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Abstract. Workload flows in enterprise systems that use the multipggadigm
are often characterized as bursty, i.e., exhibit a form ofpmral dependence.
Burstiness often results in dramatic degradation of thegyeed user perfor-
mance, which is extremely difficult to capture with existiogpacity planning
models. The main reason behind this deficiency of traditioapacity planning
models is that the user perceived performance is the restiieacomplex inter-
action of a very complex workload with a very complex systémthis paper, we
propose a simple and effective methodology for detectimgtimess symptoms in
multi-tier systems rather than identifying the low-leeslactcause of burstiness
as traditional models would require. We provide an effectixay to incorporate
this information into a surprisingly simple and effectivedeling methodology.
This new modeling methodology is based on the index of d&peiof the service
process at a server, which is inferred by observing the nurabeompletions
within the concatenated busy periods of that server. Thexird dispersion to-
gether with other measurements that reflect the “estimatestin and the 95th
percentile of service times are used to derive a Markov-riabed process that
captures well burstiness and variability of the true serypcocess, despite in-
evitable inaccuracies that result from inexact and limiteshsurements. Detailed
experimentation on a TPC-W testbed where all measurementbtained by HP
(Mercury) Diagnostics, a commercially available tool, weahat the proposed
technique offers a simple yet powerful solution to the diffigproblem of infer-
ring accurate descriptors of the service time process froanse measurements
of a given system. Experimental and model prediction resaé in excellent
agreement and argue strongly for the effectiveness of ihygosed methodology
under both bursty and non-bursty workloads.

Keywords: capacity planning, multi-tier systems, transactionssises, bursty
workload, bottleneck switch, index of dispersion.

1 Introduction

The performance of a multi-tier system is determined by tieractions between the
incoming requests and the different hardware architestangl software systems that
serve them. In order to model these interactions for capatdinning, a detailed char-
acterization of the workloads and of the application is meethut such a “customized”
analysis and modeling may be very time consuming, errong@rand inefficient in
practice. An alternative approach is to rely on live systeeasurements and to assume
that the performance of each software or hardware resosiomampletely characterized

* This work is partially supported by NSF grants CNS-0720680 @CF-0811417, and a gift
from HPLabs. A short version of this paper titled “How to Rasderize Models with Bursty
Workloads” appeared in the HotMetrics 2008 Workshop (nopycighted) [5].



by its meanservice time, a quantity that is easy to obtain with simpleasueement
procedures. The mean service times of different classeamdaction requests together
with the transaction mix can be used as inputs to the widsgdiMean Value Analysis
(MVA) models [13,26,30] to predict the overall system peniance under various
load conditions. The popularity of MVA-based models is dodheir simplicity and
their ability to capture complex systems and workloads itraightforward manner.
In this paper, we present strong evidence that MVA models wfittier architectures
can be unacceptably inaccurate if the processed worklodnilsieburstinessi.e., short
uneven spikes of peak congestion during the lifetime of ftstesn. Motivated by this
problem, we define here a new methodology for effective dapatanning under
bursty workload conditions.

Internet flash-crowds are familiar examples of bursty trafid are characterized by
periods of continuous peak arrival rate that significandyidte from the average traffic
intensity. Similarly, a footprint of burstiness in systerankioads is the presence of short
uneven peaks in utilization measurements, which indidedéethe server periodically
faces congestion. In multi-tier systems, congestion maedrom the super-position
of several events including database locks, variabilitgarvice time of software op-
erations, memory contention, and/or characteristics @fsttheduling algorithms. The
above events interact in a complex way with the underlyingare/software systems
and with the incoming requests, often resulting in shortgemstion periods where the
entire system is significantly slowed down. For examplendee multi-tier systems
where the database server is highly-efficient, a lockingdit@om on a database table
may slow down the service of multiple requests that try toeasdhe same data and
make the database the bottleneck server for a time periadndthat period of time,
the database performance dominates the performance oféhallsystem, while most
of the time another resource, e.g., the application semay; be the primary cause
of delays in the system. Thus, the performance of the mieltidystem can vary in
time depending on which is the current bottleneck resouncecan be significantly
conditioned bydependencidsetween servers that cannot by captured by MVA models.
However, to the best of our knowledge, no simple methodokgsts that captures in
a simple way this time-varyingottleneck switctin multi-tier systems and its perfor-
mance implications.

