
A Cost-Sensitive Adaptation Engine for Server
Consolidation of Multitier Applications

Gueyoung Jung1, Kaustubh R. Joshi2, Matti A. Hiltunen2,
Richard D. Schlichting2, and Calton Pu1

1 College of Computing, Georgia Institute of Technology, Atlanta, GA, USA,
{gueyoung.jung,calton}@cc.gatech.edu

2 AT&T Labs Research, 180 Park Ave, Florham Park, NJ, USA
{kaustubh,hiltunen,rick}@research.att.com

Abstract. Virtualization-based server consolidation requires runtime
resource reconfiguration to ensure adequate application isolation and
performance, especially for multitier services that have dynamic, rapidly
changing workloads and responsiveness requirements. While virtualiza-
tion makes reconfiguration easy, indiscriminate use of adaptations such
as VM replication, VM migration, and capacity controls has performance
implications. This paper demonstrates that ignoring these costs can have
significant impacts on the ability to satisfy response-time-based SLAs,
and proposes a solution in the form of a cost-sensitive adaptation engine
that weighs the potential benefits of runtime reconfiguration decisions
against their costs. Extensive experimental results based on live work-
load traces show that the technique is able to maximize SLA fulfillment
under typical time-of-day workload variations as well as flash crowds,
and that it exhibits significantly improved transient behavior compared
to approaches that do not account for adaptation costs.

1 Introduction

Cloud computing services built around virtualization-based server consolidation
are revolutionizing the computing landscape by making unprecedented levels
of compute power cheaply available to millions of users. Today, platforms such
as Amazon’s EC2, AT&T’s Synaptic Hosting, Google’s App Engine, and Sales-
force’s Force.com host a variety of distributed applications including multitier
enterprise services such as email, CRM, and e-commerce portals. The sharing of
resources by such applications owned by multiple customers raises new resource
allocation challenges such as ensuring responsiveness under dynamically chang-
ing workloads and isolating them from demand fluctuations in co-located virtual
machines (VMs). However, despite the well-documented importance of respon-
siveness to end users [1, 2, 3], cloud services today typically only address avail-
ability guarantees and not response-time-based service level agreements (SLAs).

Virtualization techniques such as CPU capacity enforcement and VM mi-
gration have been proposed as ways to maintain performance [4, 5, 6, 7, 8, 9].
However, there is little work that considers the impact of the reconfiguration ac-
tions themselves on application performance except in very limited contexts. For

Before Apache % Chg. Tomcat % Chg. MySQL % Chg.

102.92 141.62 37.60 315.83 206.89 320.93 211.83

Table 1. End-to-End Response Time (ms) during VM Migration

example, while [10] shows that live migration of VMs can be performed with a
few milliseconds of downtime and minimal performance degradation, the results
are limited only to web servers. This can be very different for other commonly
used types of servers. For example, Table 1 shows the impact of VM migration
of servers from different J2EE-based tiers on the end-to-end mean response time
of RUBiS [11], a widely used multitier benchmark, computed over 3 minute in-
tervals. Futhermore, because of interference due to shared I/O, such migrations
also impact the performance of other applications whose VMs run on the same
physical hosts (see Section 4). Cheaper actions such as CPU tuning can some-
times be used to achieve the same goals, however. These results indicate that
the careful use of adaptations is critical to ensure that the benefits of runtime
reconfiguration are not overshadowed by their costs.

This paper tackles the problem of optimizing resource allocation in consoli-
dated server environments by proposing a runtime adaptation engine that auto-
matically reconfigures multitier applications running in virtualized data centers
while considering adaptation costs and satisfying response-time-based SLAs even
under rapidly changing workloads. The problem is challenging—the costs and
benefits of reconfigurations are influenced not just by the software component
targeted, but also by the reconfiguration action chosen, the application structure,
its workload, the original configuration, and the application’s SLAs.

To address these challenges, we present a methodology that uses automatic
offline experimentation to construct cost models that quantify the degradation
in application performance due to reconfiguration actions. Using previously de-
veloped queuing models for predicting the benefits of a new configuration [8], we
show how the cost models allow an analysis of cost-benefit tradeoffs to direct the
online selection of reconfiguration actions. Then, we develop a best-first graph
search algorithm based on the models to choose optimal sequences of actions. Fi-
nally, experimental results using RUBiS under different workloads derived from
real Internet traces show that our cost-sensitive approach can significantly re-
duce SLA violations, and provide higher utility as compared to both static and
dynamic-reconfiguration-based approaches that ignore adaptation costs.

2 Architecture

We consider a consolidated server environment with a pool of physical resources
H and a set of multitier applications S. We focus only on a single resource pool
in this paper—a cluster of identical physical servers (hosts). Each application s
is comprised of a set Ns of component tiers (e.g., web server, database), and for
each tier n, a replication level is provided by reps(n). Each replica nk executes
in its own Xen VM [12] on some physical host, and is allocated a fractional share
of the host’s CPU, denoted by cap(nk), that is enforced by Xen’s credit-based
scheduler. Therefore, system configurations consist of: (a) the replication degree

Adaptation Engine Workload
Monitor

Search
Algorithm

W

RT
U*

LQN
Model

Cost
Model

Application

Resource

Adapt. Action

Off-line
experiments

LQN
Solver

Cost
Mapping

Optimizer

ARMA
Filter

Adapt. Action

Utility
Function

Estimator

W

RT
Controller

E

uc

da

U c
a

c

a s Δ

p

p

Fig. 1. Architecture

Time

Measurement
Interval (mi)

Long term controller actions

Stability Interval

ck: Old
Config

mi

Short term controller actions

mi mi

ck+1 ck+2 ck+3

Fig. 2. Control Timeline

of each tier of each application, (b) the name of the physical machine that hosts
each replica VM, and c) the fractional CPU capacity allocated to the replica.

Each application is also associated with a set of transaction types Ts (e.g.,
home, login, search, browse, buy) through which users access its services. Each
transaction type t generates a unique call graph through some subset of the
application tiers. For example, a search request from the user may involve the
web-server making a call to the application server, which makes two calls to the
database. The workload for each application is then defined as a vector of the
mean request rate for each transaction type, and the workload for the entire
system as the vector of workloads for each application.

We associate each application with an SLA that specifies the expected ser-
vice level in the form of a target mean response time for each transaction, and
the rewards and penalties for meeting or missing the target response time, as
computed over a pre-specified measurement interval. The rewards and penalties
can vary according to the application workload, thus giving rise to a step-wise
utility function that maps mean response time and workload to a utility value
that reflects the revenue gained (or lost) during the measurement interval. Using
other SLA metrics does not fundamentally alter our approach.

To decide when and how to reconfigure, the adaptation engine estimates the
cost and the potential benefit of each adaptation in terms of changes in the
utility. Since the utility is a function of the mean end-to-end response time, the
cost of adaptation for a given adaptation depends on its duration and impact on
the applications’ response times. On the other hand, the benefit of adaptation
depends on the change in applications’ response times and how long the system
remains in the new configuration.

