems provide a comprehensive dynamic data caching
infrastructure that includes mechanisms for shipping queries and updates, defining data
object granularity and specifying currency constraints. However, they lack a decision
framework that adaptively chooses between query shipping and update propagation
and data loading; any of the data communication method is deemed sufficient for
query currency.
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Fig. 1. The Delta architecture.

3 Delta: A Dynamic Data Middleware Cache

We describe the architectural components in Delta and how data is exchanged between
the server repository and the cache (See Figure 1). Data of a scientific repository is
stored in a relational database system. While the database provides a natural partition
of the data in the form of tables and columns, often spatial indices are available that
further partition the data into “objects” of different sizes. A rapidly-growing repository
receives updates on these data objects from a data pipeline . The updates, predom-
inantly, insert data into, and in some cases, modify existing data objects. Data is
never deleted due to archival reasons. We model a repository as a set of data objects
S = o1, . . . , oN . Each incoming update u affects just one object o(u), as is common in
scientific repositories.

Data objects are stored at the cache of the middleware system to improve data
availability and reduce network traffic. The cache is located along with or close to the
clients, and thus “far” from the repository. The cache has often much less capacity than
the original server repository and is thus space-constrained. We model the cache again
as a subset of data objects C = o1, . . . , on. The objects are cached in entirety or no part
of it is cached. This simplifies loading of objects. Objects at the cache are invalidated
when updates arrive for them at the server. Each user query, q, is a read-only SQL-like
query that accesses data from a set of data objects B(q). The cache answers some
queries on the repository’s behalf. Queries that cannot be answered by the cache are
routed to the repository and answered directly from there. To quantify its need for
latest data, queries may include user or system specified currency requirements in form
of a tolerance for staleness t(q), defined as follows: Given t(q), an answer to q must
incorporate all updates received on each object in B(q) except those that arrived within
the last t(q) time units. This is similar to the syntax for specifying t(q) as described
in [14]. The lower the tolerance, the stricter is the user’s need for current data.

To satisfy queries as per their tolerance for staleness, the cache chooses between the
three available communication mechanisms: (a) update shipping, (b) query shipping, and
(c) object loading. To ship updates, the system sends an update specification including
any data for insertion and modification to be applied on the cached data objects. In
shipping queries, the system redirects the query to the repository. The up-to-date result
is then sent directly to the client. Through the object loading mechanism, the cache
loads objects not previously in the cache, provided there is available space to load. The
three mechanisms differ from each other in terms of semantics and the cost of using



them. For instance, in update shipping only the newly inserted tuples to an object are
shipped whereas in object loading the entire data object (including the updates) is
shipped.

The system records the the cost of using each of the data communication mecha-
nism. In Delta, we have currently focused on the network traffic costs due to the use of
these mechanisms. Latency costs are discussed in Section 4. Network traffic costs are
assumed proportional to the size of the data being communicated. Thus when an object
o is loaded, a load cost, ν(o), proportional to the object’s size is added to the total
network traffic cost. For each query q or update u shipped a network cost ν(q) or ν(u)
proportional to the size of q’s result or the size of data content in u is added respec-
tively. The proportional assumption relies on networks exhibiting linear cost scaling
with object size, which is true for TCP networks when the transfer size is substantially
larger than the frame size [37]. The quantitative difference in costs between the three
mechanisms is described through an example in Section 3.1.

In Delta the difference, in terms of cost, of using each communication mechanism
leads to the formulation of the data decoupling problem. We first describe the problem
in words and then for ease of presentation also provide a graph-based formulation.

