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Abstract. Mobile phones are rapidly becoming the universal access
point for computing, communication, and digital infrastructures. In this
paper we explore the software architectures necessary to make the mo-
bile phone a truly universal access point to any electronic infrastructure.
We propose AlfredO, a lightweight middleware architecture that allows
developers to construct applications in a modular way, organizing the
applications into detachable tiers that can be distributed at will to dy-
namically configure multi-tier architectures between mobile phones and
service providers. Through AlfredO, a phone can lease on-the-fly the
client side of an application and immediately become a fully tailored
client. Our experimental results indicate that AlfredO has very little
overhead, it is scalable, and yields very low latency. To demonstrate the
feasibility and potential of the platform, in the paper we also describe
AlfredOShop, a prototype application for spontaneously controlling in-
formation screens from a mobile phone.
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1 Introduction

The mobile phone is quickly transforming itself from a mobile telecommunica-
tion device into a multi-faceted information manager that can support not only
communication among people, but also the processing and manipulation of an
increasingly diverse set of interactions. The trend of a phone as a point of conver-
gence for the user’s activities, in some respects, has already begun. South Korea
Telecom has introduced mobile payment technology and added RFID readers to
phones to allow people to get information about shopping products [1]. Nokia
has integrated GPS receivers to enable sports activity tracking, car navigation,
and multimedia city guides [2, 3]. Motorola is researching how to allow its no-
madic devices to interact with a car’s components: if the car airbags deploy, the
phone makes an emergency call; if the driver is maneuvering on a busy road, an
incoming phone call is postponed; and if an urgent calendar entry is approaching,
it can pop up on the car’s display [4].



2 Jan S. Rellermeyer, Oriana Riva, and Gustavo Alonso

Applications of this type are usually based on ad-hoc implementations and
customized to specific scenarios. In this paper, we investigate the software archi-
tectures required to support rapid prototyping of such applications. Our objec-
tive is to allow a mobile phone to acquire on-the-fly the necessary elements to
immediately turn into a fully tailored client for interaction with any encountered
electronic device.

In the past, distributed systems have supported interactions among embed-
ded devices by either statically preconfiguring the execution environment or by
dynamically migrating code, data, and service state from one device to another.
However, the lack of flexibility of the former approach and the increased se-
curity risks of the latter have hampered their actual deployability in mobile
environments. To overcome these problems and make our approach feasible for
resource-constrained mobile phones, we propose AlfredO, a lightweight middle-
ware architecture that enables users to flexibly interact with other electronic
devices while providing ease of maintenance and security for their personal de-
vices.

AlfredO stems from two key insights. Our first insight is that most interac-
tions with electronic devices such as appliances, touchscreens, vending machines,
etc., are usually short-term and ad-hoc. Therefore, the classic approach of pre-
installing device drivers for each target device is not practicable. Instead, we
propose to adopt a software distribution model based on the concept of software
as a service. Each target device represents its capabilities as modular service
items that can be accessed on-the-fly by any mobile phone. Our second insight
is that the evolution of client-server computing from mainframes hooked to dumb
user terminals to two-tier architectures (i.e., the classical client-server architec-
ture) and to three-tier architectures (e.g, Web applications) has shown how par-
titioning server functionality yields better overall performance, flexibility, and
adaptability. Therefore, we model each service item as a decomposable multi-
tier architecture consisting of a presentation-tier, a logic tier, and a data tier.
These tiers can be distributed to the interacting mobile phone thus configuring
multi-tier architectures between the mobile phone and the target device.

AlfredO provides several benefits:

– Scalability and ease of administration: with AlfredO a resource-constrained
mobile device such as a mobile phone becomes capable of supporting an un-
bounded number of diverse interactions. Instead of downloading, installing,
and constantly updating the software necessary to interact with every con-
ceivable target device, a mobile phone can simply acquire a stateless interface
to the service of interest.

– Flexibility : AlfredO permits configuring flexible client-server architectures.
A mobile phone, for instance, can host a thin client that simply acquires the
presentation tier of the target service for the time of the interaction and dis-
cards it upon completion. Alternatively, a phone may also decide to acquire
parts of the service logic tier with the aim of providing faster performance
and responsiveness even in high latency networking environments.
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– Device independence: To cope with the diversity of the input/output capa-
bilities of the appliances and electronic devices a phone may need to interact
with, AlfredO completely decouples the abstract design of a user interface
from its implementation. Thereby, different renderings of the same abstract
interface can be implemented on different devices. For example, a user inter-
face can be rendered in one way on a notebook with mouse and large screen,
in a different way on a phone with joystick and small screen, and in another
way on a touchscreen.