The adaptation engine manages the shared host pool by performing vari-
ous adaptation actions such as CPU capacity tuning, VM live-migration, and
component replication. As shown in Figure 1, it consists of a workload moni-
tor, estimator, and controller. The workload monitor tracks the workload at the
ingress of the system as a set of transaction request rates for each hosted appli-
cation. The estimator consists of an LQN solver, a cost mapping, and an ARMA
filter. The LQN solver uses layered queuing models [13] described in Section 3
to estimate the mean response time RT s for each application given a workload
W and configuration c. The cost mapping uses cost models to estimate the du-
ration da and performance impact ∆RT s

a of a given adaptation a. Both types
of models are constructed using the results of an off-line model parametriza-

tion phase. Finally, the ARMA (auto-regressive moving average) filter provides
a prediction of the stability interval Ep that denotes the duration for which the
current workload will remain stable.

The controller invokes the estimator to obtain response time and cost esti-
mates for an action’s execution, which it uses to iteratively explore candidate
actions. Using a search algorithm and the utility function, the controller chooses
the set of actions that maximizes the overall utility. The search is guided by the
upper bound on the utility U∗ calculated using a previously-developed offline
optimization algorithm [8] that provides the configuration that optimizes utility
for a given workload without considering reconfiguration cost.

To balance the cost accrued over the duration of an adaptation with the ben-
efits accrued between its completion and the next adaptation, the algorithm uses
a parameter, called the control window, that indicates the time to the next adap-
tation. Adaptations occur only because of controller invocations. If the controller
is invoked periodically, the control window is set to the fixed inter-invocation in-
terval. If the controller is invoked on demand when the workload changes, the
control window is set to the stability interval prediction Ep provided by the
ARMA filter. An adaptation is only chosen if it increases utility by the end of
the control window. Therefore, a short control window produces a conservative
controller that will typically only choose cheap adaptation actions, while a longer
control window allows the controller to choose more expensive adaptations.

Multiple controllers, each with different control windows can be used in an
hierarchical fashion to produce a multi-level control scheme operating at differ-
ent time-scales, and with different levels of aggressiveness. Our implementation
of the adaptation engine uses a two-level hierarchical controller to achieve a
balance between rapid but cheap response to short term fluctuations and more
disruptive responses to long term workload changes (Figure 2). The short term
controller is invoked periodically once every measurement interval, while the
long term controller is executed on-demand when the workload has changed
more than a specified threshold since the last long term controller invocation.
To avoid multiple controller executions in parallel, the timer tracking the short
term controller’s execution is suspended while the long term controller is active.

3 Technical Approach

In this paper, we consider five adaptation actions: increase/decrease a VM’s
CPU allocation by a fixed amount, addition/removal of the VM containing an
application tier’s replica, and finally, migration of a replica from one host to
another. Replica addition is implemented cheaply by migrating a dormant VM
from a pool of VMs to the target host and activating it by allocating CPU
capacity. A replica is removed simply by migrating it back to the standby pool.
Some actions also require additional coordination in other tiers, e.g., changing
the replication degree of the application server tier requires updating the front-
end web servers with new membership.

Models. Our approach for cost estimation is based on approximate models that
are constructed using off-line experimental measurements at different represen-
tative workloads using the following process. For each application s, workload
w, and adaptation action a, we set up the target application along with a back-
ground application s′ such that all replicas from both applications are allocated
equal CPU capacity (40% in our experiments). Then, we run multiple experi-
ments, each with a random placement of all the replica VMs from both applica-
tions across all the physical hosts. During each experiment, we subject both the
target and background application to the workload w, and after a warm-up pe-
riod of 1 minute, measure the end-to-end response times of the two applications
RT s(w) and RT s′(w). Then, we execute the adaptation action a, and measure
the duration of the action as ds

a(w), and the end-to-end response times of each
application during adaptation as RT s

a (w) and RT s′

a (w). If none of application s’s
VMs are colocated with the VM impacted by a, no background application mea-
surements are made. We use these measurements to calculate a delta response
time for the target and the background applications, or ∆RT s

a = RT s
a − RT s

and ∆RT s′

a = RT s′

a − RT s′ . These deltas along with the action duration are
averaged across all the random configurations, and their values are encoded in
a cost table indexed by the workload.

When the optimizer requires an estimate of adaptation costs at runtime,
it measures the current workload w and looks up the cost table entry with
the closest workload w′. To determine the impact of the adaptation a on its
target application s, it measures the current response time of the application
as RT s and estimates the new response time during adaptation as RT s

a (w) =
RT s(w)+∆RT s

a (w′). For each application s′ whose components are hosted on the
same machine targeted by a, it calculates the new response times as RT s′

a (w) =
RT s′(w) + ∆RT s′

a (w′). Although this technique does not capture fine-grained
variations due to the difference between configurations or workloads, we show in
Section 4 that the estimates are sufficiently accurate for making good decisions.

To estimate the potential benefits of a reconfiguration action, we use previ-
ously developed layered queuing network models. Given a system configuration
and workload, the models compute the expected mean response time of each
application. A high-level diagram of the model for a single three-tier application
is shown in Figure 3. Software components (e.g., tier replicas) are modeled as
FCFS queues, while hardware resources (e.g., hosts, CPU, and disk) are modeled
as processor sharing (PS) queues. Interactions between tiers that result from an
incoming transaction are modeled as synchronous calls in the queuing network.
We account for the I/O overhead imposed by the Xen Dom-0 hypervisor, known
to have significant impact (e.g., [14]), via a per-network-interaction VM monitor
(VMM) delay. Although this effect impacts all VMs on the host, we model it on
a per-VM basis to reduce the time to solve the model. Section 4 shows that the
models provide sufficient accuracy despite this approximation.

The parameters for the models, i.e., the call graph for each transaction and
the per-transaction service times at the CPU, network, disk, I/O queues at the
various tiers are measured in an off-line measurement phase. In this phase, each

VMM

Web
Server

Disk

App.
Server

Disk

DB
Server

Disk

Net Net Net Client

CPU CPU CPU

Disk Disk Disk

VMM VMM

Network Ping Measurement
Servlet.jar Instrumentation

LD_PRELOAD Instrumentation

Function call
Resource use

Fig. 3. Layered queueing network model

application is deployed both with and without virtualization and instrumented
at different points using system call interception and JVM instrumentation. It
is then subjected to test transactions, one request at a time, and measurements
of the counts and delays between incoming and outgoing messages are used to
parameterize the LQNS model. The models are then solved at runtime using the
LQNS analytical solver [13]. More details can be found in [8].

Estimating Stability Intervals. The stability interval for an application s at
time t is the period of time for which its workload remains within a band of ±b
of the measured workload W s

t at time t. This band [W s
t - b, W s

t + b] is called
the workload band Bs

t . When an application’s workload exceeds the workload
band, the controller must evaluate the system for potential SLA misses. When
the workload falls below the band, the controller must check if other applications
might benefit from the resources that could be freed up. Both cases can entail
reconfiguration. Thus the duration of stability intervals impacts the choice of
actions. If the workload keeps on changing rapidly, reconfiguration actions such
as live-migration and replication become too expensive because their costs may
not be recouped before the workload changes again. However, if the stability
interval is long, even expensive adaptations are worth considering. Therefore,
good predictions of the stability interval can benefit adaptation action selection.

