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Abstract

We propose a novel technique for distributed data deduplication in distributed
storage systems. We combine version tracking with high-precision, local similar-
ity detection techniques. When compared with the prominent techniques of delta
encoding and compare-by-hash, our solution borrows most advantages that dis-
tinguish each such alternative. A thorough experimental evaluation, comparing
a full-fledged implementation of our technique against popular systems based on
delta encoding and compare-by-hash, confirms gains in performance and trans-
ferred volumes for a wide range of real workloads and scenarios.
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1 Introduction

Many interesting and useful systems require transferring large sets of data across
a network. Examples include network file systems, content delivery networks,
software distribution mirroring systems, distributed backup systems, cooper-
ative groupware systems, and many other state-based replicated systems [1].
Unfortunately, bandwidth remains a scarce, and/or costly in battery and price,
resource for most networks [2], including the Internet and mobile networks.

Much recent work has proposed data deduplication techniques [3, 4] for ef-
ficient transfer across the network, which may be combined with conventional
techniques such as data compression [5] or caching [6]. Consider two distributed
sites, a sender, S, and receiver, R. At some moment, each one locally stores a
set of versions (of some objects, not necessarily the same set of objects at both
sites), which we denote VS and VR, respectively. If S wishes to send some of its
local versions, T (where T ⊆ VS), to R, some data chunks in T can be identical
to chunks in VR. Data deduplication exploits such content redundancy as follows:
when S determines that a chunk of data in some version in T is redundant, S
avoids uploading the chunk and simply tells R where in VR R can immediately
obtain the redundant chunk.

The key challenge of data deduplication is in detecting which data is re-
dundant across the versions to send and the versions the receiver site holds. The
difficulty of the problem greatly depends on the forms of chunk redundancy each
approach tries to detect and exploit. We distinguish two such forms.
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A first one arises from cases where newer versions borrow data chunks from
older version(s) (of the same object, or of another object) that were locally
available when the new versions were created. More precisely, consider some
new version, v, created at S, that S wishes to send to R. If v shares a chunk
with some older local version, vold in VS , and R also happens to hold vold (in
VR), we say there exists locally trackable redundancy. In fact, in such conditions,
if S (by some means) learns that vold is common to both sites, S is able to detect
the redundant chunk by merely comparing local versions (v and vold).

Otherwise, we have locally untrackable redundancy. For instance, this is the
case where two users, one at S and another at R, copy new identical data chunks
from some common external source (e.g. a web page) and write it to new versions,
vS and vR, that each user creates at her site, respectively. If S then decides
to send vS to R, clearly there exist redundant chunks in vS that S can avoid
transferring. However, in order to detect them, we must inevitably compare data
chunks that are distributed across the two sites.

The prominent approach of compare-by-hash1 [3, 4, 7–10] tries to detect both
forms of redundancy by exchanging cryptographic hash values of the chunks to
transfer, and comparing them with the hash values of the receiver’s contents.
Compare-by-hash complicates the data transfer protocol with additional round-
trips (i), exchanged meta-data (ii) and hash look-ups (iii). These may not always
compensate for the gains in transferred data volume; namely, if redundancy is
low or none, or when, aiming for higher precision, one uses finer-granularity
chunks [8, 4, 9]. Moreover, any known technique for improving the precision and
efficiency of compare-by-hash [8, 10] increases at least one of items (i) to (iii).

Earlier alternatives to compare-by-hash narrow the problem down to de-
tecting locally trackable redundancy only. The most relevant example of locally
trackable deduplication is delta-encoding [11–15]. Recent deduplication litera-
ture often regards such techniques as second-class citizens, leaving them out
of the state-of-the-art that is considered when experimentally evaluating new
deduplication solutions [3, 4, 7–10]. In part, two factors explain this. Firs, the
inherent inability to exploit locally untrackable redundancy. Second, in the case
of delta-encoding, the fact that, for some version, it can only detect redundancy
with at most one other version (rather than across any set of versions, as in
compare-by-hash) and the time-consuming algorithms involved [14].

This paper revisits locally trackable redundancy, proposing a novel combi-
nation of previous techniques. For a wide set of usage scenarios, we unify the
advantages of both compare-by-hash and earlier locally trackable deduplication
approaches. The key insight to our work is that detecting locally trackable redun-
dancy exclusively is a much simpler problem, hence solvable with very efficient
algorithms, than aiming for both forms of redundancy. It is easy to see that
the problem now reduces to two main steps: (I) to determine the set of object
versions that the sender and receiver site store in common; and (II) to determine
which chunks of the versions to send are (locally trackable) redundant with such
a common version set.

1 We use the expression compare-by-hash for coherence with related literature, al-
though it can have different meanings in other domains. By compare-by-hash, we
mean chunk-based deduplication through distributed hash exchange and comparison.



Since the versions that one must compare for redundancy detection (step II)
now happen to exist locally at the sender site, we can now solve such a hard
problem with local algorithms (instead of distributed algorithms that exchange
large meta-data volumes over the network, such as hash values with compare-
by-hash). No longer being constrained by network bandwidth, one can now: (i)
perform a much more exhaustive analysis, thus detecting more locally trackable
redundancy; (ii) and asynchronously pre-compute most of the algorithm ahead
of transfer time. Furthermore, the network protocol is now a very simple one,
(iii) with low meta-data overhead and (iv) incurring no additional round-trips:
the receiver site simply needs to piggy-back some version tracking information
in the request sent to the sender site (so that the latter performs step I).

For step I, we use very compact version tracking structures, called knowl-
edge vectors. Most importantly, for step II, our approach can employ any local
deduplication algorithm (e.g., [16–18]) for detecting locally trackable redundancy
across any object and any version, with high precision and time efficiency. This
is a significant distinction with regard to delta-encoding.

We have implemented our technique in the context of a novel distributed
archival file system, called redFS. Using a full-fledged prototype of redFS for
Linux, we have evaluated both single-writer/multiple-reader and multiple-writer
usage scenarios based on real workloads, representative of a wide range of doc-
ument types. By comparing redFS with popular state-of-the-art tools that rely
on delta-encoding and compare-by-hash, we have confirmed our advantages over
both approaches. Namely:

– redFS consistently transfers less (or, in few exceptions, comparable) bytes of
data and meta-data than all evaluated solutions, obtaining reductions of up
to 67% over relevant systems from both compare-by-hash and delta encoding
approaches, namely LBFS [4], rsync [3] and svn [11].