– Security : AlfredO allows a phone to become a fully functional client by sim-
ply acquiring the presentation-tier of the target service. This can be achieved
by simply shipping a “description” of the device’s user interface to the mo-
bile phone and letting the phone implement the actual user interface based
on the abstract specifications. As this description file is not allowed to access
the phone’s local resources, this approach provides the security benefits of a
sandbox model.

– Efficiency : AlfredO comes on a phone with a very low footprint of less than
300 kBytes. Yet, it permits interacting with a large variety of electronic de-
vices while remaining latency-efficient. Our experiments show that a phone
such as the Nokia 9300i can manage even 40 concurrent service interactions
with an invocation latency of less than 150 msec over 802.11b WLAN. Fur-
thermore, with AlfredO a phone is capable of turning in a fully operational
client of a target service provider in a few seconds. This provides an end-
user experience fully comparable to that of many other common applications
available on phones, such as text editors, file managers, web browsers, etc.

We have implemented AlfredO using R-OSGi [5], a middleware platform that
allows applications to be distributed using the modularity features of OSGi [6].
The OSGi framework implementation underneath is the very resource-efficient
Concierge [7] platform. The next section gives an overview of the R-OSGi plat-
form. Section 3 describes the design of AlfredO and gives insights into its im-
plementation. Performance results are analyzed in Section 4. MouseController
and AlfredOShop, two prototype applications built using AlfredO, are presented
in Section 5. We discuss related work in Section 6 and conclude the paper in
Section 7.

2 R-OSGi Overview

The R-OSGi [5] middleware extends the notion of OSGi [6] services to appli-
cations that run in a distributed manner. OSGi is an open standard which is
maintained by the OSGi Alliance, a not-for-profit industry alliance with many
major players of the software industry (like IBM, SAP, or Oracle) but also de-
vice vendors (like Nokia, Ericsson, or Motorola) involved. Traditionally, OSGi
has been used to decompose and loosely couple Java applications into software
modules. These modules encapsulate different parts of the whole functionality
and their lifecycle can be individually controlled at runtime. For instance, each
single functional module can be updated with a newer version without restarting
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the application, which makes OSGi popular for developing long-running appli-
cations such as the firmware of hardware devices, or extensible applications like
the Eclipse IDE [8]. Modules typically communicate through services, which are
ordinary Java classes published under a service interface in a central service
registry. Through the service registry service consumers can retrieve a direct ref-
erence to the service object of interest. Hence, OSGi provides a very lightweight
communication model that avoids performance-adverse indirections known from
container systems such as EJB [9].

2.1 Key Principles

With R-OSGi, many of the benefits provided by the OSGi paradigm can be
leveraged to distributed systems. OSGi modules are distributed across several
devices and the R-OSGi middleware transparently manages interactions between
services located on different devices by exploiting the loose coupling of services.
Typically, a service consists of an implementation (i.e., an instance of a class),
one or multiple service interfaces under which the service is published, and a set
of service properties. Since the concrete implementation of a service is hidden
behind the service interface registered with the local service registry, R-OSGi
can dynamically build proxies for remote modules which exhibit the same service
interface as the one registered with the local service registry. Thereby, remote
modules invoke service functions as if they were locally implemented and thus
remain transparent to the network communication involved.

The typical assumption of static and immutable composition of software
does not apply to the OSGi model. Instead, OSGi provides a platform where
modules are dynamic and applications are prepared to react upon service failures
or other kinds of interruptions. Hence, the potentially harmful side effect of
introducing a network link into an application does not break the application
model. Furthermore, disconnections between services can be mapped to module
unload events, which the software can handle gracefully.

Remote service invocations are essentially synchronous and blocking remote
communications. R-OSGi additionally supports asynchronous non-blocking in-
teractions through remote events. Likewise, this addition does not introduce any
new concept to the application model. The OSGi specification already contains
an event infrastructure that many applications use when running on a single
Virtual Machine (VM). R-OSGi transparently forwards such events when it de-
tects that a connected remote machine has a registered handler for a specific
event type.

2.2 Service Proxies

In the simplest case, a machine publishes a service under a service interface and
a client machine acquires access to this service by establishing a connection to
its machine. As part of the handshake, the meta-information about registered
services is exchanged. These service descriptions are synchronized between the
devices so that changes of services or unregistration events are immediately
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visible to all connected machines. When a client wants to access a service, the
service interface is shipped through the network and a local proxy for the service
is created from this interface. This proxy is then registered with the local service
registry as an implementation of the particular service. If it happens that the
service interface references types provided by the original service module located
on the remote machine, the corresponding classes will also be transmitted and
injected into the proxy module (type injection).