At each measurement interval i, the estimator checks if the current workload
W s

i is within the current workload band Bs
j . If one or more application workloads

are not within their band, the estimator calculates a new stability interval pre-
diction Ep

j+1 and updates the bands based on the current application workloads.
To predict the stability intervals, we employ an autoregressive moving averages
(ARMA) model of the type commonly used for time-series analysis, e.g. [15].
The filter uses a combination of the last measured stability interval Em

j and an
average of the k previously measured stability intervals to predict the next sta-
bility interval using the Equation: Ep

j+1 = (1−β) ·Em
j +β ·1/k

∑k
i=1E

m
j−i. Here,

the factor β determines how much the estimator weighs the current measure-
ment against past historical measurements. It is calculated using an adaptive
filter as described in [16] to quickly respond to large changes in the stability
interval while remaining robust against small variations. To calculate β, the
estimator first calculates the error εj between the current stability interval mea-
surement Em

j and the prediction Ep
j using both current measurements and the

previous k error values as εj = (1 − γ) · |Ep
j − Em

j | + γ · 1/k
∑k

i=1 εj−i. Then,
β = 1−εj/maxi=0...k εj−i. This technique dynamically gives more weight to the
current stability interval measurement by generating a low value for β when the

estimated stability interval at time i is close to the measured value. Otherwise,
it increases β to emphasize past history. We use a history window k of 3, and set
the parameter γ to 0.5 to give equal weight to the current and historical error
estimates.

Balancing Cost and Benefit. To convert the predicted response times to
utility values, the controller first calculates the instantaneous rate at which an
application accrues utility either during normal operation in a configuration c,
or during the execution of an adaptation action a. To do so, it uses the SLA
to get the per-application workload dependent target response times TRT s, the
per-application workload dependent reward of Rs(W s

i) that is awarded every
measurement interval of length M if the target response time is met, and a
penalty of P s(W s

i) imposed if the target is not met. Therefore, if the predicted
response time is RT s, the rate us at which utility is accrued by application s is
given by:

us = 1[RT s ≤ TRT s] ·Rs(W s
i)/M − 1[RT s > TRT s] · P s(W s

i)/M (1)
In this equation, 1[. . .] is an indicator function that returns 1 if its argument is
true, and 0 otherwise. During normal operation in a configuration c, the predicted
response timeRT s

c is provided by the queuing models. The cost due to adaptation
action a is estimated as RT s

c,a = RT s
c +∆RT s

a . Substituting these values instead
of RT s in Equation 1 yields us

c and us
c,a, the utility accrual rate during normal

execution in configuration c, and during execution of adaptation action a starting
from a configuration c, respectively.

The controller then uses the control window as an estimate of how long the
system will remain in a new configuration after adaptation. The control window
is statically set to the controller inter-invocation time for periodic controllers
and dynamically set to the stability interval for on-demand controllers. Consider
the controller at the end of measurement interval i with current configuration ci,
control window CW , and evaluating an adaptation sequence Ai represented as a
series of actions a1, a2, . . . an. Let d1, d2, . . . , dn be the length of each adaptation
action, and let c1, c2, . . . , cn be intermediate configurations generated by apply-
ing the actions starting from the initial configuration ci. Let c0 be the initial
configuration ci and cn be the final configuration ci+1. Then, the utility is:

U =
∑

ak∈Ai

(dak

∑
s∈S

us
ck−1,ak) + (CW −

∑
ak∈Ai

dak) ·
∑
s∈S

us
ci+1

= Ua + Uc (2)

The first term Ua of the equation sums up the utility accrued by each application
during each action in the adaptation sequence over a period equal to its action
length, and second term Uc sums the utility of the resulting configuration ci+1

over the remainder of the control interval.

Search Algorithm. The goal of the search algorithm is to find a configuration
(and the corresponding adaptation actions) for which the utility U is maximized.
Configurations must satisfy the following allocation constraints: (a) for each
application, only one replica from each tier can be assigned to a host, (b) the
sum of CPU allocations on a host can be at most 1, and (c) the number of VMs
per host is restricted to fit the available memory on the host.

…
… …

…

…
…

do nothing

act1:migrate(tomcat)
-cost(d1,u1)

act2:cpu(db)+10%
-cost(d2,u2)

v0

exit

v1 v2

v3 v4 v5

vopt*

do
nothing

act3:add(www)
-cost(d3,u3)

act2
-cost(d2,u2)

act3
-cost(d3,u3)

Candidate configuration

Intermediate configuration

act1
-cost(d1,u1)

do nothing
-Uopt

-U1

-U3

Fig. 4. Adaptation action search graph

Starting from a current configuration, a new configuration at each step is built
by applying exactly one adaptation action as shown in Figure 4. The vertices
represent system configurations, and the edges represent adaptation actions. We
frame the problem as a shortest path problem that minimizes the negative of
the utility, i.e., maximizes the actual utility. Therefore, each edge has a weight
corresponding to the negative of the utility obtained while the action is being
executed (i.e., −da

∑
s∈S u

s
c,a). If multiple action sequences lead to the same

configuration, the vertices are combined. Configurations can be either interme-
diate or candidate configurations as represented by the white and gray circles
in the figure, respectively. A candidate configuration satisfies the allocation con-
straints, while an intermediate configuration does not, e.g., it may assign more
CPU capacity to VMs than is available, requiring a subsequent “Reduce CPU”
action to yield a candidate configuration. Neither type of configuration is allowed
to have individual replicas with CPU capacity greater than one.

Only candidate configurations have a do nothing action that leads the goal
state, labeled as exit in the figure. The weight for the do nothing action in a
configuration c is the negative of the revenue obtained by staying in c until the
end of the prediction interval (i.e. −Uc), assuming that the best known path is
used to get to c. Then, the shortest path starting from the initial configuration
to the exit state computes the best U , and represents the adaptation actions
needed to achieve optimal revenue. Intermediate configurations do not have do
nothing actions, and thus their utility is not defined.

Although the problem reduces to a weighted shortest path problem, it is not
possible to fully explore the extremely large configuration space. To tackle this
challenge without sacrificing optimality, we adopt an A* best-first graph search
approach as described in [17]. The approach requires a “cost-to-go” heuristic to
be associated with each vertex of the graph. The cost-to-go heuristic estimates
the shortest distance from the vertex to the goal state (in our case, the exit
vertex). It then explores the vertex for which the estimated cost to get to the goal
(i.e., the sum of the cost to get to the vertex and the cost-to-go) is the lowest.
In order for the result to be optimal, the A* algorithm requires the heuristic to
be “permissible” in that it underestimates the cost-to-go.

Input: ci: current config., Wi: predicted workload, CW : control window length
Output: Ai

opt - the optimized adaptation action sequence
(c∗, u∗)←UtilityUpperBound (Wi)
if c∗ = ci then return [anull] (do nothing)
v0.(aopt, c, Ua, U,D)← (φ, ci, 0, u

∗, 0); V ← {v0}
while forever do

v ← argmaxv′∈Vv
′.U

if v.aopt[last] = anull then return v.aopt

foreach a ∈ A ∪ anull do
vn ← v, vn.aopt ← v.aopt + a
if a = anull then

uc ← LQNS (Wi, v
n.c); vn.U ← (CW − vn.D) · uc + vn.Ua

else
vn.c← NewConfig (vn.c, a); (da, ua)←Cost (vn.c, a,Wi)
vn.Ua ← vn.Ua + da · ua; vn.D ← vn.D + da;
vn.U ← (CW − vn.D) · u∗ + vn.Ua

if ∃v′ ∈ V s.t. v′.c = vn.c then
if v′.U > vn.U then v′ ← vn

else
V ← V ∪ vn

Algorithm 1: Optimal adaptation search
As the cost-to-go heuristic, we use the utility u∗ of the optimal configuration

c∗ that is produced by our previous work in [8] using bin-packing and gradient-
search techniques. This utility value represents the highest rate at which utility
can be generated for the given workload and hardware resources. However, it
does not take into account any costs that might be involved to change to that
configuration, and thus overestimates the utility that can practically be obtained
in any given situation. Therefore, the utility U calculated by using u∗ instead of∑

s∈S u
s
ci+1

in Equation 2 is guaranteed to overestimate the true reward-to-go
(i.e., underestimate cost-to-go), and thus forms a permissible heuristic.