– redFS transfers files considerably faster than all evaluated alternatives (or,
exceptionally, comparable to the best alternative), accomplishing perfor-
mance gains of more than 42% relatively to rsync, LBFS and svn, for net-
works of 11 Mbps and below. Except for svn, such gains even increase if
we consider that file transfer starts after the local pre-computation steps of
the redundancy algorithm have already completed. Furthermore, such speed-
ups hold even for real workloads with relevant sources of locally untrackable
redundancy, and assume reasonable log-space requirements.

The rest of the paper is organized as follows. Section 2 describes the system
model. Section 3 then introduces our data deduplication protocol. Section 4
proposes two techniques that address the issue of efficient log storage. Section
5 describes the implementation of our protocol in redFS. Section 6 evaluates
our solution, while Section 7 addresses related work. Finally, Section 8 draws
conclusions.

2 System Model

We assume a replicated system where a number of distributed sites (denoted S,
R, ...) can replicate a number of logical objects (such as files or databases). As



we explain next, we impose little restrictions on the replication protocol, hence
making our solution widely applicable. Each site has a pre-assigned, well-known
unique identifier. For simplicity of presentation, and without loss of generality,
we assume all sites are trusted, as well as communication.

When a local applications writes to a local replica, it creates a new value of
the object, called a version. Replicas maintain a finite version logs, with their
latest version histories. The oldest logged versions may be pruned at anytime.

To simplify presentation, we assume that no write contention exists, hence no
version conflicts exist. Nevertheless, our solution can be transparently combined
with commitment protocols [1] to handle concurrent/conflicting versions.

We divide the object space into disjoint sets of objects, called r-units. We
assume the individual r-unit to be the minimum replication grain in the underly-
ing system; possibly, a r-unit may comprise a single file. Each site may replicate
any arbitrary set of r-units. A site replicating a r-unit maintains replicas for all
objects of that r-unit. As we explain later, larger r-units allow sites to maintain,
exchange and analyze less bytes and perform faster data deduplication; while
smaller r-units enable finer granularity in the choice of which objects to repli-
cate. The problem of optimal partitioning of the object space into r-units is out
of the scope of this paper. For simplicity of presentation, and again without loss
of generality, the set of sites replicating each r-unit is assumed to be static.

Each logged version is identified by the identifier of the site where the version
was created (denoted v.creator) and a sequence number (denoted v.sn). Hence,
even if two objects happen to be created at different sites with the same textual
name, their actual identifier (〈v.creator, v.sn〉) is unique. For a given r-unit, the
sequence number monotonically increases among the versions created by site v.s
at any object belonging to that r-unit. For example, given r-unit u = {a, b}, if
site S creates a new version of object a, then another version of object b, the
first version will be identified by 〈S, 1〉, the second one by 〈S, 2〉, and so on.

According to some arbitrary replication protocol, sites replicating common
r-units exchange new versions to bring each other up-to-date. Without loss of
generality, such a step occurs in unidirectional pair-wise synchronization sessions,
in which a sender site, S, sends a set of versions, T , to a receiver site, R.

3 Data Deduplication Protocol

We now describe the data deduplication protocol, which complements the under-
lying log-based replication protocol. Our solution may be seen as a combination
of a space-efficient version tracking and local similarity detection algorithms.

We follow such a structure in the following sections. Recall from Section 1
that the generic approach to locally trackable deduplication consists of 2 steps:
(I) to determine the set of object versions that the sender and receiver site store
in common; and (II) to determine which chunks of the versions to send are
(locally trackable) redundant with such a common version set. We describe our
novel solution to each such step in Sections 3.1 and 3.2, respectively. Section 3.3
then combines the two steps in a complete deduplication protocol.



3.1 Step I: Version Tracking

Given a pair of sites, S and R, that are about to synchronize, the goal of Step I
is to make S infer the the set of common versions both sites currently share. We
denote such a set as C. One naive solution would be to maintain and exchange
lists of version identifiers for each r-unit they replicate. Of course, the inherent
space requirements, as well as network transfer and look-up times, would easily
become prohibitive for systems with reasonably large object/version sets.

Instead, we rely on a pair of vectors, each with one counter per site replicating
the r-unit, which we call knowledge vectors. Each site, S, maintains, along with
each r-unit, u, that S replicates, two knowledge vectors, denoted Ki

S(u) and

K
f
S(u). From Ki

S(u) and K
f
S(u), we can infer that S currently stores any version,

v, of any object in u such that Ki
S(u) ≤ v.sn ≤ K

f
S(u).

Such a pair of vectors can only represent a version set in which every version
created by the same site i (for all i) have sequence numbers that can be ordered
consecutively without any gap. When, for each r-unit a site replicates, the set of
versions it stores satisfies the previous condition, knowledge vectors constitute
a very space- and time-efficient representation. To simplify presentation, for the
moment we assume that sites receive and prune versions in sequential number
order, with no gaps. Under this assumption, we can precisely represent a site’s
version set by pairs of knowledge vectors, one for each r-unit the site replicates.

This assumption is not artificial, as most log-based replication protocols sys-
tems either ensure it (e.g. Bayou [19]), or may easily be adapted to accomplish it
(e.g. Coda [20]). More generally, it is trivial to show that any system that guar-
antees the widely-considered prefix property [19] satisfies such an assumption.
Section 4 then addresses cases where version gaps can occur.