However, the proxy itself can also provide more functionality than solely
delegating service calls to the remote machine. Smart proxies implement the idea
of moving parts of the service functionality to the client VM. The remote service
can provide an abstract class as a smart proxy that is shipped to the client.
All implemented methods run locally on the client machine whereas abstract
methods are implemented as remote calls. Therefore, in this way, the service can
explicitly push computation to the client side, if the client allows.

3 System Design and Implementation

Our approach aims to turn nearly-ubiquitous mobile phones into universal in-
terfaces to the surrounding electronic world. Mobile phones nowadays have suf-
ficient computation power to participate in sophisticated applications. However,
they have by design inherent characteristics which distinguish them from typical
general-purpose mobile computing devices, such as laptop computers. Phones
have a different form factor, different display sizes and screen resolutions, and
different input devices. Treating mobile phones like laptop computers overstrains
their capabilities and provides unfeasible solutions. On the other hand, consider-
ing mobile phones as downsized versions of conventional computers neglects the
benefits and unique capabilities they offer, such as built-in cameras and various
sensor devices. Our goal is to look at the phone platform in its own right and
leverage as much as possible its unique characteristics.

AlfredO incorporates three main mechanisms: (1) a service-based software
distribution model for the support of an unbounded number of service interac-
tions between phones and other electronic devices, (2) a multi-tier service archi-
tecture to flexibly configure the service interaction, and (3) a device-independent
presentation model to achieve device independence and provide interface cus-
tomizability.

3.1 Service-based Software Distribution Model

When a phone needs to interact with an electronic device available in the sur-
rounding environment, from where does it obtain the required software? A simple
approach would be to preinstall the necessary software on the phone and require
a third party to authenticate it. Yet, this approach would result in poor flexi-
bility as mobile phones will more likely need to interact with devices casually
encountered in the environment. Furthermore, each time the original software is
updated, the update needs to be propagated to all phones where the software was
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previously installed. As the number and type of electronic devices increase, ex-
plicitly distributing, installing, updating software on each phone would become
an unmanageable task.

Another possible approach is to dynamically transfer the software from the
electronic device (or from the Internet) to the phone at the beginning of the
transaction. Unfortunately, this approach would expose the phone to several
security risks since in the common case the interaction occurs with unknown de-
vices. Furthermore, downloading, installing, and configuring all necessary soft-
ware is a time-consuming task that very often requires the user involvement and
that consumes lots of communication and computational resources.

Our solution to software distribution is based on the concept of Software
as a Service (SaaS), which has been traditionally applied to Internet services.
According to this logic, the new business model for most Internet’s commodity
software is not selling software, but building services enabled by that software.
We believe SaaS can bring interesting benefits also to mobile phones, especially
due to the impossibility for such resource-constrained devices to possess all soft-
ware necessary for every possible interaction.

We adopt a service-based software distribution model where software avail-
able on electronic devices is made available to mobile phones in the form of
flexible service items. Specifically, we package the functions provided by each
electronic device as modular services that can be invoked, decomposed, and
distributed using the service-oriented architectural approach of R-OSGi. In R-
OSGi, services encapsulate whole functional units and dependencies between
services are typically restricted to semantical dependencies at the application
level. In the simplest case, a phone acquires on-the-fly the interface of a ser-
vice of interest and discards it once the interaction is completed. In this way,
phones are released from the duty of downloading, installing, and maintaining
the software necessary to interact with all surrounding devices and the number
of possible interactions can therefore grow unbounded. Furthermore, by letting
phones acquire interfaces to arbitrary services high flexibility is provided and a
phone’s functonalities are not limited anymore to what their software platform
and middleware layers are pre-configured for.

Another advantage that this service-based distribution model brings to mo-
bile phones is its concept of software as a “process”. Instead of software products
that need to be engineered to exactly follow the given specifications, this model
allows software to undergo frequent changes thus flexibly integrating a user’s
new requirements, technological advances, and emerging data models as soon as
they become available. Hence, software on electronic devices can be changed and
upgraded without compromising their interactions with the external world.