The resulting search algorithm is shown in Algorithm 1. After using the Util-
ityUpperBound function to compute the cost-to-go heuristic u∗ for the initial
configuration v0, it begins the search. In each iteration, the open vertex with the
highest value of U is explored further. New open vertices are created by apply-
ing each allowed adaptation action to the current vertex and updating v.aopt,
the optimal list of actions to get to v. When applying the do nothing action,
the algorithm invokes the LQNS solver to estimate the response times of the
current configuration and computes the utility. Otherwise, it invokes NewConfig
to produce a new configuration and uses the cost model to compute both the
adaptation cost Ua and the overall utility U as explained above. The algorithm
terminates when a.null, i.e., “do nothing”, is the action chosen.

Reducing the Search Space. The running time of the algorithm depends
on the number of configurations explored by the search. The algorithm avoids
lengthy sequences of expensive actions due to the optimal utility bound. How-
ever, to prevent it from getting stuck exploring long sequences of cheap actions
such as CPU allocation changes, we have implemented several techniques to sig-

nificantly reduce the number of states generated without affecting the quality
of the adaptations produced. The first is depth limiting (DL), which limits the
search of paths to those of no more than n adaptation actions and effectively
makes the search space finite. In our experiments, we chose n = 7 as the largest
value that ensured that the controller always produced a decision within 30 sec-
onds. The second is partial order reduction (PO), which addresses the issue that
CPU tuning actions can interleave in many ways to produce the same results,
but require different intermediate states, e.g., WS+10%, WS+10%, DB-10%
and DB-10%, WS+10%, WS+10%. To prevent multiple interleavings without
affecting the actual candidate configurations, we consider all CPU increases and
decreases in a strict canonical order of components. The final technique is action
elimination (AE), which eliminates known poor action choices, for example, dis-
abling add replica actions when the workload for an application has diminished.

Technique States Time (sec) Technique States Time (sec)

Naive 83497 3180 DL+PO 599 210
DL 19387 1420 DL+PO+AE 62 18

Table 2. State Space Reduction

Table 2 shows the magnitude of reductions that are achievable with these
techniques using an experiment in which 10 VMs across two applications were
being optimized. Adding more replicas to an application does not affect the size
of the state-space. However, adding more applications does. While these results
indicate that the search algorithm can be made fast enough to be used in an
on-line manner while still retaining a high quality of adaptation for deployments
of small to moderate size (Section 4), scalability is potentially a problem for
large deployments. We are addressing this limitation in ongoing work using a
combination of both better engineering and better algorithms.

4 Experimental Results

The experimental results are divided into three parts. In the first part, we de-
scribe the testbed and workloads used, and then present the measurements used
in the adaptation cost models. In the second part, we evaluate the accuracy of
the individual controller components: the LQNS performance models, the cost
models, and the ARMA-based workload stability predictor. Finally, in the third
part, we evaluate our approach holistically in terms of the quality of the adap-
tation decisions the controller produces and their impact on application SLAs.

4.1 Model Calibration and Testbed

Testbed. Our target system is a three-tier version of the RUBiS application [11].
The application consists of Apache web servers, Tomcat application servers, and
MySQL database servers running on a Linux-2.6 guest OS using the Xen 3.2 [12]
virtualization platform. The hosts are commodity Pentium-4 1.8GHz machines
with 1GB of memory running on a single 100Mbps Ethernet segment. Each VM

D
om

ai
n-

0  

W
eb

 S
er

ve
r  

A
pp

. S
er

ve
r  

D
B

 S
er

ve
r  

VM1  VM2  VM 

D
om

ai
n-

0  

W
eb

 S
er

ve
r  

A
pp

. S
er

ve
r  

D
B

 S
er

ve
r  

VM1  VM2  VM 

D
om

ai
n-

0  

W
eb

 S
er

ve
r  

A
pp

. S
er

ve
r  

D
B

 S
er

ve
r  

VM1  VM2  VM 

Adaptation Engine 
Workload
Monitor 

Virtual Machine Pool 

Estimator 

Active Hosts  
D

om
ai

n-
0  

Hypervisor 

W
eb

 S
er

ve
r  

A
pp

. S
er

ve
r  

D
B

 S
er

ve
r  

VM  VM  VM 

D
or

m
an

t
D

B
 S

er
ve

r  
D

or
m

an
t

D
B

 S
er

ve
r  

D
or

m
an

t
A

pp
. S

er
ve

r  

D
om

ai
n-

0  

Hypervisor 

VM  VM  VM 

Shared Storage  

OS
Image 

Controller 

Fig. 5. Test-bed architecture

-80
-70
-60
-50
-40
-30
-20
-10

0
10
20
30
40
50
60
70
80

0 5 10 15 20 25 30 35 40 45 50 55 60 65 70 75

Pe
na

lty
 /

R
ew

ar
d

Request rate (per second)

Reward

Penalty

Fig. 6. SLA-based utility function

0 

10 

20 

30 

40 

50 

60 

70 

80 

15
:0
0 

15
:2
1 

15
:4
2 

16
:0
3 

16
:2
4 

16
:4
5 

17
:0
6 

17
:2
7 

17
:4
8 

18
:0
9 

18
:3
0 

18
:5
1 

19
:1
2 

19
:3
3 

19
:5
4 

20
:1
5 

20
:3
6 

20
:5
7 

21
:1
8 

21
:3
9 

22
:0
0 

22
:2
1 

RUBiS‐1 
RUBiS‐2 

Time

R
eq

ue
st

 ra
te

 (p
er

 s
ec

)

(a) Time-of-day

0 

10 

20 

30 

40 

50 

60 

70 

80 

15
:0
0 

15
:0
4 

15
:0
8 

15
:1
2 

15
:1
6 

15
:2
0 

15
:2
4 

15
:2
8 

15
:3
2 

15
:3
6 

15
:4
0 

15
:4
4 

15
:4
8 

15
:5
2 

15
:5
6 

16
:0
0 

16
:0
4 

16
:0
8 

16
:1
2 

16
:1
6 

16
:2
0 

16
:2
4 

RUBiS‐1 
RUBiS‐2 

Time

R
eq

ue
st

 ra
te

 (p
er

 s
ec

)

(b) Flash crowd
Fig. 7. Workloads

is allocated 256MB of memory, with a limit of up to 3 VMs per host. The Xen
Dom-0 hypervisor is allocated the remaining 256MB. The total CPU capacity of
all VMs on a host is capped to 80% to ensure enough resources for the hypervi-
sor even under loaded conditions. Figure 5 illustrates our experimental test-bed.
Four machines are used to host our test applications, while two are used as
client emulators to generate workloads (not shown). One machine is dedicated
to hosting dormant VMs used in server replication, and another one is used as
a storage server for VM disk images. Finally, we run the adaptation engine on
a separate machine with 4 Intel Xeon 3.00 GHz processors and 4 GB RAM.
For MySQL replication, all tables are copied and synchronized between replicas.
The Tomcat servers are configured to send queries to the MySQL replicas in a
round-robin manner. We deploy two applications RUBiS-1 and RUBiS-2 in a de-
fault configuration that evenly allocates resources among all components except
for the database servers, which are allocated an additional 20% CPU to avoid
bottlenecks. The rewards and penalties for the applications are as specified in
Figure 6 for meeting or missing a target mean response time of 84 ms in every
measurement interval, respectively. The target response time was derived exper-
imentally as the mean response time across all transactions of a single RUBiS
application running in isolation in the initial configuration driven by a constant
workload equal to half of the design workload range of 5 to 80 requests/sec.