In this paper, we present a new approach to integrate watldaestiness in perfor-
mance models, which relies on server busy periods (theyrarediately obtained from
server utilization measurements across time) and measutsrof request completions
within the busy periods. All measurements are collecteti witarse granularity. After
giving quantitative examples of the importance of inteipgburstiness in performance
models, we analyze a real three-tier architecture suljetPC-W workloads with dif-
ferent burstiness profiles. We show that burstiness in theécgeprocess can be inferred
effectively from traces using thiadex of dispersioffior counts of completed requests,
a measure of burstiness frequently used in the analysisref feries and network
traffic [8, 11]. The index of dispersion jointly captures\see variability andburstiness
in a single number and can also be related to the well-knownstHharameter used in
the analysis of long-range dependence [4]. Furthermoeanthex of dispersion can be
inferred reliably also if the length of the trace is shortindgthe index of dispersion, we
show that the accuracy of the model prediction can be inerelag up ta30% compared
to standard queueing models parameterized only with meaiteelemands [21].

Exploiting basic properties of bursty processes, we arme atide to include in the
analysis th@5th percentile of service times, which is widely used in cotepperfor-



mance engineering to quantify the peak-to-mean ratio oficedemands. Therefore,
our performance models are specified by three parameteysfanéach server: the
mean, the index of dispersion, and th&h percentile of service demands, making
a strong case of being practical, easy, yet surprisinglyirate. To the best of our
knowledge, this paper makes a first strong case in the use @f/gractical modeling
paradigm for capacity planning that encompasses workloastihess. We stress that
the prediction models we propose do not require explicitiifieation of the cause(s) of
the observed burstiness. Instead, they use a powerfulbptesabstraction that captures
the effects of burstiness in complex multi-tiered envir@mts.

The rest of the paper is organized as follows. In Section 2inreduce service
burstiness using illustrative examples and present theadetogy for the measurement
of the index of dispersion to parameterize the proposed mbrd8ection 3, we discuss
the multi-tier architecture and the TPC-W workloads useéxiperiments and show
that existing queueing models can not work if bottleneckdwexists in the system.
The proposed modeling paradigm that integrates burstimeggrformance models
is presented in Section 4. Section 4 also shows the expetamesults that validate
the accuracy of the new methodology in comparison with steshéhean-value based
capacity planning. Finally, Section 6 draws conclusions.

2 Burstiness in Performance Models: Do We Really Need It?

In this section, we show some examples of the importancerstibess in performance
models. In order to show that burstiness can consisterfidgtathe performance of a
system and gain intuition about its fundamental featuresyse a simple example. Let
us consider the four workloads shown in Figure 1.

Each plot represents a sample2of 000 service times generated from the same
hyperexponential distribution with meart! = 1 and squared coefficient-of-variation
SCV = 3. The only difference is that we impose to each trace a unigustiness
profile. In Figure 1(b)-(d), the large service times progiesly aggregate in bursts,
while in Figure 1(a) they appear in random points of the tratparticular, Figure 1(d)
shows the extreme case where all large requests are comgiesa single large burst.
Thus, we use the term “burstiness” to indicate traces teanat just “variable” as the
sample in Figure 1(a), but that also aggregate in “burstiogst as in Figure 1(b)-(d).

What is the performance implication on systems of the déffiéburstiness profiles
in Figure 1(a)-(d)? Assuming that the request arrival tireshe server follow an
exponential distribution with meah—! = 2 and 1.25, a simulation analysis of the
M/Trace/1 queué at 50% and80% utilization, respectively, provides the response
times, i.e., the service time plus waiting/queueing tinmea server, shown in Table 1.

Irrespectively of the identical properties of the servioeet distribution, burstiness
clearly has paramount importance for queueing predictoth in terms of response
time mean and tail. For instance, at 50% utilization the mmemponse time for the
trace in Figure 1(d) is approximately) times slower than the service times in Figure
1(a) and thé5th percentile of the response times is nea&fltimes longer. In general,
the performance degradation is monotonically increasiith urstiness; therefore it
is important to distinguish the behaviors in Figure 1(g)\ a quantitative index.