3.2 Multi-tier Service Architecture

We envision most interactions between mobile phones, called clients, and other
electronic devices, called target devices, will occur in an ad-hoc manner. A mobile
phone may contact a target service directly if its address is known (e.g., the
contact address is provided at the bottom of the touchscreen) or upon service
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discovery. R-OSGi supports several service discovery protocols such as SLP [10,
11]. Alternatively, the target device itself may periodically broadcast invitations
to nearby devices. AlfredO makes the information about new devices available
to the user and the user can decide whether to connect to a discovered device.
Once the connection is established, the two devices exchange symmetric leases
that contain the name of the services that each device offers. Thereby, the user
can choose which service to invoke.
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Fig. 1. Multi-tier service architecture

As Figure 1 shows, in our approach, services are built using a multi-tier soft-
ware architecture consisting of a presentation tier (i.e., the user interface), a logic
tier (i.e., computational processes), and a data tier (i.e., data storage). Tiers can
be distributed according to different distribution logics and the boundaries of
distribution can be adjusted dynamically. Typically, at the beginning of an inter-
action, the phone and the target device agree on the distribution configuration.
This decision may depend on the phone’s capabilities as well as its current execu-
tion context. For example, if a phone has low free memory, only the presentation
tier is shipped to the phone, whereas if the communication link is unstable also
the logic tier is shipped, thus reducing the communication overhead.
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In the current implementation, the data tier always resides on the target
device, while the presentation tier always resides on the client. By default the
service logic tier is not transferred to the mobile phone, but we support also the
case in which parts of the service logic are transferred to the mobile phone.

Initially, the target device provides the mobile phone with two elements: the
interface of the service of interest and a service descriptor. The service inter-
face is used by the R-OSGi framework running on the mobile phone to build a
corresponding service proxy (see Section 2.2 for the definition of service proxy).
The service descriptor consists of three parts. First, it contains an abstract de-
scription of the user interface (UI) necessary to support the interaction with
the target service. As explained in the next section, based on the UI description
each phone platform can generate a UI customized to the phone capabilities.
Second, it includes a list of services on which the service of interest depends.
Third, for each service in the dependency list it includes an abstract description
of its requirements (e.g., other service dependencies, memory and CPU lower
boundaries, etc.).

The default behavior is to generate a local proxy for the service interface and
host only the presentation tier on the mobile phone. The client device runs the
UI locally and triggers computation on the remote target device by interacting
with the local proxy. As all computation and data management occur on the
target device, this configuration minimizes the load on the resource-constrained
phone. The mobile phone either self-generates a suitable UI based on the ab-
stract description of the UI (see the example with the smart phone in Figure 1)
or directly receives the UI from the target device (see the example with the com-
municator in Figure 1). We envision this will be the case for most interactions
as they are likely to occur in unknown and untrusted environments. Indeed, a
main advantage of this configuration is security. On the server side, the target
device has full control on the implementation of its functions thus limiting at-
tacks from malicious clients. On the client side, the device can decide which
capabilities to expose to the target device in order to support the interaction.
Furthermore, if only a stateless description of the UI is shipped to the mobile
phone the configuration provides the security benefits of a sandbox model.

AlfredO also permits configuring more complex two-tier architectures, where
the client not only acquires the presentation tier but also parts of the service logic
(see the example with the tablet in Figure 1). The client can request additional
services that appear in the list of service dependencies provided by the descriptor
and run them locally. For each requested service, the client receives the associated
descriptor (listing the service dependencies of the new service) and its service
interface. In trusted environments, this approach can be effective in reducing the
communication overhead and improving the application’s responsiveness.

The descriptor provides a declarative description of the system comparable to
other declarative approaches like XForms [12], but it allows for more flexibility.
Indeed, our approach is not restricted to typical interfaces with input validation
and content submission. Instead, it supports all the interaction patterns of the
R-OSGi middleware, such as asynchronous communication through events, high-
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volume data exchange through transparent stream proxies, and synchronous
service invocations between services.
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Fig. 2. An example of system configuration based on the service descriptor

The example in Figure 2 shows how a mobile phone can configure a cus-
tomized client application capable of interacting with the remote target device.
In a typical interaction some services will run on the mobile phone’s platform
(e.g., KeyboardDevice, PointingDevice, etc.) and others on the target device’s
platform (e.g., ApplicationService). The client device receives a descriptor of the
target service and generates the application’s View and Controller.

Instead of defining layouts that typically break on different screen resolutions
and ratios, the UI is specified using abstract controls and relationships. The
Renderer running on the mobile phone decides how to turn this abstract UI
into an implementation (the application’s View) that is tailored to the phone’s
hardware capabilities.

The AlfredOEngine generates the application’s Controller based on the ser-
vice requirements specified in the descriptor. The Controller defines how events
generated through the UI (View) can affect the state of the application consist-
ing of application data as well as configuration parameters and proxy settings.
For example, at some point of the interaction, in order to improve the applica-
tion’s responsiveness the client can decide to acquire additional services currently
running on remote devices. Likewise, the Controller also defines how events gen-
erated by the target device can modify the application’s state. The Controller,
for instance, may periodically poll a certain service method provided by the re-
mote device and react to its changes by invoking another service method or by
changing the implementation of a control command of the UI.