The data decoupling problem: In the data decoupling problem we are given the set
of objects on the repository, the online sequence of user queries at the cache, and the
online sequence of updates at the repository. The problem is to decide which objects to
load into the cache from the repository, which objects to evict from the cache, which
queries to ship to the repository from the cache, and which updates to ship from the
repository to the cache such that (a) the objects in cache never exceed the cache size,
(b) each query is answered as per its currency requirement, and (c) the total costs,
described next, are minimized. The total costs are the sum of the load costs for each
object loaded, the shipping costs for each query shipped, and the shipping costs for
each update shipped.
Graph-based formulation: The decoupling problem given a set of objects in the
cache, can be visualized through a graph G(V,E) in which the vertices of the graph
are queries, updates and data objects. Data object vertices are of two kinds: one that
are in cache, and ones that are not in cache. In the graph, an edge is drawn between
(a) a query vertex and an update vertex, if the update affects the query, and (b) a
query vertex and a data object vertex, if the object is not in cache and is accessed
by the query. In the graph, for presentation, edges between an update vertex and an
object not in cache and query vertex and an object in cache are not drawn. Such a
graph construction helps to capture the relationships between queries, updates and
objects. We term such a graph as an interaction graph as the edges involve a mutual
decision as to which data communication mechanism be used. The decoupling problem
then corresponds to determining which data communication to use since the right
combination minimizes network traffic costs.

The interaction graph is fundamental to the data decoupling problem as algorithms
can determine an optimal decoupling or the right combination of data communication
mechanisms to use. The algorithms must also be robust to incoming query and update
workloads since slight changes in the workload lead to entirely different data communi-
cation mechanisms becoming optimal (See design choices 1 and 1 in Section 1). This is



demonstrated in the next subsection through an example. The example demonstrates
that different choices become optimal when the entire sequence of queries, updates and
their accompanying costs are known in advance, and there are no cache size constraints.

3.1 Determining off-line, optimal choices

The objective of an algorithm for a data decoupling problem is to make decisions about
which queries to ship, which updates to ship, and which objects to load such that the
cost of incurred network traffic is minimized. This is based on an incoming workload
pattern. The difficulty in determining the optimal combination of decision choices arises
because a slight variation in the workload, i.e., change in cost of shipping queries
or shipping updates or the query currency threshold, results in an entirely different
combination being optimal. This is best illustrated through an example.

Fig. 2. An decoupling graph for a sample sequence. The notation: o1(10) implies size of object
o1 is 10 GB, which is also its network traffic load cost. u1(o2, 1) implies update u1 is for object
o2 and has a network traffic shipping cost of 1GB. q3(o1, o2, o4; 15; t = 0s) implies query
q3 accesses objects o1, o2, and o4; has a network traffic shipping cost of 15GB; and has no
tolerance for staleness.

In the Figure2, among the four data objects o1, o2, o3, o4, objects o1, o2, o3 have been
loaded into the cache (broken lines) and object o4 is currently not in cache (solid lines),
and will be available for loading if there is space. Consider a sequence of updates and
queries over the next eight seconds. Based on the graph formulation of the decoupling
problem, we draw edges between queries, updates and the objects. Query q3 accesses
the set o1, o2, o4 and has edges with o4, u1, and u2. since either q3 is shipped or the
use of other data communication mechanism is necessary, namely o4 is loaded, and
u1 and u2 are shipped. For q7, since object o2 is in cache, the dependence is only on



updates u1 and u6 both of which are necessary to satisfy q7’s currency constraints. q8
accesses set o1, o4 and so has edges with o4 and u2. Note, it does not have edges with
u4 because shipping u4 is not necessary till object o4 is loaded into the cache. If o4 was
loaded before u4 arrives, then an edge between u4 and q8 will be added. There is no
edge with u5 since the tolerance for staleness of q8 permits an answer from the cached
copy of o1 that need not be updated with u5.

In the above example, the right choice of actions is to evict o3 and load o4 at the
very beginning. Then at appropriate steps ship updates u1, u2, and u4, and the query
q7. This will satisfy all currency requirements, and incur a network traffic cost of 26GB.
Crucial to this being the best decision is that q8’s tolerance for staleness allows us to
omit shipping u5. If that were not the case, then an entirely different set of choices
become optimal which include not loading o4, and just shipping queries q3, q7, and q8
for a network cost of 28GB. Such a combination minimizes network traffic.