Given some site, S, and a r-unit that site replicates, S maintains Ki
S(u) and

K
f
S(u) as follows. Both vectors start as zero vectors. As S accepts a new write

request, creating a new version v, it updates its vectors to reflect the new version:

i.e. K
f
S(u)[S] ← v.c (and, if Ki

S(u)[S] = 0, then Ki
S(u)[S]← v.c). Furthermore,

if S deletes a given version, v, it sets Ki
S(u)[S] ← v.c + 1 (recall that, for now,

we assume that version deletions occurs in sequential number order). Besides
versions that the local site creates and deletes, S’s version set will also evolve as S

receives a new version, v, from some remote site. In this case, S sets K
f
S(u)[S]←

v.c (again, assuming the ordered propagation with no gaps).
When the receiver site, R, sends a first message requesting for synchronization

to start from a sender site, S, R piggy-backs the knowledge vectors of each r-
unit that R replicates. Thus, imposing no extra round-trips on the underlying
synchronization protocol, S can infer which versions are common to both sites.

While such knowledge vectors tell S which versions R held right before syn-
chronization started, at some point during synchronization R will already have
received other versions (during the current synchronization session from S). Ev-
idently, set C also includes the latter versions. In order to keep track of them,
S maintains, for each r-unit, u, involved in the current (ongoing) synchronization
session, a pair of knowledge vectors, denoted knowledge vectors ti(u) and tf (u).
Both vectors start null (when synchronization starts) and grow to represent each
version (of the corresponding r-unit) that S sends.



From the copy S has received of R’s knowledge vectors, as well from ti(u) and
tf (u) (for each r-unit involved in the synchronization session), S can easily deter-
mine whether a given version that S stores, vS , is also stored at R (i.e. whether
vS ∈ C) by testing if any of the following conditions hold:

Ki
R(vS .runit)[vS .creator] ≤ vS .sn ≤ K

f
R(vS .runit)[vS .creator]

or
ti(vS .runit)[vS .creator] ≤ vS .sn ≤ tf (vS .runit)[vS .creator].

Hence, we can determine whether vS ∈ C in constant time, with few oper-
ations. The first condition means R already stored vS before synchronization
started, while the second one means that R has received vS in the meantime.

3.2 Step II: Local Chunk Redundancy Detection

Given a set of versions to transfer, T , from site S and R, and a set of common
versions between S and R, C, Step II determines which chunks of T are redundant
across C. We solve step II very efficiently by observing that most of it needs not
be computed synchronously while the synchronization session is taking place.

We divide step II into 2 sub-steps. A first sub-step is the most computation-
ally intensive. It detects redundancy across every version that S stores, writing
its findings to redundancy vertices and per-version redundancy vertex reference
lists, both maintained locally. This sub-step is independent of any synchroniza-
tion session. Hence, it can be computed ahead of synchronization time as a
background thread that updates the local redundancy vertices when S is idle.

When synchronization starts, only the second sub-step needs to run: deter-
mining, for the ongoing session, which chunks of T are redundant across C. This
sub-step takes advantage of the pre-computed data structures, being able to
return a result by a simple query to such data structures.

The next sections describe each sub-step in detail.

Pre-Computing Chunk Redundancy Data Structures Conceptually, we
divide the contents of all the versions a site stores into disjoint contiguous por-
tions, called chunks. We determine locally trackable redundancy relationships
among the entire set of chunks a site stores by running some (local) redundancy
detection algorithm. If such an algorithm finds that two chunks have identical
contents, we designate them as redundant across the set of versions. A chunk
with no redundant chunks is called literal.

In a typical configuration, the redundancy detection algorithm runs as a
low-priority thread, which starts from time to time. At each run, it analyzes the
set of local versions that, relatively to the last run of the algorithm, are new,
comparing their chunks with the chunks of the remaining versions.

The resulting redundancy relationships are maintained in local data struc-
tures called redundancy vertices. Each redundancy vertex either represents a
literal chunk or a set of redundant chunks (sharing identical contents). A redun-
dancy vertex is simply a list of [version identifier, byte offset, chunk size] tuples,
each pointing to the effective contents of a chunk within the local versions.



As we explain later, redundancy vertices should ideally reside in main mem-
ory, for the sake of synchronization performance. However, for sufficiently large
data repositories, that may not be possible due to the fine chunk granularity our
solution is designed for (e.g., 128 bytes). For example, in a file system with an
average chunk size of 128 bytes, supporting up to 4G file versions, each up to
1 TB, would require 9-byte chunk pointers at redundancy vertices (one pointer
per stored chunk). Thus, redundancy vertices would introduce a space overhead
of 7%; e.g., 60 GB of version contents would imply 4-GB of redundancy vertices.
If such space requirements exceed the available primary memory, we can store
the redundancy vertices in secondary memory and maintain the elements that
are more likely to be consulted in upcoming synchronization sessions in a cache
in main memory (for instance, using a least-recently-used substitution policy).
A detailed evaluation of this option is left for future work.

Any version that the redundancy detection algorithm has already analyzed
has each of its chunks referenced by exactly one redundancy vertex. Along with
each such version, the redundancy detection algorithm stores an ordered list of
references to the redundancy vertices corresponding to each chunk in the version.

Our contribution is not tied to any particular redundancy detection algo-
rithm, and we can transparently use any algorithm that works for local dedupli-
cation. Namely, approaches such as the fixed-size sliding block method of rsync
[3], diff-encoding [14], similarity-based deduplication [18], among others [16].

Nevertheless, to better illustrate our solution, and without loss of generality,
we hereafter consider one of such possible alternatives: a local variant of LBFS’s
distributed algorithm [4]. This algorithm is able to detect redundancy spanning
across any versions, possibly from distinct objects or r-units.

Very succinctly, the algorithm works as follows. We maintain a chunk hash
table, whose entries comprise a pointer to a redundancy vertex and the hash
value of contents of the corresponding chunk(s). For each new version (either
locally created or received from a remote site), we divide it into chunks (using
LBFS’s sliding window fingerprinting scheme [4]) and look their hash values up
in the chunk hash table. If we find a match, then there exists at least one other
identical chunk. In this case, we add a pointer to the new chunk to the existing
redundancy vertex. Otherwise, the new chunk is literal, thus we create a new
single-chunk redundancy vertex pointing to the chunk, and add a new entry to
the chunk hash table (referencing the redundancy vertex and the chunk’s hash
value). Once we finish processing each version, we trivially construct the corre-
sponding redundancy vertex reference list and store it along with the version.