3.3 Device-independent Presentation Model

In our approach, we consider mobile phones as general-purpose platforms for
interactions with various electronic devices and applications but without disre-
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garding the specific characteristics of each device. Electronic devices provide a
wide range of different input and output hardware capabilities. In many cases,
these are customized to the functions each device is designed for. Clearly, a phone
cannot offer every conceivable hardware capability, but capabilities of one device
can be mapped to those of another one. For example, the mouse of a desktop
computer is equivalent to the joystick of a phone or the knob of a coffee machine.

The service descriptor provides a device-independent specification of the UI.
Ideally, an application developer should describe the input and output needs of
his applications through this description, devices should provide specifications
of their input and output capabilities, and users should specify their prefer-
ences [13]. The system can then self-implement a suitable interaction technique
that takes all these requirements into account.

In AlfredO, the service logic remains agnostic to the specific hardware drivers
available on each device. In other words, the logic tier builds on an abstract UI.
Input and output capabilities that are used by a specific UI are modeled as OSGi
services and accordingly their abstract definition is given by their corresponding
service interfaces. All OSGi service interfaces are then organized in a hierarchy.
For example, the NotebookKeyboard service implements the KeyboardDevice ser-
vice interface which is used for entering characters as well as the PointingDevice
service interface which is used for moving the mouse pointer through the cursor
keys.

Depending on the capabilities offered by the interacting phone, the abstract
description of the UI can be rendered differently, i.e, each phone generates the
UI in a different manner. A device platform without a mouse or trackpoint can
only build a GUI implementing the KeyboardDevice interface and without the
PointingDevice service. Or a phone may have the choice to use a trackpoint or an
accelerometer to implement the PointingDevice interface. Likewise, on a phone
a KeyboardDevice interface may be implemented using the small keyboard of
the phone or a handwriting detection that operates with a stylus. In principle,
multiple devices can be federated to implement the abstract specifications of the
given UI. Furthermore, the UI can be partly on the local phone, partly on the
target device, and partly on other external devices. For example, in Figure 2,
the phone may decide to use a notebook’s screen with larger resolution; in this
case, the ScreenDevice service would be implemented remotely by the notebook
platform and invoked on the phone through a local proxy.

The implementation of the UI can use different rendering engines that are
provided by the client platform. Currently, the default rendering engine produces
a Java AWT [14] application where the abstract user interface is rendered with
AWT panels. Another supported rendering engine is based on the SWT [15]
toolkit. This is especially useful for devices for which an implementation of the
Embedded Rich Client Platform (eRCP) [16] exists. As eRCP runs on top of
OSGi, it requires only a small set of additional bundles to turn an eRCP device
into an AlfredO client. For phone platforms that do not support any graphical
toolkit, it is possible to use a web browser that is fed by a servlet [17] renderer.
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This produces HTML enriched with AJAX [18]. In this case, the web browser can
serve as a graphical environment to interact with the headless AlfredO platform.

4 Experimental Evaluation

The goal of this experimental evaluation is threefold. First, it quantifies the foot-
print of AlfredO on resource-constrained mobile phones. Second, it assesses the
latency to acquire the presentation tier from a target device. Third, it evaluates
the scalability of AlfredO in terms of number of parallel service interactions that
can be supported between a mobile phone and any target device.

4.1 Resource Consumption

As AlfredO is based on a layered and decomposable architecture, the actual size
of the software stack on a phone depends on the actual deployment and the size
of the renderers utilized for generating the user interface. The minimal core plat-
form consists of an OSGi framework, the R-OSGi system, and the AlfredO core
functionality. Using the very lightweight Concierge [7] OSGi implementation, in
total this amounts to a footprint of about 290 kBytes. The renderers typically
have a footprint of around 40 kBytes, except the servlet renderer that has ad-
ditional dependencies from the OSGi HTTP service implementation and adds a
total of 160 kBytes when running with the Concierge HTTP service prototype.

To assess the runtime costs, we use our two prototype applications (MouseC-
ontroller and AlfredOShop), which are discussed in detail in the following section.
The proxy bundle generated for the MouseController consumes 6 kBytes on the
file system and the AlfredOShop proxy bundle takes 7 kBytes.

Runtime memory consumption is hard to measure on embedded devices like
phones because it depends on the state and the timing of the garbage collector.
In a controlled environment on a desktop Java VM, however, the MouseCon-
troller consumes about 200 kBytes of memory and the AlfredOShop 30 kBytes.
The higher memory footprint of the MouseController application is due to
application-generated data (i.e., the RGB bitmap image that the application
periodically receives from the controlled device and that is stored in the local
memory).