In the above example, if we focus only on the internal interaction graph of cached
objects, which is formed with nodes u1, u6 and q7, we observe that determining an
optimal decision choice corresponds to finding the minimum-weight vertex cover [8,43]
on this subgraph. For lack of space, we omit a description on minimum-weight vertex
cover and directly state the correspondence through the following theorem:

Theorem 1 (Min Weight Vertex Cover). Let the entire incoming sequence of
queries and updates in the internal interaction graph G be known in advance. Let V C
be the minimum-weight vertex cover for G. The optimal choice is to ship the queries
and the updates whose corresponding nodes are in V C.

Proof Sketch. If the entire incoming sequence of queries and updates is known we claim
the optimal choice is: (1) choose such that every query q is either shipped or all updates
interacting with q are shipped, and (2) make a choice such that the total weights of
nodes chosen for shipping is minimized. This is true since the sum of the weights of
nodes chosen is equal to the actual network traffic cost incurred for the choice. This
corresponds to the minimum-weight vertex cover problem (see definition in [12]). ut

The minimum-weight vertex cover is NP-hard problem in general [36]. However, for
our specific case the sub-graph is a bi-partite graph in that no edges exist amongst the
set of query nodes and the set of update nodes, but only between query and update
nodes. Thus we can still solve the minimum-weight vertex cover problem by reducing
it to the maximum network flow problem [15]. A polynomial time algorithm for the
maximum network flow problem is the Edmonds-Karp algorithm [8]. This algorithm is
based on the fact that a flow is maximum if and only if there is no augmenting path.
The algorithm repeatedly finds an augmenting path and augments it with more flow,
until no augmenting path exists.

A primary challenges in employing an algorithm for the maximum network flow
problem to Delta is in (a) knowing the sequence of events in advance, and (b) extending
it a limited size cache. The computation of the max-cover (or equivalently determining
the max flow) changes as different knowledge of the future becomes available. In the
example, if we just did not know what would happen at time 8s, but knew everything
before, we would not load o4, and instead ship q3 and q7. Then when q8 arrives, we



would ship it too. Thus, different partial knowledge of the future can lead to very
different decisions and costs. The decisions obtained by the computation of the max-
cover applies only to the objects in cache. We still need a mechanism for profitably
loading objects in the cache.

4 VCover

VCover is an online algorithm for the data decoupling problem. It determines objects
for which queries must be shipped and object for which updates must be shipped. The
algorithm makes decisions in an “online” fashion, using minimal information about
the incoming workload. In VCover we also address the second challenge of a space-
constrained cache. The overall algorithm is shown in Figure 3.

The algorithm relies on two internal modules UpdateManager and LoadManager to
make two decisions: When a query arrives, VCover first determines if the all objects
accessed by the query are in cache. If all objects are in cache, this query is presented to
the UpdateManager which chooses between shipping the outstanding updates required
by the query, or shipping the query itself. If, instead, a query arrives that accesses
at least one object not in cache, then VCover ships the query to the server, and also
presents it to the LoadManager which decides, in background, whether to load the
missing object(s) or not. We now describe the algorithms behind the UpdateManager
and the LoadManager.

VCover1

Invocation: By arriving query q, accessing objects B(q), with network traffic cost2

ν(q).
Objective: To choose between invoking UpdateManager, or shipping q and invoking3

LoadManager.

if all objects in B(q) are in cache then4

UpdateManager with query q5

else6

Ship q to server. Forward result to client7

In background: LoadManager with query q8

Fig. 3. The main function in VCover.

UpdateManager The UpdateManager builds upon the offline framework presented in
Section 3.1 to make “online” decisions as queries and updates arrive. The Update-

Manager incorporates the new query into an existing internal interaction graph G′ by
adding nodes for it and the updates it interacts with and establishes the corresponding
edges. To compute the minimum-weight vertex cover it uses the the Edmonds-Karp
algorithm, which finds the maximum network flow in a graph. However, instead of



running a network flow algorithm each time a query is serviced, it uses an incremental
algorithm that finds just the change in flow since the previous computation (Figure
4). If the result of the vertex cover computation is that the query should be shipped,
then the UpdateManager does accordingly (Lines 21–23). If not, then some updates are
shipped.