Similarly to the previous discussion concerning redundancy vertices, main-
taining an in-main-memory chunk hash table that covers every local fine-grained
chunk can be impossible. Solving this problem is out of the scope of this paper.
Possible directions include storing the chunk hash table in secondary memory
and a cache in main memory, or resorting to similarity-based schemes [18].

Determining Redundant Chunks Across T and C Using the previously
maintained data structures (redundancy vertices and redundancy vertex refer-
ence lists) as input, the actual step of determining which chunks to transfer



are actually redundant across both sites is reduced to simple queries to such
information.

More precisely, for each version v that site S is about to transfer (i.e. v ∈ T ),
we iterate over its redundancy vertex reference list and, for each reference, we
(1) read the corresponding redundancy vertex; and (2) iterate over the redun-
dancy vertex’s chunk pointer list until we find the first chunk of a version vr ∈ C
(using the expression from Section 3.1). If the latter chunk is found, we can just
send a reference to where, among the versions R stores, R can obtain the redun-
dant chunk. More precisely, the following remote chunk reference is sufficient to
univocally identify such a location: [vr.id, offset, chunk size].

Since we consider fine-grained chunks, it is frequent to find consecutive re-
mote chunk references to contiguous (and consecutive) chunks in some version in
C. We optimize these cases by coalescing the consecutive remote chunk references
into a single reference to a larger chunk comprising all the consecutive smaller
chunks. This simple optimization has the crucial importance of dissociating the
local redundancy detection granularity from the effective remote chunk reference
volume that we send over the network.

As it is shown elsewhere [21], reference coalescing ensures that, by decreasing
the average chunk size, either: (i) we transfer the same remote chunk reference
volume (if no additional redundancy is detected); or (ii) the increase in remote
chunk reference volume is compensated by the decrease in transferred data vol-
ume (if smaller chunks unveil more redundancy).

The algorithm above implies O(d) verifications for membership in C using
the condition from Section 3.1, where d is the average cardinality of each set of
redundant chunks in a redundancy vertex. In contrast, LBFS’s approach requires
look-ups to the receiver site’s chunk hash table that involve O(log(n)) hash
comparisons, where n is the total number of local chunks. As, for most workloads,
d << logn, the local computation phase of our protocol is substantially faster
than the one of LBFS (an observation we confirm in Section 6).

3.3 Putting It All Together

After running the previous steps, site S can finally transfer each version v ∈ T to
R. The actual transfer of each such version involves sending three components.
Firstly, v’s identifier and size. Secondly, an array of remote chunk references to
redundant chunks. We send remote chunk references in the order by which the
corresponding chunks appear in v. Finally, we send the contents of every literal
chunk of v, again in their order of appearance within the version.

Upon reception of the above components, R starts reconstructing v by copy-
ing the redundant contents from the locations (among R’s versions) that the
remote chunk references point to. The gaps are then filled with the literal con-
tents that R has received.

4 Log Storage and Maintenance

The effectiveness of our data deduplication solution depends on the ability of
each site to maintain long-term version logs. To substantially increase log effi-
ciency, we can resort to two compression schemes.



A first scheme is called redundancy compression. The principle behind redun-
dancy compression is the same as in local deduplication solutions [17]: whenever
two or more versions share a common chunk, we store the chunk only once and
suppress the redundant copies. We achieve this by storing only the first chunk
referenced at each redundancy vertex. If there are additional chunks at that re-
dundancy vertex, we set an absent flag at the redundancy vertex reference list
of the versions such chunks belong to. This flag means that, to read the chunk’s
contents, we must follow the first chunk pointer in the redundancy vertex.

When redundancy compression is insufficient, we inevitably need to erase
both the redundant and literal chunks of one or more versions, thus losing their
contents. Still, we can retains the version’s redundancy vertex reference list,
which constitutes a footprint of the redundancy relationships of the erased ver-
sion with other versions. The footprints of versions that have been erased at
the sender site can still be (artificially) considered when determining the set of
common versions, C, during synchronization. In fact, if S determines that some
version, v, for which S only holds its footprint (since it has already discarded
its contents) is (fully) stored at the receiver site, R, then S considers v to be
in C. Hence, if S determines that some chunk to transfer is redundant with v
(which S can determine by simply inspecting v’s footprint), then S can exploit
such redundancy and send a remote chunk reference to version v that R stores.
Notice that the fact that S has already erased the contents of v is irrelevant as
long as R still stores them. Incorporating footprints into the protocol described
so far is straightforward; for space limitations, we describe it elsewhere [21].

Eventually, completely erasing both contents and footprint of a version will
also occur, once space limitations impose it. In this case, care has to be taken
in order to update the knowledge vectors of the r-unit in which the object being
pruned is included. More precisely, such vectors need to be changed in order to
reflect the smaller version set of the local site.

However, the completely erased version can cause a gap in the version set that
was previously denoted by the knowledge vectors. For instance, if Ki

S(u)[S] = 1

and K
f
S(u)[S] = 10 and the user decides to delete version 〈S, 3〉. In this case, we

can no longer use the knowledge vectors to represent the version set. Instead,
we set such vectors to represent a the subset with highest identifiers that has no
gaps. Recalling the previous example, we would set Ki

S(u)[S] ← 4. The choice
for the subset with the highest identifiers follows the heuristic that since versions
with higher identifiers are probably most recent, then they are more likely to be
synchronized to other sites. Therefore, it is more valuable for our deduplication
solution to keep track of such versions than those with lower identifiers.

Similarly to complete erasure of a version, gaps can also happen when a site
receives new versions from a remote site. In this case, the same solution is taken.

5 Implementation

We have instantiated our solution in a full-fledged distributed archival file sys-
tem, called redFS.2 redFS supports distributed collaboration through file shar-

2 Source code available at: http://www.gsd.inesc-id.pt/~jpbarreto/redFS.zip



ing. Applications can create shared files and directories, and read from/write to
them in an optimistic fashion. redFS implements on-close version creation [22].

redFS runs on top of the FUSE [23] kernel module, version 2.6.3, in Linux. For
synchronization, redFS runs a variant of Bayou’s update propagation protocol
[19], complemented with our data deduplication scheme. We use SUN RPC over
UDP/IP, resorting to TCP/IP sockets to transfer literal contents.