Summarizing, the resource consumption of AlfredO is minimal and therefore
very well suits the resource requirements of mobile phones. The whole software
stack has a footprint that can nowadays be easily compared with the footprint
of an average single page of an internet website. For comparison, a hardcopy of
the first page of the ETH Zurich web site (which is not especially fancy), creates
a storage footprint of 200 kBytes. Proxy bundles for services that are no longer
available are not cached but immediately uninstalled as soon as the interaction
is terminated. Therefore, an AlfredO client does not store outdated data over
time. Compared to device drivers or web clients, this is clearly an advantage
and allows much more versatile interactions. The memory footprint is also not
an issue for today’s mobile phones. Even when more complex services and user
interfaces are involved, the memory is not a limiting factor.
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4.2 Latency Performance

In these experiments we measure the time a phone client needs to contact and
establish an interaction with a target service. In these tests the phone acquires
only the presentation tier of the service. This includes the interface of the service
of interest, a description of the service requirements and a description of the
abstract UI. We use a Nokia 9300i that runs a 150 MHz ARM9 processor and
offers both 802.11b wireless LAN and Bluetooth (BT) connectivity, the latter,
however, only with the CLDC VM but not with the CDC VM. As R-OSGi
runs on the CDC VM, for the experiments in BT networks we employ a second
phone, a Sony Ericsson M600i that runs a 208 MHz ARM9 processor. Both
phones interact with a regular desktop machine (single core Pentium 4 class).

We measure the initial start time necessary to contact a service and acquire
its interface, build the proxy bundle, install it on the local R-OSGi framework,
and get the proxy running on the mobile phone (i.e., Start proxy bundle). The
experiment is run with the two different applications, the MouseController and
the AlfredOShop service. The amount of data transferred to the phone accounts
for about 2 kBytes for each application.

Table 1. Initial delay for service interaction on a Nokia 9300i over WLAN

Nokia 9300i WLAN, in ms

Operation MouseController AlfredOShop

Acquire service interface 94 110

Build proxy bundle 3125 3110

Install proxy bundle 703 703

Start proxy bundle 1000 359

Total start time 4922 4282

Table 2. Initial delay for service interaction on a SonyEricsson M600i over BT

SE M600i BT, in ms

Operation MouseController AlfredOShop

Acquire service interface 263 312

Build proxy bundle 1882 1881

Install proxy bundle 259 260

Start proxy bundle 892 246

Total start time 3296 2699

Table 1 and Table 2 report the results. The network communication necessary
to acquire the service interface is not the dominant factor in determining the
total start time. Building, installing, and starting the proxy on the phone takes
much longer. Therefore, the time is not primarily influenced by the size of the
service interface. On the other hand, it strongly depends on the phone platform
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in use. On the SonyEricsson phone, which has a more powerful processor, the
performance is in average 40% faster. However, from a user point of view, total
start times of both applications are more than acceptable if compared to startup
delays of typical phone applications. On the 9300i Nokia communicator, for
instance, the startup time of the built-in Document text editor application is
about 3 seconds, the startup time of the FileManager is around 6 seconds, and
starting a web browser and displaying the default Nokia homepage takes about
17 seconds (assuming the phone is already connected to the Internet).

4.3 Scalability

An important goal of AlfredO is to ensure that phone clients and service providers
can scale to a sufficient number of interactions. We first assess the scalability
performance of the service provider and then of the phone client.

In the first set of experiments, the server runs on a typical desktop machine,
i.e., a single core Pentium 4 class. To put the server under stress, multiple concur-
rent clients run on another machine of the same type. Client and server machines
are connected through a 100 Mbit/s ethernet network link. Clients connect to
the server and perform a service invocation of the same service method every
100 ms. In the tests, a new client instance is started every second. We measure
the average invocation time of the last client instance, which is started when
all other client instances are already running. The average is computed over a
period of at least 90 seconds.

 0

 1

 2

 3

 4

 5

1 2 4 8 16 32 64 128

T
im

e 
(m

s)

Number of Clients

Method Invocation Time with Multiple Clients

 0

 1

 2

 3

 4

 5

1 2 4 8 16 32 64 128

T
im

e 
(m

s)

Number of Clients

Method Invocation Time with Multiple Clients

Fig. 3. Invocation time with multiple concurrent clients on a single machine

Figure 3 shows the results of this experiment. The server performs very fast
and provides an average invocation time of only 1 ms. The invocation time
slightly increases with an increasing number of clients but even with 128 clients
the invocation time is below 2.5 ms.