UpdateManager on cache9

Invocation: By VCover with query q accessing objects B(q), with network traffic cost10

ν(q).
Objective: To choose between shipping q or shipping all its outstanding interacting11

updates, and to update the interaction graph.

if each update interacting with q has been shipped then12

Execute q in cache. Send result to client13

Add query vertex q with weight (ν(q)) to existing internal interaction graph G′ to get G14

foreach object o ∈ B(q) marked stale do15

foreach outstanding update u for o do16

Add update vertex u to G, with weight its shipping cost, if not already present17

foreach update vertex u interacting with q do18

Add edge (u, q) to G19

Compute minimum-weight vertex cover V C of G using incremental network-flow20

algorithm
if q ∈ V C then21

if q not already executed on cache then22

Ship q to server. Forward result to client23

Fig. 4. UpdateManager on cache.

The key observation in computing the incremental max-flow is that as vertices and
edges are added and deleted from the graph there is no change in the previous flow
computation. Thus previous flow remains a valid flow though it may not be maximum
any more. The algorithm therefore begins with a previous flow and searches for aug-
menting paths that would lead to the maximum flow. As a result, for any sequence of
queries and updates, the total time spent in flow computation is not more than that
for a single flow computation for the network corresponding to the entire sequence. If
this network has n nodes and m edges, this time is O(nm2) [8]—much less than the
O(n2m2)-time the non-incremental version takes.

The UpdateManager does not record the entire sequence of queries and updates to
make decisions. The algorithm always works on a remainder subgraph instead of the
subgraph made over all the queries and updates seen so far. This remainder subgraph
is formed from an existing subgraph by excluding all update nodes picked in a vertex
cover at any point, and all query nodes not picked in the vertex cover. The exclusion
can be safely done because in selecting the cover at any point the shipping of an



1. Let G′ be the previous internal interaction graph and H ′ the corresponding network
constructed in previous iteration.

2. Let G be the current internal interaction graph.
3. Add source and sink vertices to G and corresponding capacitated edges as described in [15]

to construct network H.
4. Find maximum flow in H, based on the known maximum flow for H ′.
5. Determine minimum-weight vertex for G from maximum flow values of H, again as de-

scribed in [15].

Fig. 5. Single iteration of the incremental network flow algorithm.

update is justified based only on the past queries it interacts with, and not with any
future queries or updates and therefore will never be part of future cover selection.
This makes computing the cover robust to changes in workload. This technique also
drastically reduces the size of the working subgraph making the algorithm very efficient
in practice.

Managing Loads VCover invokes the LoadManager to determine if it is useful to load
objects in the cache and save on network costs or ship the corresponding queries. The
decision is only made for those incoming queries which access one or more objects not
in cache. The difficulty in making this decision is due to queries accessing multiple
objects, each of which contributes a varying fraction to the query’s total cost, ν(q).
The objective is still to find, in an online fashion, the right combination of objects
that should reside in cache such that the total network costs are minimized for these
queries.

The algorithm in LoadManager builds upon the popular Greedy-Dual-Size (GDS)
algorithm [7] for Web-style proxy caching. GDS is an object caching algorithm that
calculates an object’s usage in the cache based on its frequency of usage, the cost of
downloading it and its size. If the object is not being heavily used, GDS evicts the
object. In GDS an object is loaded as soon it is requested. Such a loading policy can
cause too much network traffic. In [24], it is shown that to minimize network traffic, it
is important to ship queries on an object to the server until shipping costs equal to the
object load costs have been incurred. After that any request to the object must load
the object into the cache. The object’s usage in the cache is measured from frequency
and recency of use and thus eviction decisions can be made similar to GDS, based on
object’s usage in cache.

In VCover queries access multiple objects and the LoadManager uses a simple twist
on the algorithm in [24] that still ensures finding the right combination of choices. The
LoadManager (a) randomly assigns query shipping costs among objects that a query
accesses, and (b) defers to GDS to calculate object’s usage in the cache. The random
assignment ensures that in expectation, objects are made candidates for load only when
cost attributed equals the load cost. A candidate for load is considered by considering
in random sequence the set of objects accessed by the query (Line 29 in Figure 6). At
this point, the shipping cost could be attributed to the object.