The unit of storage is what we call a segment. Each segment has a unique
version identifier and is stored as an individual file in a native file system. Every
directory and file version has its data stored in a segment.

For directories, we adopt a similar solution as in the Elephant file system
[22]. A directory is stored in a single segment, identified by the directory version,
and comprising a directory entry for each object in the directory. Changes to
the directory (e.g., objects added, removed, or attributes changed) result in
appending a new entry to the directory segment and setting an active flag
(see [22]) of the previous entry corresponding to the affected object to false.

Each directory references a set of files/directories by storing the correspond-
ing file identifiers. A file identifier of a given file/directory consists of the version
identifier of the initial version of the file/directory. To open a file we need to
map the file identifier to the identifier of its current version. redFS maintains a
version information table, indexed by file identifier, which contains, for each file:
version identifier, size, compression mode (plain, redundancy or footprint-only),
and the segment identifier of the file log (if any), among other flags. If a file has
only a single version, it has no log segment. This is an important optimization
since many files of a file system are never changed. Otherwise, the log consists of
a list of version information entries, similar to the ones in the version information
table, providing access to archived versions.

A similarity detector thread runs asynchronously, and an explicit shell com-
mand starts each run. Currently, we maintain redundancy vertices and the
chunk hash table exclusively in main-memory. Redundancy vertex reference lists
are stored at the head of the corresponding versions.

6 Evaluation

Assuming a synchronization session from site S to site R, which transfers a set
of versions, T , an efficient deduplication approach should minimize the following
metrics:

1. Transferred volume, the amount of bytes (including both data and meta-
data) transferred across the network in order to transfer T ;

2. Full transfer time, the time it takes for S to, immediately after obtaining
T , transfer the versions in T to R.

3. Foreground transfer time, the time it takes for S to transfer T to R, assuming
S has already had, in background, the opportunity to perform some local
pre-computation phase.

4. Space Requirements, the amount of memory that both sites need to maintain.

We now evaluate redFS under different workloads and network settings, both
in single-writer and multiple-writer scenarios. We compare redFS with relevant



alternatives employing compare-by-hash and delta-encoding, and plain file trans-
fer. Our evaluation tries to answer 2 questions. Firstly: how does redFS compare
to its alternatives in terms of transferred volume, full transfer time and fore-
ground transfer time, assuming unbounded space resources? Secondly: how does
redFS’s efficiency degrade as the available (bounded) space resources decrease?

For space limitations, the following sections discuss the most relevant results
only. An exhaustive evaluation can be found in [21].

6.1 Experimental Setting

The experiments consider two sites replicating files from real workloads. As new
versions are produced at either one or both sites, they synchronize their local
replicas. To simplify our analysis, we start by assuming that both sites replicate
a common r-unit only and have unbounded logs. Later in the section, we lift
these restrictions, and extend our analysis to multiple r-units and bounded logs.

A first site, S, runs Ubuntu 6.06 (kernel version 2.6.15) on a Pentium 4
3GHz processor with 1GB of RAM. The second site, R, runs Debian 4.0 (kernel
version 2.6.18) on an Athlon 64 processor 3200+ with 2 GB of RAM. All exper-
iments were run during periods of negligible load from other processes running
at each machine (approximately < 1% CPU usage by other applications). A
100 Mbps full-duplex Fast Ethernet LAN interconnected both sites. For more
complete results, we use a class based queue (CBQ) to emulate relevant network
technologies, namely IEEE 802.11g (54 Mbps) and 802.11b (11 Mbps) wireless
LANs, Bluetooth 2.0 personal area networks (3 Mbps). Performance measure-
ments were taken with the time command of Linux, with millisecond precision.
The presented results are averages of 3 executions of the each experiment.

We evaluate a representative set of solutions, covering all relevant actual
approaches for network traffic deduplication:

– redFS with different expected chunk sizes (128 bytes, 2 KB, 8 KB).3

– Solutions based on compare-by-hash, namely: lbfs, our implementation of
LBFS’s original protocol [4], in the same modes as for redFS (we do not
directly evaluate LBFS because no public stand-alone implementation of
the original solution was available); rsync [3], version 2.6.3 of the popular
compare-by-hash Linux tool, using the default fixed chunk size, 700 bytes;
and TAPER, using the published results [8] (no prototype nor full source
code was publicly available).

– svn [3], version 1.4.6 of the popular distributed version control system, which
relies on delta encoding for committing versions to the server, using its most
efficient server (svnserve).

– Finally, as a base reference, we also evaluate plain remote file transfer.

The results presented herein were obtained with data compression [5] dis-
abled. Not considering data compression simplifies our analysis, as it excludes
any measurement noise caused by different data compression algorithms and

3 The choice of chunk sizes is driven by the observations that: (i) lower chunk sizes than
128 bytes do not compensate the meta-data overhead of remote chunk references,
and (ii) higher chunk sizes than 8 KB yielded no advantage.



options used by each evaluated system.4 The exception is svn, in which data
compression is hard-coded. For a fair comparison, we present measurements for
a hypothetical variant of svn with no data compression, extrapolated by svn’s
performance relatively to the one of rsync with compression on.

We replay replica updates with workloads taken from real world collaborative
situations, ranging from more than 100 MB up to more than 500 MB, and from
more than 850 files up to more than 42,000 files.

Single-Writer, Multiple-Reader Scenarios A first group of workloads con-
sists of workloads that relevant compare-by-hash work uses as their evaluation
basis; namely, LBFS’s [4] and TAPER’s [8] original papers consider either such
workloads or very similar ones. These workloads reflect a single-writer, multiple-
reader scenario. It is easy to see that, by definition, all redundancy in this sce-
narios is locally trackable (assuming sufficiently large version logs).

Site S acts as a writer that sequentially produces two sets of versions in the
r-unit. Site R is a reader, which synchronizes after each version set is ready.