Workload Scenarios. During experiments, we drive the target applications
using two workloads, a time-of-day workload and a flash crowd workload. The
time-of-day workload was generated based on the Web traces from the 1998

0
100
200
300
400
500
600
700

100:100 200:200 300:300 400:400 500:500
Users of adapted:shared applications

MySQL live migration
MySQL add
MySQL remove
CPU tuning

Δ
R

es
po

ns
e

Ti
m

e
(m

se
c)

(a) Action ∆RT

0
10000
20000
30000
40000
50000
60000
70000
80000

100:100 200:200 300:300 400:400 500:500

A
da

pt
at

io
n

le
ng

th
 (m

se
c)

Users of adapted:shared applications

(b) Adaptation Duration da

0

50

100

150

200

250

300

MySQL Tomcat Apache

R
es

po
ns

e
Ti

m
e

(m
se

c)

Before

Overall avg.

Pre-copy avg.

(c) Live Migration RT

Fig. 8. Costs for various adaptation actions

200
300

400
500

0
100
200
300
400
500
600

100
200

300
400

500

Δ
R

es
po

ns
e

Ti
m

e
(m

se
c)

Users
(Target App)

Users
(Shared App)

(a) Target App ∆RT

200
300

400
500

0

50

100

150

100
200

300
400

500
Δ

R
es

po
ns

e
Ti

m
e

(m
se

c)

Users
(Target App)

Users
(Shared App)

(b) Shared App ∆RT

200
300

400
500

0
10000
20000
30000
40000
50000
60000
70000

100
200

300
400

500

A
da

pt
at

io
n

Le
ng

th
 (m

se
c)

Users
(Target App)

Users
(Shared App)

(c) Adaptation Duration

Fig. 9. Costs for MySQL live-migration
World Cup site [18] and the traffic traces of an HP customer’s Internet Web
server system [19]. We have chosen a typical day’s traffic from each of these
traces and then scaled them to the range of request rates that our experimental
setup can handle. Specifically, we scaled both the World Cup requests rates of
150 to 1200 requests/sec and the HP traffic of 2 to 4.5 requests/sec to a range of
5 to 80 requests/sec. Since our workload is controlled by adjusting the number
of simulated clients, we created a mapping from the desired request rates to the
number of simulated RUBiS clients. Figure 7(a) shows these scaled workloads
for the two RUBiS applications from 15:00 to 22:30, where RUBiS-1 uses the
scaled World Cup workload profile and RUBiS-2 uses the scaled HP workload
profile. The flash crowd workload shown in Figure 7(b) uses the first 90 minutes
of the time-of-day workloads, but has an additional load of over 50 requests per
second added to RUBiS-2 around 15:30 for a short interval.

Adaptation Costs. To measure adaptation costs, we deployed both applica-
tions and used the methodology described in Section 3. One application was
the “target application” for the action, while the other was the “shared applica-
tion” that was co-located with the target application, but was not reconfigured.
We measured the adaptation length da and response time impact ∆RT s

a for all
adaptation actions and combinations of workloads ranging from 100 to 500 users
for both the target and shared application. For example, Figures 8(a) and 8(b)
show ∆RT s

a and da for the target application when subjected to actions affect-
ing the MySQL server and when the workload for both applications is increased
equally. As is seen, ∆RT for adding and removing MySQL replicas increases as
workloads increase, but the adaptation durations are not greatly affected. The
costs of CPU reallocation are very small in terms of both ∆RT and da.

The most interesting results were those for live migration, which has been
proposed in the literature as a cheap technique for VM adaptation (e.g., [10]).
However, we see that live-migration can have a significant impact on a multi-
tier application’s end-to-end responsiveness both in magnitude and in duration.

For each of the three server types, Figure 8(c) shows the mean end-to-end re-
sponse time for RUBiS measured before migration of that server, over the entire
migration duration, and during the “pre-copy” phase of migration. This figure
shows that although live-migration is relatively cheap for the Apache server, it is
very expensive for both the Tomcat and MySQL servers. Moreover, most of this
overhead incurs during the pre-copy phase. During this phase, dirty pages are
iteratively copied to the target machine at a slow pace while the VM is running.
In the subsequent stop-and-copy phase, the VM is stopped and the remaining
few dirty pages are copied rapidly. Claims that VM migration is “cheap” often
focus on the short (we measured it to be as low as 60msec) stop-and-copy phase
when the VM is unavailable. However, it is the much longer pre-copy phase with
times averaging 35 sec for Apache, 40 sec for MySQL, and 55 sec for the Tomcat
server that contributes the most to end-to-end performance costs.

Migration also affects the response time of other VMs running on the same
host. Figures 9(a) and 9(b) show the ∆RT for the target and shared appli-
cations, respectively during MySQL migration. While increases in the shared
application’s number of users (i.e., workload) impact the target application’s
response time, the target application migration has an even more significant im-
pact on the shared application, especially at high workloads. Figure 9(c) shows
how the adaptation duration increases with the target workload due to an in-
crease in the working set memory size. In Table 3, we also show the standard
deviations for these costs as percentages of the mean and calculated across all
the random configurations used for measurement. The variances are quite low
indicating that exact knowledge of the configuration does not significantly im-
pact migration cost, and validating our cost model approximations. The only
outlier we saw was for the response time of RUBiS-2 when two MySQL servers
were co-located under high load.

Workload Action Length RUBiS-1 ∆RT RUBiS-2 ∆RT

100:500 2.34% 2.95% 14.52%
300:500 7.45% 10.53% 17.14%
500:500 8.14% 6.79% 101.80%
Table 3. Variance of Adaptation Costs for MySQL Migration

4.2 Model Prediction Accuracy

We evaluate the accuracy of the LQN models and the cost models in a single
experiment by using the first 220 minutes from the time-of-day workloads. Specif-
ically, at each controller execution point and for each application, we recorded
the response time predicted by the models (RT s) for the next control interval
and then compared it against the actual measured response time over the same
time period. This comparison includes both the predictions of adaptation cost
and performance. Figure 10 shows the results for each application. Despite the
simplifications made in our cost models, the average estimation error is quite
good at around 15%, with the predictions being more conservative than reality.