The load manager employs two techniques that makes its use of Greedy-Dual-Size
more efficient. We explain the need for the techniques:

– Explicit tracking of the total cost (due to all queries) of each object is inefficient.
The load manager eliminates explicit tracking of the total cost by using randomized
loading (Lines 27-35). This leads to a more space-efficient implementation of the
algorithm in which counters on each object are not maintained. When the shipping
cost from a single query covers the entire load cost of an object, the object is
immediately made a candidate to be loaded. Else, it is made so with probability
equal to the ratio of the cost attributed from the query and the object’s load cost.

– In a given subsequence of load requests generated by q, say o1, o2, . . . , om, it is
possible that the given Aobj loads an oi only to evict it to accommodate some later
oj in the same subsequence. Clearly, loading oi is not useful for the LoadManager.
To iron out such inefficiencies we use a lazy version of Aobj, in our case Greedy-
Dual-Size.

In the LoadManager once the object is loaded, the system ensures that all updates
that came while the object was being loaded are applied and the object is marked fresh
by both cache and server.

LoadManager on cache24

Invocation: By VCover with query q, accessing objects B(q), with network traffic cost25

ν(q).
Objective: To load useful objects26

c← ν(q)27

while B(q) has objects not in cache and c > 0 do28

o← some object in B(q) not in cache29

if c ≥ l(o) then /* l(o) is load cost of o */30

Aobj lazy with input o31

c← c− l(o)32

else /* randomized loading */33

With probability c/l(o): Aobj lazy with input o34

c← 035

Load and evict objects according to Aobj lazy36

if Aobj lazy loads o then37

Both server and cache mark o fresh38

Fig. 6. LoadManager on cache given an object caching algorithm Aobj.

Discussion: There are several aspects of VCover that we would like to highlight. First,
in Delta we have focused on reducing network traffic. Consequently, in presenting VCover

we have included only those decisions that reduce network traffic. These decisions
naturally decrease response times of queries that access objects in cache. But queries for
which updates need to be applied may be delayed. In some applications, such as weather



prediction, which have similar rapidly-growing repositories, minimizing overall response
time is equally important. To improve the response time performance of delayed queries,
some updates can be preshipped, i.e., proactively sent by the server. For lack of space
we have omitted how preshipping in VCover can further improve overall response times
of all queries. We direct the reader to the accompanying technical report [26] for this.

In the Delta architecture data updates correspond predominantly to data inserts
(Section 3). This is true of scientific repositories. However the decision making in VCover

is independent of an update specification and can imply any of the data modification
statements viz. insert, delete or modify. Thus we have chosen the use of the term
update.

LoadManager adopts a randomized mechanism for loading objects. This is space-
efficient as it obviates maintaining counters on each object. This efficiency is motivated
by meta-data issues in large-scale remote data access middlewares that cache data from
several sites [26].

Finally, an implementation of VCover requires a semantic framework that deter-
mines the mapping between the query, q, and the data objects, B(q), it accesses. The
complexity of such a framework depends upon the granularity at which data objects
are defined. If the objects are tables or columns, such a mapping can be determined by
the specification of the query itself. If the objects are tuples, finding such a mapping
a-priori is difficult. However for most applications such a mapping can be found by
exploiting the semantics. For instance, in astronomy, queries specify a spatial region
and objects are also spatially partitioned. Thus finding a mapping can be done by some
pre-processing as described in Section 6.

5 Benefit: An alternative approach to the decoupling problem

In VCover we have presented an algorithm that exploits the combinatorial structure
(computing the cover) within the data decoupling problem and makes adaptive de-
cisions using ideas borrowed from online algorithms [4]. An alternative approach to
solving the data decoupling problem is an exponential smoothing-based algorithm that
makes decisions based on heuristics. We term such an algorithm Benefit as it is inher-
ently greedy in its decision making.

In Benefit we divide the sequence of queries and updates into windows of size δ. At
the beginning of each new window i, for each object currently in the cache, we compute
the “benefit” bi−1 accrued from keeping it in the cache during the past window (i− 1).
bi−1 is defined as the network cost the object saves by answering queries at the cache,
less the amount of traffic it causes by having updates shipped for it from the server.
Since a query answered at the cache may access multiple objects, the cost of its shipping
(which is saved) is divided among the objects the query accesses in proportion to their
sizes. This form of dividing the cost has been found useful in other caches as well [2,24].