We test workloads of different categories in such a scenario:
Software development sources. These workloads are representative of

collaborative code development scenarios. They include, for different real-world
open-source projects, two consecutive versions of their source code releases. We
have selected the source trees of recent versions of the gcc compiler (versions
3.3.1 and 3.4.1), the emacs editor (20.1 and 20.7), and the Linux kernel (2.4.22
and 2.4.26). Hereafter we call such workloads gcc, emacs and linux-source,
respectively. Nearly all redundancy in these workloads (> 95%) is found between
pairs of files with the same name (each from each version). The choice of projects
and versions is the same as adopted for the evaluation of TAPER [8]; this allows
us to compare our results with theirs.

Operating system executable binaries. One workload, usrbin, consid-
ers binary files, which have very different characteristics when compared to the
previous text-based files (namely, in data compressibility and cross-file and cross-
version redundancy). It includes the full contents of the /usr/bin directory trees
of typical installations of the Ubuntu 6.06 32-bit and 7.10 64-bit Linux distribu-
tions, which include most of the executable code binaries that are bundled with
a Linux installation. All redundancy is between files with the same name.

Multiple-Writer Scenarios A second group of workloads consider multiple-
writer scenarios, where actual concurrency (hence, locally untrackable redun-
dancy) can finally occur. In this case, two writer sites, start with a common
initial version set. Each writer site then independently modifies its local repli-
cas. Finally, both sites synchronize their divergent replicas.

We consider two workloads, obtained from real collaborative document edit-
ing scenarios. Both result from real data from two undergraduate courses of
Technical University Lisbon. Their data spans across a full semester.

A first workload, called course-docs, consists of snapshots of two CVS repos-
itories shared by lecturers of each course to keep pedagogical material (e.g. tu-

4 We confirm in [21] that enabling data compression yields equivalent conclusions.



torials, lecture slides, code examples and project specifications) and private doc-
uments (e.g. individual student evaluation notes and management documents).

The initial version of the workload includes the contents of both repositories
at the beginning of the semester. The type of files varies significantly, rang-
ing from text files such as Java code files or html files, to binary files such as
pdf documents, Java libraries, Microsoft Word documents and Microsoft Excel
worksheets. Significant data was copied across different files: only 30% redun-
dancy is found between versions with identical file names. Both courses were
tightly coordinated, as their students are partially evaluated based on a large
code project that is common to both courses. Consequently, lecturers of both
courses carried an eminently collaboratively activity, involving regular meetings.
Inevitably, both repositories had regular locally untrackable interactions, such
as frequent email exchanges, and weekly meetings.

A second workload, student-projects, captures the collaborative work among
students of both courses. Teams of 9 students were given the assignment of de-
veloping a code project in Java, which they were demanded to develop on a
CVS repository. To ease their coding effort, they were provided with a bundle
of auxiliary Java libraries and illustrative code examples. Most teams relied on
this bundle as a basis from which they started developing their final project.

The project lasted for 3 months. The initial version set is a snapshot of the
initial library/code bundle that was made available to every student. We then
randomly selected two final projects from the CVS repositories, which constitute
a divergent version set at each site. The snapshots consist mainly of binary Java
libraries, Java code files, as well as Microsoft Word and pdf documents. Again,
this workload had sources of locally untrackable redundancy; e.g. code examples
that the students incorporated into their project were provided to both teams
through the courses’ web sites, hence locally untrackable.

6.2 Results

This section is organized as follows. We start by focusing on transferred volume,
full and foreground transfer times. We start by considering the single-writer,
multiple-reader scenario, where no locally untrackable redundancy can arise,
and assuming infinite logs. We then depart to the expectedly more challeng-
ing multiple-writer scenario, where locally untrackable does occur. Finally, we
analyze space requirements associated with finite logs of increasing depths.

Single-Write, Multiple Reader Scenarios In a first experiment, we ran all
workloads of the single-writer case, plus single-writer variants of course-docs and
student-projects (considering only one of the two divergent versions).

On average over all workloads, the volume that redFS transfers across the
network during synchronization is substantially lower than rsync and lbfs (on
average over all workloads, both rsync and lbfs-128 transfer 35% more bytes
than redFS-128 ). TAPER’s intricate solution transfers comparable volume to
redFS (TAPER transfers 0.29% less on average).

With respect to delta encoding tools, since svn does not output transferred
volumes, we evaluate the xdelta [24] local delta-encoding tool for such a mea-
surement. redFS is, in general, more efficient (9% lower volume on average over



Fig. 1. Transferred data volumes for course-docs and gcc workloads.

Fig. 2. Transfer times for different workloads, for varying bandwidths.

all workloads). However, for workloads with a sufficiently stable directory/file
tree and where in-object redundancy dominates cross-object redundancy (which
is the case of the gcc workload), delta encoding can substantially outperform
redFS. Hence, an interesting direction for future improvement is to complement
redFS’s similarity detection and reference encoding with a variant based on delta
encoding. Such a hybrid approach is clearly compatible with our solution.

Figure 1 illustrates transferred volumes for a workload where most redun-
dancy is across consecutive versions of the same file (gcc), and for a workload
where cross-file redundancy is significant (course-docs).

Figure 1 includes redFS-128 NCL, a variant where we disable reference coa-
lescing. It illustrates how crucial the optimization is to redFS when using fine-
grained chunks. Coalescing references allows redFS-128 to send 8x and 14x less
remote chunk references in gcc and course-docs, respectively. Overall, redFS-
128 NCL entails 18% and 11% overheads in transferred volume, respectively.

More important than transferred volume is to analyze the actual perfor-
mance of redFS relatively the other solutions, namely in terms of their full and
foreground transfer times. Figure 2 presents such measurements for three very
distinct workloads: emacs, a highly-redundant workload (more than 54% redun-
dant chunks), where most redundancy occurs between consecutive versions of



the same file; usrbin, a workload exhibiting less than 30% redundant chunks;
and course-docs, with relatively high cross-file redundancy.

In the case of redFS, we depict the full and foreground transfer times with 128
bytes expected chunk size (resp. labeled redFS-128-fullsynch and redFS-128),
as such variant exhibited best performance among the others. Regarding svn

and rsync, we can only obtain their full transfer time, as their implemen-
tations only consider a full synchronization option (resp. svn-fullsynch and
rsync-fullsynch). Just for curiosity, we also depict svn ’s original full transfer
time, with data compression on. Regarding our implementation of lbfs, for pre-
sentation simplicity, we depict its foreground transfer times only, and consider
the highest performance variant, lbfs-8KB. Finally, in the case of plain transfer,
its full and foreground times are, by definition, the same.