Second, we evaluated the accuracy of our stability interval estimation. To
do this, the ARMA filter is first trained using 30 minutes of the respective

0

20

40

60

80

100

120

140

15
:0

2
15

:1
4

15
:2

6
15

:3
8

15
:5

0
16

:0
2

16
:1

4
16

:2
6

16
:3

8
16

:5
0

17
:0

2
17

:1
4

17
:2

6
17

:3
8

17
:5

0
18

:0
2

18
:1

4
18

:2
6

18
:3

8
18

:5
0

19
:0

2
19

:1
4

19
:2

6
19

:3
8

R
es

po
ns

e
tim

e
(m

se
c)

Time

Exp.
Model

0

50

100

150

200

250

15
:0

0
15

:1
2

15
:2

4
15

:3
6

15
:4

8
16

:0
0

16
:1

2
16

:2
4

16
:3

6
16

:4
8

17
:0

0
17

:1
2

17
:2

4
17

:3
6

17
:4

8
18

:0
0

18
:1

2
18

:2
4

18
:3

6
18

:4
8

19
:0

0
19

:1
2

19
:2

4
19

:3
6

R
es

po
ns

e
tim

e
(m

se
c)

Time

Exp.
Model

Fig. 10. Prediction accuracy for both applications under time-of-day workload

0

2

4

6

8

10

12

14

1 4 7 10 13 16 19 22 25 28 31 34 37 40 43 46 49 52 55 58 61 64 67

monitored
estimated

In
te

rv
al

 (m
in

)

Stability window

(a) Time-of-day

0 

2 

4 

6 

8 

10 

12 

14 

1  2  3  4  5  6  7  8  9  10  11  12  13  14  15  16  17  18 

monitored  es5mated 

In
te

rv
al

 (m
in

)

Stability window

(b) Flash crowd

Fig. 11. Stability interval prediction error for different workloads

workloads. As shown in Figure 11(a), the filter is executed 68 times during the
time-of-day experiment and provides effective estimates. The absolute prediction
error against the measured interval length is around 15% for the time-of-day
workloads. Meanwhile, the flash crowd workload causes an increase in the esti-
mation error of the ARMA filter due to the short and high unexpected bursts.
The results are presented in Figure 11(b). The error reaches approximately 23%
because the filter over-estimates the length until the 5th stability interval when
the flash crowd appears. However, the estimation quickly converges on the lower
length and matches the monitored length of the stability interval until the 14th

interval, when the flash crowd goes away and the filter starts to under-estimate
the length. Even under such relatively high prediction errors, we show below
that our cost-sensitive strategy works well.

4.3 Controller Evaluation

We evaluate our Cost-Sensitive (CS) strategy under both time-of-day workload
and flash crowd scenarios by comparing its response time and utility against the
following strategies: Cost Oblivious (CO) reconfigures the system to the optimal
configuration whenever the workload changes, and uses the optimal configura-
tions generated using our previous work [8]. 1-Hour reconfigures the system to
the optimal configuration periodically at the rate of once per hour; this strat-
egy reflects the common policy of using large consolidation windows to mini-
mize adaptation costs. No Adaptation (NA) maintains the default configuration
throughout the experiment. Finally, Oracle provides an upper bound for utility

0 

50 

100 

150 

200 

250 

15
:0
0 

15
:1
8 

15
:3
6 

15
:5
4 

16
:1
2 

16
:3
0 

16
:4
8 

17
:0
6 

17
:2
4 

17
:4
2 

18
:0
0 

18
:1
8 

18
:3
6 

18
:5
4 

19
:1
2 

19
:3
0 

19
:4
8 

20
:0
6 

20
:2
4 

20
:4
2 

21
:0
0 

21
:1
8 

21
:3
6 

21
:5
4 

22
:1
2 

NA 

CS 

CO 
R

es
po

ns
e

tim
e

(m
s)

Time

(a) Time-of-day Workload

0 

50 

100 

150 

200 

250 

15
:0
0 

15
:0
4 

15
:0
8 

15
:1
2 

15
:1
6 

15
:2
0 

15
:2
4 

15
:2
8 

15
:3
2 

15
:3
6 

15
:4
0 

15
:4
4 

15
:4
8 

15
:5
2 

15
:5
6 

16
:0
0 

16
:0
4 

16
:0
8 

16
:1
2 

16
:1
6 

16
:2
0 

16
:2
4 

NA 

CS 

CO 

R
es

po
ns

e
tim

e
(m

s)

Time

(b) Flash Crowd

Fig. 12. Response times for RUBiS-1 under different adaptation strategies

by optimizing based on perfect knowledge of future workload and by ignoring
all adaptation costs.

We use the current measured workload at the controller execution point to
be the predicted workload for the next control window for the CS and CO
strategies. The measurement interval is set to 2 minutes to ensure quick reaction
in response to workload changes. The workload monitor gets the workload for
each measurement interval by parsing the Apache log file. Finally, we choose a
narrow workload band b of 4 req/sec to ensure that even small workload changes
will cause the controller to consider taking action.

End-to-End Response Time. First, we compare the mean end-to-end re-
sponse time for all the strategies as measured at each measurement period. The
results for the RUBiS-1 application are shown for the CS, CO, and NA strategies
in Figures 12; the Oracle and 1-Hour plots are omitted for legibility. Figure 12(a)
shows the results for the time-of-day workload. Predictably, the NA strategy is
very sensitive to workload changes and shows large spikes once the workload
intensity reaches the peak in both applications. For the CO and CS strategies, a
series of spikes corresponds to when the adaptation engine triggers adaptations.
The CS strategy has relatively short spikes and then the response time stabilizes.
Meanwhile, the CO strategy has more and larger spikes than the CS strategy.
This is because the CO strategy uses more adaptation actions, including rela-
tively expensive ones such as live-migration of MySQL and Tomcat and MySQL
replication, while the CS strategy uses fewer and cheaper actions, especially
when the estimated stability interval is short.

Although the response time of the CO strategy is usually better than the CS
strategy after each adaptation has completed, the overall average response time
of CS is 47.99 ms, which is much closer to the Oracle’s result of 40.91ms than
the CO, 1-Hour, and NA values, which are 58.06 ms, 57.41 ms, and 71.18 ms
respectively. Similarly, for the flash crowd scenario, although the ARMA filter
over- and under-estimates several stability intervals, the CS strategy’s mean
response time of 57.68 ms compares favorably with the CO, 1-Hour, and NA
values of 67.56 ms, 70.42 ms, and 116.35 ms, respectively, and is closer to the
Oracle result of 40.14ms. Not surprisingly, the difference between CS and Oracle

Action CS CO Action CS CO

CPU Increase/Decrease 14 36 Migrate (Apache replica) 4 10
Add (MySQL replica) 1 4 Migrate (Tomcat replica) 4 10
Remove (MySQL replica) 1 4 Migrate (MySQL replica) 0 2

Table 4. Total Number of Actions Triggered

‐150 

‐100 

‐50 

0 

50 

100 

150 

15
:0
0 

15
:1
8 

15
:3
6 

15
:5
4 

16
:1
2 

16
:3
0 

16
:4
8 

17
:0
6 

17
:2
4 

17
:4
2 

18
:0
0 

18
:1
8 

18
:3
6 

18
:5
4 

19
:1
2 

19
:3
0 

19
:4
8 

20
:0
6 

20
:2
4 

20
:4
2 

21
:0
0 

21
:1
8 

21
:3
6 

21
:5
4 

22
:1
2 

NA  CS  CO 

U
til

ity

Time

(a) Time-of-day Workload

‐100 

‐50 

0 

50 

100 

150 

15
:0
0 

15
:0
4 

15
:0
8 

15
:1
2 

15
:1
6 

15
:2
0 

15
:2
4 

15
:2
8 

15
:3
2 

15
:3
6 

15
:4
0 

15
:4
4 

15
:4
8 

15
:5
2 

15
:5
6 

16
:0
0 

16
:0
4 

16
:0
8 

16
:1
2 

16
:1
6 

16
:2
0 

16
:2
4 

NA  CS  CO 

U
til

ity

Time

(b) Flash Crowd

Fig. 13. Measured utility for different adaptation strategies

is larger for the flash crowd workload than the time-of-day one because the
ARMA filter is wrong more often in its stability interval predictions. Also, the
1-Hour strategy does more poorly in the flash crowd case because it is unable
to respond to the sudden workload spike in time. The results for RUBiS-2 were
similar. Thus, the CS controller is able to outperform the CO strategy over the
long run by trading-off short-term optimality for long-term gain.