For each object currently not in cache, we compute similarly the benefit it would
have accrued if it had been in the cache during window (i − 1). But here, we further
reduce the benefit by the cost to load the object.



A forecast µi of the benefit an object will accrue during the next window i is then
computed using exponential smoothing: µi = (1−α)µi−1+αbi−1, in which µi−1 was the
forecast for the previous window, and α, which is 0 ≤ α ≤ 1, is a learning parameter.

We next consider only objects with positive µi values and rank them in decreasing
order. For window i, we greedily load objects in this order, until the cache is full. Objects
which were already present in cache in window (i − 1) don’t have to be reloaded. For
lack of space, pseudo-code of Benefit is not presented in this paper, but is included in
the accompanying technical report.

Benefit reliance on heuristics is similar to previously proposed algorithms for online
view materialization [20,21]. It, however, suffers from some weaknesses. The foremost is
that Benefit ignores the combinatorial structure within the problem by dividing the cost
of shipping a query among the objects the query accesses in proportion to their sizes.
This difference is significant in that Benefit’s performance can be proved analytically.
However, in VCover the combinatorial structure leads to a mathematical bound on its
performance. For details on the proof of performance, the reader is directed to the
technical report [26]. Further, Benefit’s decision making is heavily dependent on the
size of window chosen. It also needs to maintain state for each object (the µi values,
the queries which access it, etc.) in the database irrespective of whether it is in the
cache or not.

6 Empirical Evaluation

In this section, we present an empirical evaluation of Delta on real astronomy query
workloads and data. The experiments validate using a data decoupling framework for
minimizing network traffic. Our experimental results show that Delta (using VCover)
reduces the traffic by nearly half even with a cache that is one-fifth the size of the
server. VCover outperforms Benefit by a factor that varies between 2-5 under different
conditions.

6.1 Experimental Setup

Choice of Survey: Data from rapidly growing repositories, such as those of the Pan-
STARRS and the LSST, is currently unavailable for public use. Thus we used the
data and query traces from the SDSS for experimentation. SDSS periodically publishes
updates via new data release. To build a rapidly growing SDSS repository, we simulated
an update trace for SDSS in consultation with astronomers. The use of SDSS data in
validating Delta is a reasonable choice as the Pan-STARRS and the LSST databases
have a star-schema similar to the SDSS. When open to public use, it is estimated that
the Pan-STARRS and the LSST repositories will be queried similar to the SDSS.

Setup: Our prototype system consists of a server database and a middleware cache
database, both implemented on an IBM workstation with 1.3GHz Pentium III processor
and 1GB of memory, running Microsoft Windows, each running a MS SQL Server
2000 database. A sequence of data updates are applied to a server database Queries,
each with a currency specification criteria, arrive concurrently at a cache database.
To satisfy queries with the latest data, the server and cache database uses MS SQL



Server’s replica management system to ship queries and updates, and, when necessary,
it uses bulk copying for object loading. The decisions of when to use each of the
data communication mechanism is dictated by the optimization framework of Delta,
implemented as stored procedures on the server and cache databases.

Server Data: The server is an SDSS database partitioned in spatial data objects.
To build spatial data objects, we use the primary table in SDSS, called the PhotoObj
table, which stores data about each astronomical body including its spatial location
and about 700 other physical attributes. The size of the table is roughly 1TB. The table
is partitioned using a recursively-defined quad tree-like index, called the hierarchical
triangular mesh [19]. The HTM index conceptually divides the sky into partitions; in the
database these partitions translate into roughly equi-area data objects. A partitioning
of the sky and therefore the data depends upon the level of the HTM index chosen.
For most experiments we used a level that consisted of 68 partitions (ignoring some
which weren’t queried at all), containing about 800 GB of data. These partitions were
given object-IDs from 1 to 68. Our choice of 68 objects is based on a cache granularity
experiment explained in Section 6.2. The The data in each object varies from as low
as 50 MB to as high as 90 GB.