3 We remark that workload burstiness rules out independehseruice time samples, thus the
classic Pollaczek-Khinchin formula for the /G /1 queue does not apply if the service time
distribution is bursty.
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Fig. 1. Four workload traces with identical hyper-exponentialtritisition (meany™" = 1,
SCV = 3), but different burstiness profiles. Given the identicaiadaility, trace (d) represents
the case of maximum burstiness where all large service tappsar consecutively in a large
burst. The index of dispersioh, introduced in this paper for the characterization of woakls
in multi-tier architectures and reported on top of each fgis able to capture the significantly
different burstiness of the four workloads. As the name ssgghe dispersion of the bursty
periods increases up to the limit case in Figure (dj gsows.

Response Time (utiliz5)|Response Time (utiB=8)|Index of Dispersioh
Workload| mean 95th percentile| mean 95th percentile I
Fig. 1(a) | 3.02 14.42 8.70 33.26 3.0
Fig. 1(b) | 11.00 83.35 43.35 211.76 22.3
Fig. 1(c) | 26.69 252.18 72.31 485.42 92.6
Fig. 1(d) {120.49 1132.40 150.32 1346.53 488.7

Table 1. Response time of thal /Trace/1 queue relatively to the service times traces shown in
Figure 1. The server is evaluated for utilizatigns- 0.5 andp = 0.8.

Overall the results in Table 1 give intuition that we reallyed burstiness in perfor-
mance models. The index of dispersion introduced in the sextton is instrumental to

capture the difference in the burstiness profiles and pemddsimple way to generalize
queueing models to effectively capture the performanceuo$th workloads and the

effects of bottleneck switch.



2.1 Characterization of Burstiness: the Index of Dispersin

We use thendex of dispersion for counts to characterize the burstiness of service
times [8,11]. This is a standard burstiness index used iwar&ing [11], which we
apply here to the characterization of workload burstinesadilti-tier applications.

The index of dispersion has a broad applicability and wideuparity in stochastic
analysis and engineering [8]. From a mathematical persgetie index of dispersion
of a service process is a measure defined on the squared iemef6€-variationSCV
and on the lage autocorrelatiorfsp,, k£ > 1, of the service times as follows:

1_50v<1+2§:pk>. 1)

k=1

The joint presence &#C'V and autocorrelations ifis sufficient to discriminate traces
like those in Figure 1(a)-(d), e.g., for the trace in Figu(e)Xhe correlations are stat-
ically negligible, since the probability of a service timeitg small or large is sta-
tistically unrelated to its position in the trace. However, the trace in Figure 1(d),
consecutive samples tend to assume similar values, thettei®sum of autocorrelation
in (1) is maximal in Figure 1(d). The last column of Table 1agp the values of for
the four example traces. The values strongly indicateligable to reflect the different
burstiness levels in Figure 1(a)-(d) which directly affda performance results.

Note thatl = 1 if service times are exponential, thus the index of dispersiay be
interpreted qualitatively as the ratio of the observediserburstiness with respect to a
Poisson process; therefore, valueg of the order of hundreds or more indicate a clear
departure from the exponentiality assumptions and, utiesealSC'V' is anomalously
high, I can be used as a good indicator of burstiness. Although thieemeatical def-
inition of I in (1) is simple, this formulation is not practical for estitron because of
the infinite summation involved and its sensitivity to noiBethe next subsection, we
describe a simple alternative way of estimating

2.2 Measuring the Index of Dispersion

Instead of (1), we provide an alternative definition of thdedr of dispersion for a
service process as follows. L&f; be the number of requests completed in a time
window of ¢ seconds, where theseconds are countegnoring the server’s idle time
(that is, by conditioning on the period where the system sybly, is a property of
the service process which is independent of queueing arahaiaracteristics). If we
regardN; as a random variable, that is, if we perform several experimby varying
the time window placement in the trace and obtain differahies ofV;, then the index

of dispersion/ is the limit [8]:

Var(N,
= tim Yor@V) @)
t—+o0 E[Nt]
4 Autocorrelation is used as a statistical measure of théioakhip between a random variable
and itself [4]. In a time series of random variables,, }, wheren = 0, ..., 0o, pi. €Xpresses

-1 -1
the value of the autocorrelation coefficient as follows:= BlXy—u )U(,f'*““ I where
v~ 1 is the meang? is the common variance dfX,}, andk denotes the time separation

between the occurrencé& and X .




whereVar(NNy) is the variance of the number of completed requestsiiid ] is the
mean service rate during busy periods. Since the valuedefpends on the number of
completed requests in an asymptotically large observagigoiod, an approximation of
this index can be also computed if the measurements arenehtaiith coarse granu-
larity. For example, suppose that the sampling resolusdh i= 60s, and assume to
approximate — +oco ast ~ 2 hours, thenV; is computed by summing the number of
completed requests 20 consecutive samples. Repeating the evaluation for differe
positions of the time window of length we computé/ar(N;) and E[N;]. Here, we
use the pseudo-code in Figure 2 to estimatirectly from (2). The pseudo-code is a
straight-forward evaluation df ar(N;)/ E[N;] for different values of. Intuitively, the
algorithm in Figure 2 calculatesof the service process by observing the completions
of jobs in concatenated busy period samples. Because ofdhisatenation, queueing
is masked out and the index of dispersion of job completienges as a good approxi-
mation of the index of dispersion of the service process.

Input
T, the sampling resolution (e.di0s)
K, total number of samples, assuiie> 100
Uk, utilization in thekth period,1 < k < K
ng, number of completed requests in #th period,1 < k < K
tol, convergence tolerance (e.9-20)
Estimation of the Index of Dispersionl
get the busy time in theth periodBy, := Uy - T, 1 < k < K;
initializet = T'andY (0) = 0;
do
a. foreachd, = (By, Bit1,-.., Bij), 1o Brri ~t,
aa. computeV¥ = > nkii;
b. if the set of valuesV¥ has less thab00 elements,
bb. stop and collect new measures because the trace is tdp sho
c. Y(t) = Var(NF)/E[NF];
d. increase by T
until |1 — (Y (¢)/Y (t — T))| < tol, i.e., the values oY (t) converge
5. return the last computed valueY{t) as estimate of .

wh e

Fig. 2. Estimation ofI from utilization samples.

3 Burstiness in Multi-Tier Applications: Symptoms and Causes

Today, a multi-tier architecture has become the industapddrd for implementing
scalable client-server enterprise applications. In oyreeinents, we use a testbed of
a multi-tier e-commerce site that is built according to tHeCFW specifications. This
allows to conduct experiments under different settings itoatrolled environment,
which then allows to evaluate the proposed modeling metloggcthat is based on
the index of dispersion.

3.1 Experimental Environment

TPC-W is a widely used e-commerce benchmark that simulae®peration of an
online bookstore [10]. Typically, this multi-tier applitan uses a three-tier architec-
ture paradigm, which consists of a web server, an applicaéver, and a back-end
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Fig. 3. E-commerce experimental environment.

database. A client communicates with this web service viah interface, where the
unit of activity at the client-side corresponds to a webpdmenload. In general, a web
page is composed by an HTML file and several embedded objechsas images. In

a production environment, it is common that the web and tipdiegtion servers reside
on the same hardware, and shared resources are used by libatappand web servers
to generate main HTML files as well as to retrieve page emhtbdbgcts. We opt to

put both the web server and the application server on the szanhine called the front
serveP. A high-level overview of the experimental set-up is ilkated in Figure 3 and

specifics of the software/hardware used are given in Table 2.

Processor RAM oS

Clients (Emulated-Browsers) [[Pentium D, 2-way x 3.2 GHZ GB|Linux Redhat 9.
Front Server - Apache/Tomcat {Bentium D, 1-way x 3.2 GHZ GB|Linux Redhat 9.
Database Server - MySQL5.0 ||Pentium D, 2-way x 3.2 GHZ GB|Linux Redhat 9.