However, with this configuration we could not run tests with a number of
clients larger than 128. This is because the client machine reaches its upper
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bound when running 128 Java VMs concurrently. To investigate the scalability
boundary of our system, we therefore ran a second set of tests, in which the clients
run simultaneously on a cluster of six machines and perform the same experiment
as before. The six client machines are two-processor dual-core AMD opteron
2.2 GHz machines and are connected through a switched 1000 Mb/s ethernet
network. The service provider is an identical machine in the same network.
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Fig. 4. Invocation time with multiple concurrent clients on six cluster nodes

As depicted in Figure 4, also in these tests AlfredO performs very efficiently.
The server can handle 384 client interactions while providing an average invo-
cation time of 2.2 ms. Given the latency increase observed with 768 concurrent
clients (not shown in the figure), it can be estimated that the scalability limit is
between 400 and 800 clients. Specifically, with 540 clients the latency is 3.6 ms,
whereas 600 clients lead to a delay over 42 ms per invocation. Therefore, we can
conclude that the upper boundary in this configuration is about 550 concurrent
clients. This boundary on the server scalability enormously exceeds the require-
ments of the applications that we currently envision. A service running on a
coffee machine, on a touchscreen in a shop, or on a vending machine may need
to support an average of 2-3 concurrent users and a maximum of 30 concurrent
users, which still represents only a 5% of the available service capacity.

In the second part of the study, we investigate the scalability of the client
side. The client runs on a Nokia 9300i phone. This time we install 1024 distinct
services on the server. The mobile phone is configured to get a new service
every 10 seconds and then continuously invoke a service method on all acquired
services every second. The measured values represent the average invocation
time of the first instance in each of these time windows over multiple runs of the
experiment. Figure 5 shows the results. The dotted line represents the latency
baseline, an ICMP ping over the network link. As observed on the server side,
AlfredO provides high scalability on the client side as well. The average latency
is around 100 ms.
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Fig. 5. Invocation time on a Nokia 9300i Phone over 802.11b WLAN

We then ran the same experiment on the Sony Ericsson M600i phone (see
Figure 6) using the built-in Bluetooth 2.0 interface. The results are comparable
to the previous platform even though WLAN has in theory an almost four times
higher bandwidth. However, since the messages exchanged are fairly small, the
bandwidth is not a dominating factor unless a larger amount of data is shipped
through the network. For instance, the type of network employed had a larger
impact on the latency to acquire the service interfaces (roughly 2 kBytes of data)
in the experiments reported in Table 1 and Table 2.
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Fig. 6. Invocation time on a Sony Ericsson M600i phone over Bluetooth 2.0

5 Prototype Applications

Using AlfredO we have built two prototype applications: MouseController and
AlfredOShop.
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5.1 MouseController

To demonstrate how AlfredO allows a phone to quickly transforming itself in a
universal remote controller we have built MouseController. This is a very simple
but very powerful service that allows a mobile phone to control the movement
of the mouse on a notebook’s screen. Figure 7 shows how a browser application
running on a notebook can be controlled using the communicator’s cursor keys.
In the figure, the user is minimizing the window opened on the notebook’s screen.

The user interface of the same service (i.e., controlling the mouse pointer) is
rendered in different ways on different phone clients depending on the capabili-
ties of each particular device. For example, the description of the user interface
retrieved by the phone specifies that input commands utilize the PointingDevice
service interface. On a Nokia 9300i phone, this interface is implemented with the
cursor keys of the keyboard. On an iPhone, the same interface is implemented
using the integrated accelerometer, thus allowing the user to move the mouse
pointer on the notebook’s screen by moving the phone itself.

Fig. 7. MouseController running on a Nokia 9300i phone

On the phone’s screen a small snapshot of the notebook’s screen is displayed.
Since the interactions causing the mouse to move are typically occurring at a
high update rate, there is often not enough network bandwidth left to send
the large updates of the snapshot back to the phone. Therefore, the application
uses asynchronous events between the service and the phone and sends updates
whenever there is enough bandwidth.

5.2 AlfredOShop

AfredOShop is a prototype application that allows users to interact with infor-
mation screens using their mobile phones. For instance, by interacting with an
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information screen placed behind a shop window, a user can browse and com-
pare shop’s products even when the shop is closed (e.g., when passing by in the
night). The mobile phone is used as a remote controller of the screen on which
the product description is visualized.

Figure 8 shows AlfredOShop running on Nokia 9300i phone while the user
is browsing the details of the beds available in the shop. In this example, the
information screen is a notebook computer that displays the shop’s interface.