To appreciate how the different strategies affect adaptation in the flash crowd
scenario, consider what happens when the load to RUBiS-2 suddenly increases
at 15:30. The CO controller removes a MySQL replica of RUBiS-1 and adds a
MySQL replica to RUBiS-2. Meanwhile, the CS strategy also removes a MySQL
replica from RUBiS-1, but then it only tunes the CPU allocation of Tomcat
servers, which are much cheaper actions than adding a replica to RUBiS-2. Table
4 summarizes the number of actions of each type produced by the CS and CO
strategies for the flash crowd scenario.

Utility. Using the monitored request rates and response times, we compute the
utility of each strategy at every measurement interval to show the impact of
adaptation actions on the overall utility. For the time-of-day workload, Figure
13(a) shows that both the CO and CS strategies have spikes when adaptation
actions are triggered. However, the CO strategy has more and much deeper spikes
than the CS strategy including some that lead to negative utility by violating
SLAs of both applications. Meanwhile, the CS strategy chooses actions that
do not violate SLAs. The utility for the flash crowd scenario in Figure 13(b)
similarly shows that the CS strategy has a couple of spikes corresponding to
the onset and exit of the flash crowd. However, these spikes are less severe than
those of the CO strategy. The CS strategy violates the SLA of RUBiS-1 only in
the measurement periods where it removes or adds a MySQL replica of RUBiS-1
(when the flash crowd starts and then after it disappears), while the CO strategy
violates SLAs of both applications in many periods.

Workload Oracle CS 1 Hour CO NA

Time of day 16535 15785 10645 9280 2285
Flash Crowd 3345 3120 2035 1620 -630
Table 5. Cumulative Utility for all Strategies

We also computed the total utility accumulated over the entire experiment
duration. The values for all the different strategies and workloads are shown in
Table 5. Because the absolute value of the utility can differ greatly depending on
the exact reward, penalty, and response time threshold values used in the SLA, it
is more important to note the relative ordering between the different approaches.
As can be seen, the CS strategy performs the best and has a utility very close to
the Oracle for both workloads. The NA strategy predictably performs the worst.
While neither the CO nor the 1-Hour strategy are competitive with CS, it is
interesting to note that CO performs worse than 1-Hour. This is because CO is so
aggressive in choosing optimal configurations that it incurs too much adaptation
cost compared to 1-Hour, which limits adaptations to once every hour. The
higher frequency of response time spikes for the CO and NA approaches indicates
that this ordering is not likely to change even if a different utility function is
used. These results demonstrate the value of taking workload stability and costs
into account when dynamic adaptations are made.

5 Related Work

The primary contributions of this paper are (a) a model for comparing on a
uniform footing dramatically different types of adaptation actions with varying
cost and application performance impacts (e.g., CPU tuning vs. VM migration),
and (b) considering workload stability to produce adaptations that are not nec-
essarily optimal in the short term, but produce better results over the long run
when workload variations are taken into account. We are not aware of any other
work that addresses these issues, especially in the context of multitier systems
with response time SLAs.

Several papers address the problem of dynamic resource provisioning [20,
21, 4, 5, 6, 7]. The authors in [7] even use queuing models to make decisions
that preserve response time SLAs in multitier applications. However, none of
these papers consider the performance impact of the adaptations themselves in
their decision making process. The approach proposed in [22] learns the rela-
tionships between application response time, workload, and adaptation actions
using reinforcement learning. It is implicitly able to learn adaptation costs as a
side-benefit. However, it cannot handle never-before seen configurations or work-
loads, and must spend considerable time relearning its policies in case of even
workload changes.

Recently, some efforts including [23, 25, 25, 27, 26] address adaptation costs.
Only one adaptation action, VM migration, is considered in [23], [25], and [24].
These papers propose controllers based on online vector-packing, utilization to
migration cost ratios, and genetic algorithms, respectively, to redeploy compo-
nents whose resource utilization causes them to fit poorly on their current hosts

while minimizing the number or cost of migrations. Migrations are constrained
by resource capacity considerations, but once completed, they are assumed not
to impact the subsequent performance of the application. Therefore, the ap-
proaches cannot be easily extended to incorporate additional action types since
they possess no mechanisms to compare different performance levels that could
result from actions such as CPU tuning or component addition. pMapper fo-
cuses on optimizing power given fixed resource utilization targets produced by
an external performance manager [27]. It relies solely on VM migration, and
propose a variant of bin-packing that can minimize the migration costs while
discarding migrations that have no net benefit. It also does not provide any way
to compare the performance of different types of actions that achieve similar
goals. Finally, [26] examines an integer linear program formulation in a grid job
scheduler setting to dynamically produce adaptation actions of two types — VM
migration and application reconfiguration — to which users can assign different
costs. However, there is again no mechanism to compare the different perfor-
mance benefits of the different actions, and the user must resort to providing a
manual weight to prioritize each type of action.

In summary, the above “cost aware” approaches only minimize adaptation
costs while maintaining fixed resource usage levels. They do not provide a true
cost-performance trade-off that compares different levels of performance result-
ing from different kinds of actions. Furthermore, none of the techniques consider
the limited lifetime that reconfiguration is likely to have under rapidly chang-
ing workloads and adjusts its decisions to limit adaptation costs accordingly.
In that sense, they are more comparable to our “cost oblivious” policy which
reconfigures the system whenever it finds a better configuration for the current
workload, irrespective of future trends.

The only work we are aware of that explicitly considers future workload
variations by using a limited lookahead controller (LLC) is presented in [9].
The algorithm balances application performance with energy consumption by
switching physical hosts on and off. However, it only deals with a single type
of coarse grain adaptation action, and requires accurate workload predictions
over multiple windows into the future, something that is hard to get right. In
contrast, our approach does not require any workload predictions, but can benefit
from much simpler to obtain estimates of stability windows if they are available.
Moreover, it is not clear whether it is practical to extend the LLC approach to
allow multiple types of actions with a range of granularities.