A=

O

Table 2. Hardware/software components of the TPC-W testbed.

Since the HTTP protocol does not provide any means to delimiteginning or
the end of a web page, it is very difficult to accurately meashie aggregate resources
consumed due to web page processing at the server side.adediPU consumption
estimates are required for building an effective applarafirovisioning model but there
is no practical way to effectively measure the service tiftesall page objects. To
address this problem, we definelgent transactioras a combination ddll processing
activities that deliver an entire web page requested byemtli.e., generate the main
HTML file as well as retrieve embedded objects and perforateel database queries.

Typically, a continuous period of time during which a cliagtcesses a Web service
is referred to as &Jser Sessiowhich consists of a sequence of consecutive individual
transaction requests. According to the TPC-W specificattomnumber of concurrent
sessions (i.e., customers) or emulated browsers (EBs)piscomstant throughout the
experiment. For each EB, the TPC-W benchmark defines thesassion length, the
user think time, and the queries that are generated by tlsesesn our experimental
environment, two Pentium D machines are used to simulateéBse|f there aren EBs
in the system, then each machine emulatg® EBs. One Pentium D machine is used
as the back-end database server, which is installed withQlys 0 having a database
of 10,000 items in inventory.

There are 14 different transactions defined by TPC-W. In genthese transac-
tions can be roughly classified of “Browsing” or “Orderingpie, as shown in Table 3.
Furthermore, TPC-W defines three standard transactionsnbiased on the weight of

5 We use terms “front server” and “application server” interageably in this paper.



[Browsing Type]  Ordering Type |

Home Shopping Cart
New ProductgCustomer Registratign
Best Sellers Buy Request

Product detail Buy Confirm
Search Request  Order Inquiry
Execute Seargh Order Display
Admin Request
Admin Confirm

Table 3. The 14 transactions defined in TPC-W.

each type (i.e., browsing or ordering) in the particulansaction mix:

— thebrowsing mixwith 95% browsing and% ordering;
— theshopping mixvith 80% browsing and20% ordering;
— theordering mixwith 50% browsing and:0% ordering.

One way to capture the navigation pattern within a sessithr@igh theCustomer
Behavior Model Graph (CBMG]1L6], which describes patterns of user behavior, i.e.,
how users navigate through the site, and where arcs congesttites (transactions)
reflect the probability of the next transaction type. TPCsWlarameterized by the set of
probabilities that drive user behavior from one state talaerat the user session level.
During a session, each EB cycles through a process of seadiragisaction request,
receiving the response web page, and selecting the negaraon request. Typically,
a user session starts with a Home transaction request.

The TPC-W implementation is based on the J2EE standard -agpliaform which
is used for web application development and designed to theetomputing needs of
large enterprises. For transaction monitoring, we use ] @\tercury) Diagnostics [29]
tool which offers a monitoring solution for J2EE applicatso The Diagnostics tool
collects performance and diagnostic data from applicatieithout the need for ap-
plication source code modification or recompilation. Itsibgtecode instrumentation,
which enables a tool to record processed transactions airdititabase calls over time
as well as to measure their execution time (both transactod their database calls).
We use the Diagnostics tool to measure the number of contpletpiests;, in the kth
period having a granularity of 5 seconds. We also usesirecommand to obtain the
utilizations of two servers across time with one second gjeaity.

3.2 Bottleneck Switch in TPC-W

For each transaction mix, we run a set of experiments witterdiht numbers of EBs
ranging from 25 to 150. Each experiment runs for 3 hours, eittes first 5 minutes and
the last 5 minutes are considered as warm-up and cool-doxiadgeand thus omitted
in the analysis. User think times are exponentially distiélol with meanZ = 0.5s.
Figure 4 presents the overall system throughput, the mestersyutilization at the
front server and the mean system utilization at the datadxrseer as a function of EBs.
Figure 4(a) shows that the system becomes overloaded wha@nthber of EBs reaches
75, 100, and 150 under the browsing mix, the shopping mix,thadordering mix,
respectively. Beyond these EB values, the system througlemains asymptotically
flat. This is due to the “closed loop” aspect of the system, the fixed number of EBs
(customers), that is effectively an upper bound on the nurabmbs that circulate in
the system at all times.
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Fig. 4. lllustrating a) system overall throughput, b) average CHilization of the front server,
and c) average CPU utilization of the database server feetfiPC-W transaction mixes. The
mean think timeZ is set to 0.5 seconds.