Perhaps the strongest conclusion from this analysis is that, considering all
workloads, redFS-128’s average full transfer times are lower than the same mea-
surement of every other evaluated solution (with data compression off), for band-
widths of 11 Mbps and below. Furthermore, this conclusion is true for workloads
with very distinct characteristics, which Figure 2 shows. As we consider higher
bandwidths, however, the time penalty of redFS-128’s local chunk detection al-
gorithm becomes increasingly decisive.

However, as Section 3.2 discusses, our technique is mainly intended to have
the local chunk detection phase running in background. In typical cases, when
the user initiates synchronization with another site, such a background algorithm
will already have completed and, therefore, the only delay that the user will
notice is the foreground transfer time – therefore, the most important metric.

Relatively to lbfs-8KB, redFS-128’s foreground transfer time is consistently
lower (from 5% with 100 Mbps to 34% lower with 3 Mbps). This is easily ex-
plained by lbfs’s exchange of hash values across the network, as well by its lower
precision in detecting redundancy (as analyzed previously). Naturally, the im-
pact of such drawbacks become more dominant as bandwidth drops.

Unfortunately, we cannot precisely compare redFS’s foreground transfer time
with rsync’s. However, the portion of rsync’s algorithm that one can pre-
compute is significantly smaller than in the case of redFS (most notably, rsync

must exchange hash values of the versions to transfer in foreground). Hence, we
can safely infer that, for the workloads where redFS’s full transfer time is lower
than rsync’s, redFS’s foreground transfer times will also outperform rsync’s.

Since TAPER’s source code is not fully available, we could not consider it in
the present performance analysis. Nevertheless, our observations are that (i) the
data volumes transferred by redFS and TAPER are comparable, as well as that
(ii) redFS’s single-round-trip protocol is expectedly lighter than TAPER’s intri-
cate 3-round-trip protocol. These strongly suggest that redFS would be faster
than TAPER in the evaluated workloads.

Moreover, concerning svn ’s delta-encoding solution, clearly its local delta
encoding delays dominate svn ’s full transfer times. Nevertheless, for the specific
workloads in which delta encoding yielded lower transferred volumes, we expect
svn to have lower foreground transfer times than redFS.

It is worth noting that, with the low redundancy usrbin workload, redFS-
128 was the only solution to achieve an actual speed-up in foreground transfer
time, an evidence of redFS’s low protocol overhead.



Finally, we repeated the same experiments with multiple r-units in common
between both sites. Theoretically, we know that, with r common r-units, (i) the
receiver site sends r knowledge vectors in the message requesting synchroniza-
tion; and (ii) for each local chunk that is redundant with a chunk to send, the
sender site performs r verifications (in the worst case) of the conditions in Sec-
tion 3.1. The impact of (i) is negligible for the considered workload sizes, even
for the lowest bandwidths. Concerning factor (ii), we observe that its impact
is limited (less than 10% higher foreground transfer time) as long as we con-
sider less than 1000 common r-units, even with highly redundant workloads and
high bandwidths. For instance, with emacs (54% redundancy detected) and 100
Mbps, redFS-128 ’s foreground transfer time drops linearly as the number of
common r-units grows, reaching the 10% degradation limit at 2000 r-units.

Multiple-Writer Scenarios In contrast to the previous single-write scenarios,
multiple-writer scenarios, such as those arising from replicated systems support-
ing distributed collaborative work, incur locally untrackable redundancy. In order
to assert whether redFS is still advantageous in such scenarios, we need to quan-
tify locally untrackable redundancy. For that, we consider the two concurrent
workloads, course-docs and student-projects.

The methodology for quantifying locally untrackable redundancy is to mea-
sure how much data volume redFS-128 would be able to detect as (locally track-
able) redundant, versus the data volume that lbfs-128 would detect as redundant
(both locally trackable and untrackable), and then to subtract both values.

Perhaps surprisingly, the redundancy that results from locally untrackable
data exchanges during several months is almost insignificant when compared
to locally trackable redundancy. In the course-docs workload, lbfs-128 detects
just 1,01% more (locally untrackable) redundant contents than redFS. The stu-
dent-projectsworkload exhibits more locally untrackable redundancy, but still
at relatively insignificant levels: lbfs-128 detects 4,37% more redundant data.

Our results confirm that locally untrackable redundancy does occur in con-
current scenarios. But, most importantly, they show that locally trackable re-
dundancy strongly dominates locally untrackable redundancy. Hence, the advan-
tages of redFS over other state-of-the-art alternatives that the previous sections
exposed are also effective in an important class of multi-writer scenarios.

We then evaluated redFS, rsync and lbfs when synchronizing sites holding the
concurrent versions of course-docs and student-projects. The results confirm
that the low values of locally untrackable redundancy have, as expected, a low
impact on the effective transferred volume (data+metadata) and performance.

Space Requirements of Version Logs Since redFS can only detect redun-
dancy across the versions to send (T ) and the common version set (C), the larger
such an intersection is, the more redundancy redFS will be able to exploit. An
assumption made so far is that the version logs at each synchronizing site could
stretch arbitrarily. In practice, however, available log space is bounded. Hence,
our ability to efficiently log versions determines how deep can the logged history
at each replica be. The deeper the logged history, the higher the probability of
larger C sets during synchronization with other sites.



Fig. 3. Space requirements of version log for multi-version student-projects work-
load.

To evaluate the impact of bounded log space on redFS’s efficiency, we now
consider multi-version variants of course-docs and student-projects.5 For
both workloads, we have obtained an exhaustive version set, comprising daily
snapshots of the corresponding CVS repositories. Each version sequence spans
across the whole duration of each workload: 168 days in course-docs, and 74
days in student-projects. Each version in the sequence exclusively includes the
files whose contents have been modified relatively to the previous day’s version.