Energy saving is considered an explicit optimization goal in [9] and [27] and
is realized by shutting down machines when possible. Our current approach does
not factor in the cost of energy and therefore does not consider power cycling
actions. CPU power states are virtualized in [28] to produce “soft power states”
exported by an hypervisor to its VMs. In this approach, each VM implements
its own power management policy through the soft-states, and the management
framework arbitrates requests from multiple VMs to either perform frequency
scaling, or VM capacity scaling along with consolidation. It leaves policy de-
cisions, i.e., (a) how performance goals and workload are mapped to resource

targets, and (b) when and which VMs are consolidated to which physical hosts,
to the application to decide. Our goal is to automatically produce such policies.

6 Conclusions

In this paper, we have shown that runtime reconfiguration actions such as vir-
tual machine replication and migration can impose significant performance costs
in multitier applications running in virtualized data center environments. To
address these costs while still retaining the benefits afforded by such reconfig-
urations, we developed a middleware for generating cost-sensitive adaptation
actions using a combination of predictive models and graph search techniques.
Through extensive experimental evaluation using real workload traces from In-
ternet applications, we showed that by making smart decisions on when and how
to act, the approach can significantly enhance the satisfaction of response time
SLAs compared to approaches that do not take adaptation costs into account.

Acknowledgments. Thanks to our shepherd A. Verma for his many helpful sug-

gestions. This research has been funded in part by NSF grants ENG/EEC-0335622,

CISE/CNS-0646430, and CISE/CNS-0716484; AFOSR grant FA9550-06-1-0201, NIH

grant U54 RR 024380-01, IBM, Hewlett-Packard, Wipro Technologies, and the Georgia

Tech Foundation through the John P. Imlay, Jr. Chair endowment. Any opinions, find-

ings, and conclusions or recommendations expressed are those of the authors and do

not necessarily reflect the views of NSF or the other funding agencies and companies.

References

[1] Galletta, D., Henry, R., McCoy, S., Polak, P.: Web site delays: How tolerant are
users? J. of the Assoc. for Information Sys. 5(1) (2004) 1–28

[2] Ceaparu, I., Lazar, J., Bessiere, K., Robinson, J., Shneiderman, B.: Determining
causes and severity of end-user frustration. Intl. J. of Human-Computer Interac-
tion 17(3) (2004) 333–356

[3] WebSiteOptimization.com: The psychology of web performance. WWW (May
2008) Accessed Apr 2009. http://www.websiteoptimization.com/speed/tweak/
psychology-web-performance/.

[4] Bennani, M., Manesce, D.: Resource allocation for autonomic data centers using
analytic performance models. In: Proc. IEEE ICAC, (2005) 217–228

[5] Xu, J., Zhao, M., Fortes, J., Carpenter, R., Yousif, M.: On the use of fuzzy
modeling in virtualized data center management. In: Proc. IEEE ICAC, (2007)
25–34

[6] Zhang, Q., Cherkasova, L., Smirni, E.: A regression-based analytic model for
dynamic resource provisioning of multi-tier applications. In: Proc. IEEE ICAC,
(2007) 27–36

[7] Urgaonkar, B., Shenoy, P., Chandra, A., Goyal, P., Wood, T.: Agile dynamic
provisioning of multi-tier internet applications. ACM Trans. on Autonomous and
Adaptive Sys. 3(1) (2008) 1–39

[8] Jung, G., Joshi, K., Hiltunen, M., Schlichting, R., Pu, C.: Generating adaptation
policies for multi-tier applications in consolidated server environments. In: Proc.
IEEE ICAC, (2008) 23–32

[9] Kusic, D., Kephart, J., Hanson, J., Kandasamy, N., Jiang, G.: Power and perfor-
mance management of virtualized computing environments via lookahead control.
In: Proc. IEEE ICAC, (2008) 3–12

[10] Clark, C., Fraser, K., Hand, S., Hansen, J.G., Jul, E., Limpach, C., Pratt, I.,
Warfield, A.: Live migration of virtual machines. In: Proc. ACM/Usenix NSDI,
(2005)

[11] Cecchet, E., Chanda, A., Elnikety, S., Marguerite, J., Zwaenepoel, W.: Perfor-
mance comparison of middleware architectures for generating dynamic web con-
tent. In: Proc. ACM/IFIP/Usenix Middleware, (2003) 242–261

[12] Barham, P., Dragovic, B., Fraser, K., Hand, S., Harris, T., Ho, A., Neugebauer,
R., Pratt, I., Wareld, A.: Xen and the art of virtualization. In: Proc. ACM SOSP,
(2003) 164–177

[13] Franks, G., Majumdar, S., Neilson, J., Petriu, D., Rolia, J., Woodside, M.: Per-
formance analysis of distributed server systems. In: Proc. Intl. Conf. on Software
Quality, (1996) 15–26

[14] Govindan, S., Nath, A., Das, A., Urgaonkar, B., Sivasubramaniam, A.: Xen and
co.: Communication-aware CPU scheduling for consolidated Xen-based hosting
platforms. In: Proc. ACM VEE, (2007) 126–136

[15] Box, G., Jenkins, G., Reinsel, G.: Time Series Analysis: Forecasting and Control.
3 edn. Prentice Hall, (1994)

[16] Kim, M., Noble, B.: Mobile network estimation. In: Proc. ACM Conf. Mobile
Computing & Networking. (2001) 298–309

[17] Russell, S.J., Norvig, P.: Artificial Intelligence: A Modern Approach. Prentice
Hall (2003)

[18] Arlitt, M., Jin, T.: Workload characterization of the 1998 World Cup web site.
HP Tech. Rep., HPL-99-35. (1999)

[19] Dilley, J.: Web server workload characterization. HP Tech. Rep., HPL-96-160.
(1996)

[20] Appleby, K., Fakhouri, S., Fong, L., Goldszmidt, M., Krishnakumar, S., Pazel, D.,
Pershing, J., Rochwerger., B.: Oceano SLA based management of a computing
utility. In: Proc. IFIP/IEEE IM, (2001) 855–868

[21] Chandra, A., Gong, W., Shenoy, P.: Dynamic resource allocation for shared data
centers using online measurements. In: Proc. IEEE IWQoS, (2003) 155

[22] Tesauro, G., Jong, N., Das, R., Bennani, M.: A hybrid reinforcement learning
approach to autonomic resource allocation. In: Proc. IEEE ICAC, (2006) 65–73

[23] Khanna, G., Beaty, K., Kar, G., Kochut, A.: Application performance manage-
ment in virtualized server environments. In: Proc. IEEE/IFIP NOMS, (2006)
373–381

[24] Gmach, D., Rolia, J., Cherkasova, L., Belrose, G., Turicchi, T., Kemper, A.: An
integrated approach to resource pool management: Policies, efficiency and quality
metrics. In: Proc. IEEE/IFIP DSN, (2008) 326–335

[25] Wood, T., Shenoy, P., Venkataramani, A.: Black-box and gray-box strategies for
virtual machine migration. In: Proc. Usenix NSDI, (2007) 229–242

[26] Garbacki, P., Naik, V.K.: Efficient resource virtualization and sharing strategies
for heterogeneous grid environments. In: Proc. IFIP/IEEE IM, (2007) 40–49

[27] Verma, A., Ahuja, P., Neogi, A.: pMapper: Power and migration cost aware appli-
cation placement in virtualized systems. In: Proc. ACM/IFIP/Usenix Middleware,
(2008) 243–264

[28] Nathuji, R., Schwan, K.: Virtualpower: Coordinated power management in vir-
tualized enterprise systems. In: Proc. ACM SOSP, (2007) 265–278