Growth in Data: Updates are in the form of new data inserts and are applied to a
spatially defined data object. We simulated the expected update patterns of the newer
astronomy surveys under consultation with astronomers. Telescopes collect data by
scanning specific regions of the sky, along great circles, in a coordinated and systematic
fashion [40]. Updates are thus clustered by regions on the sky. Based on this pattern,
we created a workload of 250,000 updates. The size of an update is proportional to the
density of the data object.

Queries: We extracted a query workload of about 250,000 queries received from
January to February, 2009. The workload trace consists of several kinds of queries,
including range queries, spatial self-join queries, simple selection queries, as well as
aggregation queries. Preprocessing on the traces involves removing queries that query
the logs themselves. In this trace, 98% of the queries and 99% of the network traffic
due to the queries is due to the PhotoObj table or views defined on PhotoObj. Any
query which does not query the PhotoObj is bypassed and shipped to the server.

Costs: The traffic cost of shipping a query is the actual number of bytes in its
results on the current SDSS database. The traffic cost of shipping an update was chosen
to match the expected 100 GB of update traffic each day in the newer databases.

A sample of the query and update event sequence is shown in Figure 7. The sequence
is along the x-axis, and for each event, if it is an update, we put a blue diamond next
to the object-ID affected by the update. If the event is a query, we put a yellow dot
next to all object-IDs accessed by the query. Even though this rough figure only shows
a sample of the updates and queries, and does not include the corresponding costs of
shipping, it supports what we discovered in our experiments: object-IDs 22, 23, 24, 62,
63, 64 are some of the query hotspots, while object-IDs 11, 12, 13, 30, 31, 32 are some
of the update hotspots. The figure also indicates that real-world queries do not follow
any clear patterns.
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Fig. 7. (a) Object-IDs corresponding to each query (red ring) or update (blue cross) event.
Queries evolve and cluster around different objects over time. (b) Cumulative traffic cost.
VCover, almost as good as SOptimal, outperforms others.

Two Algorithms, Three Yardsticks We compare the performances of VCover, the
core algorithm in Delta with Benefit, the heuristic algorithm that forecasts using ex-
ponential smoothing. We also compare the performance of these two algorithms with
three other policies. These policies act as yardsticks in that the algorithm can be con-
sidered poor or excellent if it performs better or worse than these policies. The policies
are:
• NoCache: Do not use a cache. Ship all queries to the server. Any algorithm (in our

case VCover and Benefit), which has a performance worse than NoCache is clearly of
no use.

• Replica: Let the cache be as large as the server and contain all the server data.
To satisfy queries with the most current data, ship all updates to the cache as soon
as they arrive at server. If VCover and Benefit, both of which respect a cache size
limitation, perform better than Replica they are clearly good.

• SOptimal: Decide on the best static set of objects to cache after seeing the entire
query and update sequence. Conceptually, its decision is equivalent to the single
decision of Benefit using a window-size as large as the entire sequence, but in an
offline manner. To implement the algorithm we loads all objects it needs at the
beginning and do not ever evict any object. As updates arrive for objects in cache
they are shipped. Any online algorithm, which cannot see the queries and updates
in advance, but with performance close to the SOptimal is outstanding.

Default parameter values, warmup period Unless specified otherwise, in the fol-
lowing experiments we set the cache size to 30% of server size,and the window size δ in
Benefit to 1000. The choice are obtained by varying the parameters in the experiment
to obtain the optimal value. The cache undergoes an initial warm-up period of about
250,000 events for both VCover and Benefit. A large warm-up period is a characteristic
of this particular workload trace in which queries with small query cost occur earlier
in trace. As a result objects have very low probability of load. In this warm-up period
the cache remains nearly empty and almost all queries are shipped. In general, our
experience with other workload traces of similar size have shown that a range of a



warm period can be anywhere from 150,000 events to 300,000 events. To focus on the
more interesting post warm-up period we do not show the events and the costs incurred
during the warmup period.