For each workload, we assume that replica S has created every daily version
of the workload, from day 0 to the last day, d, but may have already pruned the
m oldest versions; hence, R stores every version from day d − m to day d. In
turn, replica R wishes to synchronize its stale replicas from S, as the last time
S did that was in day d′. For simplicity, we assume R has enough space to log
every version from day 0 to day d′.

When S and R synchronize, if m > d′, both replicas will share no common
version (i.e., C is empty). Hence, in this case, S will detect no redundancy at all
between the versions to send to R and the contents that R already stores.

Of course, S can only ensure sufficiently deep logs if their space requirements
are below the available log space. Hence, we need to evaluate what are the space
log requirements at S for increasingly deep logs. We have studied such require-
ments in both course-docs and student-projects workloads, considering the
different schemes for log storage that Section 4 addresses: plain storage, redun-
dancy compression and footprints, with different expected chunk sizes. Figure 3
presents such results for the latter workload.

A first observation is that, even with plain log storage, space cost grows only
moderately with log depth. With course-docs (resp. student-projects), the
space cost associated with a plain log is of additional 16.3% (resp. 16.3%) disk
space than the most recent version, which requires 102 MB (resp. 37 MB), per
logged month of update activity. Furthermore, more efficient log storage schemes
are still able to substantially reduce such a space overhead. For both workloads,
using redundancy compression, redFS can maintain the entire version history of 3
and 6 months, respectively, at the average cost of 4% space overhead per logged

5 Daily snapshots were not available for the other workloads.



month of update activity. Finally, footprints offer almost negligible overhead,
dropping to levels below 0.7% space overhead per logged month.

7 Related Work

Significant work has addressed the exploitation of duplicate contents for im-
proved storage and network dissemination of state-based updates. The main fo-
cus of our work is on the latter. We can divide most existing solutions to it into
three main categories: delta-encoding, cooperating caches and compare-by-hash.

Systems such as SVN [11], Porcupine [12], BitKeeper [13], XDFS [14] and
Git [15] use delta-encoding (or diff-encoding) to represent successive file ver-
sions. Starting from a base version of a file, they encode successive versions by
a compact set of value-based deltas to the value of the preceding version. Sys-
tems that use delta encoding for distributed file transfer need to maintain some
version tracking state at the communicating sites, similarly to our approach.

Our approach extends delta-encoding, improving the potential efficiency gains
of the latter. Whereas delta-encoding is limited to locally untrackable redun-
dancy between pairs of consecutive versions of the same file, we are able to
exploit any cross-version and cross-object locally trackable redundancy.

A different technique [25] relies on a pair of cooperating caches maintained
by a pair of sites. At any moment, both caches hold the same ordered set of n
fixed-size blocks of data, which correspond to the last blocks propagated between
the sites. Hence, before sending a new block, the sender checks whether its local
cache already holds the block. If so, the site sends a token identifying the position
of the block within the cache, instead of the block’s contents.

Our approach shares the same principle, based on a conservative estimation
of a common version/value set between the communicating sites. From such
an estimate, both approaches exploit locally trackable cross-version and cross-
object redundancy. Nevertheless, our approach scales gracefully to large numbers
of sites and is able to cover a practically unlimited common version set; whereas
cooperating caches need one cache per site and limit the common version set by
cache size. Furthermore, cooperating caches cannot detect situations of transitive
redundancy, whereas we can; i.e. when site A knows that it shares some chunk,
c, with site B, and site B knows that it shares c with a third site, C, neither A
nor C infer that both share c when they synchronize.

Finally, recent work [3, 4, 7, 26, 27] has followed the compare-by-hash ap-
proach for distributed data deduplication. They either divide values into contigu-
ous (non-overlapping) variable-sized chunks, using content-based chunk division
algorithms [4], or fixed-size chunks [3]. Compare-by-hash is able to detect both lo-
cally trackable and untrackable redundancy. Nevertheless, compare-by-hash has
the important shortcomings discussed in Section 1.

Some work has proposed intricate variations of the technique for higher ef-
ficiency. The TAPER replicated system [8] optimizes bandwidth efficiency of
compare-by-hash with a four-phase protocol, each of which works on a finer
similarity granularity. Each phase works on the value portions that, after the
preceding phase, remain labeled as non-redundant. A first phase detects larger-
granularity redundant chunks (whole file and whole directories), using a hash



tree; the Jumbo Store [10] distributed utility service employs a similar principle
in a multi-phase protocol. A second phase runs the base compare-by-hash tech-
nique with content-based chunks. A third phase identifies pairs of very similar
replicas (at each site) and employs rsync’s technique upon each pair. Finally, a
fourth phase employs delta-encoding to the remaining data.

8 Conclusions

We propose a novel technique for distributed locally trackable data dedupli-
cation. When compared with the prominent solutions for the distributed data
deduplication problem, namely delta encoding and compare-by-hash, our solu-
tion borrows most advantages that distinguish each such alternative.

The results presented herein, obtained from real workloads, complement pre-
vious evidence [28] that contradicts a common conviction that, to some extent, is
subjacent to most literature proposing compare-by-hash [4, 7, 8, 10, 9]. More pre-
cisely, our results show that, for the very workloads that the latter works consider
and evaluate, there does exist a solution based exclusively on locally trackable
deduplication that outperforms compare-by-hash. Perhaps more surprisingly, we
show that even in scenarios with clear sources of locally untrackable redundancy,
the impact of locally untrackable redundancy can be negligible. Consequently,
our solution still outperforms compare-by-hash in such cases.

While it is easy to devise multiple-writer scenarios where locally untrackable
redundancy prevails (e.g. two remote users that frequently copy identical data
from a common external source, such a web site or an email server, to their local
replicas of a object that both share), our work identifies important scenarios
where it is advantageous to opt for locally trackable deduplication (which in-
cludes approaches such as delta-encoding, cooperative caching and ours) instead
of compare-by-hash. More precisely, these include single-writer multiple-reader
scenarios as long as sufficient disk space for logs is available, hence all redundancy
is locally trackable. The same holds in multiple-writer scenarios where locally
untrackable redundancy is negligible; our experience with workloads from real
collaborative work scenarios suggests that this is often the case.
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