Fig. 8. AlfredOShop on a Nokia 9300i Fig. 9. AlfredOShop on an Apple iPhone

Implementing this application using AlfredO brings several benefits both to
the customer and to user. On the customer side, the application can contribute
increasing the shop’s revenue by making the shop accessible 24 hours a day.
Furthermore, a shop’s owner does not incur in any security risk because AlfredO
provides him a full control on which information to display. On the user side, the
interaction only requires a phone’s keyboard and cursor. Security is guaranteed
because only a passive description of the UI is retrieved from the information
screen and no computation takes place on the actual phone.

Since the AlfredOShop application uses a rich user interface with multiple
informational and control widgets, AlfredO plays an important role in adapting
the user interface to different phone capabilities as well as to different screen
sizes and output devices. On the Sony Ericsson M600i, AlfredO uses an AWT
rendering. On the Nokia 9300i an eRCP renderer efficiently creates the service
presentation in SWT. Furthermore, as the Sony Ericsson phone has a portrait-
oriented display and the Nokia a landscape-oriented display the output interface
is adapted accordingly. The iPhone platform currently does not run any Java
implementation that supports the graphical toolkit of the device. However, the
AlfredO servlet renderer can be used to generate an AJAX-enhanced set of
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dynamic web pages that can be viewed and controlled through the built-in web
browser (Figure 9). In terms of functionality, the AJAX version provides the
same features as the other versions, such as explicitly connecting to a known
service, getting informed of newly discovered devices, and switching between the
user interfaces of different devices and their services.

6 Related Work

Research on distributed systems and ubiquitous computing has variously focused
on the problem of how users can dynamically interact with devices embedded in
the surrounding environment. Proposed solutions can be roughly grouped into
two categories: those that assume an a priori configuration of the interacting
devices and those that configure the devices on-the-fly by downloading the nec-
essary software from the Internet or by migrating it from a nearby device.

For example, systems like Personal Server [19] provide the user with a vir-
tual personal computer environment. Data and code necessary to interact with
external input/output interfaces are pre-stored and pre-installed on the mobile
devices. As these approaches require a pre-configured infrastructure they can
suit only static environments.

The second class of systems allows for increased flexibility and can there-
fore suit dynamic environments. Technologies based on mobile code [20] have
been considered in several domains, but they are usually disregarded because
of their security and trust concerns. These security problems are alleviated by
systems that rely on a third party (e.g., Internet) for authentication purposes.
CoolTown [21] assume a web presence that connects all embedded devices. Each
device advertises its presence and offered services through URLs. SDIPP [22]
augments the Bluetooth service discovery protocol with web access. A user can
download the required service interface directly from the nearby device using
Bluetooth or from service directories implemented as web services.

Although these approaches can provide some flexibility, AlfredO achieves
even higher flexibility by organizing the services into decomposable tiers that
can be distributed to configure one-tier or two-tier architectures among the in-
teracting devices. Security is also improved by transferring to the mobile phone
only a description of presentation tier, thus allowing the device to self-implement
its UI. Furthermore, AlfredO does not rely on Internet connectivity and targets
the resource constraints of mobile phones: it is lightweight and highly efficient.

Web services have also been considered in this context. Microservers [23]
embed web servers in Bluetooth devices and use WAP over Bluetooth for com-
munication. Specifically tailored to mobile phones, Mobile Web Server [24], also
known as Raccoon, provides a mobile phone with a global URL and with HTTP
access thus enabling a mobile phone to host a universally accessible website.
Even though web services are not employed in the current implementation, they
could be utilized as well. We opted for R-OSGi because it provides a lightweight
implementation optimized to minimize the resource consumption on phones.
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We borrow the notion of abstract user interfaces that can be rendered in
different ways on different devices from other research projects [25, 26], especially
in the field of human-computer interaction [27]. However, these projects mostly
focus on how to generate the user interface and typically rely on centralized
infrastructures. Instead, our focus is on the system and infrastructure issues.

7 Conclusions

AlfredO enables mobile phones to become universal clients for interaction with
an unbounded number of heterogeneous electronic devices. Ultimately, this ap-
proach blurs the boundaries between mobile phones, appliances, and other elec-
tronic devices and let resource-constrained mobile phones acquire larger value
from services that reside elsewhere. Compared to previous approaches, AlfredO
makes service interactions fully decomposable processes, thus providing high flex-
ibility and customizable security. In addition, a mobile phone benefits from such
an approach also in terms of easier administration (no need to install software)
and automatic maintenance. Experience has shown that our implementation is
highly efficient and it comes on phones with a file footprint of only 290 kBytes.
Future work on AlfredO includes an online optimization mechanism to customize
service distribution at runtime and an automatic distribution mechanism of the
data tiers to provide transparent synchronization.
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