6.2 Results

Minimizing traffic cost The cumulative network traffic cost along the query-update
event sequence for the two algorithms and three yardsticks is in Figure 7(a). VCover

is clearly superior to NoCache and Benefit: as more query and update events arrive it
continues to perform better than them and at the end of the trace has an improvement
by a factor of at least 2 with Benefit, and to Replica by a factor about 1.5. (For replica
load costs and cache size constraints are ignored.) Further, as more data intensive
queries arrive, Benefit is barely better than NoCache. VCover closely follows SOptimal

until about Event 430K, when it diverges, leading to a final cost about 40% (35 GB)
higher. On closer examination of the choices made by the algorithm, we discovered that,
with hindsight, SOptimal determines that Object-ID 39 of 38 GB and Object-ID 29 of
4 GB would be useful to cache and loads them at the beginning. But VCover discovers
it only after some high-shipping cost queries that arrive for these objects, and loads
them around Event 430K, thus paying both the query shipping cost and load cost.
Varying number of updates A general-purpose caching algorithm for dynamic data
should maintain its performance in the face of different rates of updates and queries. In
Figure 8(b) we plot the final traffic cost for each algorithm for different workloads, each
workload with the same 250,000 queries but with a different number of updates. The
simplistic yardstick algorithms NoCache and Replica do not take into account the relative
number of updates and queries. Since the queries remain the same, the cost of NoCache

is steady at 300 GB. But as the number of updates increase the cost of Replica goes up:
the three-fold increase in number of updates results in a three-fold increase in Replica’s
cost. The other three algorithms, in contrast, show only a slight increase in their cost
as the number of updates increase. They work by choosing the appropriate objects to
cache for each workload, and when the updates are more, they compensate by keeping
fewer objects in the cache. The slight increase in cost is due to query shipping cost
paid for objects which are no longer viable to cache. This experiment illustrates well
the benefits of Delta irrespective of the relative number of queries and updates.
Choice of objects In Figure 8(a) we plot VCover’s cumulative traffic cost, along the
event sequence, for different choices of data objects. Each choice corresponds to a
different level in the quad tree structure in SDSS, from a set of 10 objects corresponding
to large-area upper-level regions, to a set of 532 objects corresponding to small-area
lower-level regions. Each set covers the entire sky and contains the entire data. The
performance of VCover improves dramatically as number of number of objects increase
(sizes reduce) until it reaches 91 and then begins to slightly worsen again. The initial
improvement is because as objects become smaller in size, less space in the cache is
wasted, the hotspot decoupling is at a finer grain, and thus more effective. But this
trend reverses as the objects become too small since the likelihood that future queries
are entirely contained in the objects in cache reduces, as explained next. It has been
observed in scientific databases that it is more likely that future queries access data
which is “close to” or “related to,” rather than the exact same as, the data accessed
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by current queries [24]. In astronomy, e.g., this is partly because of several tasks that
scan the entire sky through consecutive queries.

7 Conclusion

Repositories in data-intensive science are growing rapidly in size. Scientists are also
increasingly interested in the time dimension and thus demand latest data to be part
of query results. Current caches provide minimal support for incorporating the latest
data at the repository; many of them assume repositories are static. This often results
in runaway network costs.

In this paper we presented Delta a dynamic data middleware cache system for
rapidly growing repositories. Delta is based on a data decoupling framework—it sepa-
rates objects that are rapidly growing from objects that are heavily queried. By effective
decoupling the framework naturally minimizes network costs. Delta relies on VCover, a
robust, adaptive algorithm that decouples data objects by examining the cost of usage
and currency requirements. VCover’s decoupling is based on sound graph theoretical
principles making the solution nearly optimal over evolving scientific workloads. We
compare the performance of VCover with Benefit, a greedy heuristic, which is commonly
employed in dynamic data caches for commercial applications. Experiments show that
Benefit scales poorly than VCover on scientific workloads in all respects.

A real-world deployment of Delta would need to also consider several other issues
such as reliability, failure-recovery, and communication protocols. The future of appli-
cations, such as the Pan-STARRS and the LSST depends on scalable network-aware
solutions that facilitate access to data to a large number of users in the presence of
overloaded networks. Delta is a step towards meeting that challenge.
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