The results from Figures 4(b) and 4(c) show that under themihg and the or-
dering mixes, the front server is a bottleneck, where the QRlizations are almost
100% at the front tier but only 20-40% at the database tierttt@ browsing mix, we
see that the CPU utilization of the front server increaseg stewly as the number of
EBs increases beyond 75, which is consistent with the very growth of throughput.
For example, when the front server is already 100% utilizedkun the shopping and the
ordering mixes, the front server for the browsing mix is jastund 80%. Meanwhile,
for the browsing mix, the CPU utilization of the databaseveeincreases quickly
as the number of EBs increases. When the number of EBs is 8ey@®, it is not
obvious which server is responsible for the bottleneck:aterage CPU utilizations
of two servers are about the same, differing by a statig§iéasignificant margin. In
presence of burstiness in the service times, this may stgggsthe phenomenon of
bottleneck switcloccurs between the front and the database seamoss timeThis
phenomenon is not specific to the testbed described in threrduvork. In an earlier
paper [31], a similar situation was observed for a differBARC-W testbed. That is, a
server may become the bottleneck while processing corigelyuirge requests, but be
lightly loaded during other periods. In general, additidneestigation to determine the
existence of bottleneck switch is required when the avetdidjeations are relatively
close or when the workloads are known to be highly variable.
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Fig. 5. The CPU utilization of the front server and the databaseesereross time with 1 second
granularity for (a) the browsing mix, (b) the shopping mirdac) the ordering mix under 100
EBs. The monitoring window is 300 seconds.

To confirm our conjecture about the existence of bottlenagtch in the browsing
mix experiment, we present CPU utilizations of the front reldatabase servers across
time for the browsing mix, as well as for the shopping and ttteedng mixes with 100
EBs, see Figure 5. A bottleneck switch occurs when the dagabarver utilization



becomes significantly higher than the front server utilaratas clearly visible in Fig-
ure 5(a) under the browsing mix workload. As shown in Figus@® and 5(c), there
is no bottleneck switch for the shopping and the orderingesialthough these two
workloads are also highly variable.

The bottleneck switch is a characteristic effect of bues®in the service times.
This unstable behavior is extremely hard to model. Late®ention 4.3, we show that
the browsing mix exhibits a significantly higher index ofssion for both the front
and database server compared to the shopping and ordesiag.mi

3.3 The Analysis of Bottleneck Switch

Now, we focus on the burstiness in a multi-tier applicatiofuirther analyze the symp-
toms and possible causes of the bottleneck switch. Indeea, fypical request-reply
transaction, the application server may issue multiplaluzge calls while preparing
the reply of a web page. This cascading effect of variousstasiaks down the overall
transaction service time into several parts, includingtthesaction processing time at
the application server as well as all related query prongdsnes at the database server.
Therefore, the application characteristics and the higiakdity in database server may
cause burstiness in the overall transaction service times.

To verify the above congecture, we record the queue lendhieatatabase server at
each instance that the database request is issued by theasipplserver and a prepared
reply is returned back to the application server. Figureeents the queue length across
time at the database server (see solid lines in the figureplssthe CPU utilizations
of the database server (see dashed lines in the figure) thired transaction mixes.

(a) Browsing Mix (b) Shopping Mix (c) Ordering Mix
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Fig. 6. The CPU utilization of the database server (dashed linatpaerage queue length at the
database server (solid lines) across time for (a) the brayusiix, (b) the shopping mix, and (c)
the ordering mix. In this figure, thg-axis range of both performance metrics is the same because
there are 100 EBs (clients) in the system. The monitoringlainis 120 seconds.

Here, in order to make the figure easy to read, we show the désé®d EBs such
that they-axis range for both performance metrics (i.e., queue keagt utilization)
is the same. First of all, the results for the browsing mix igufe 6(a) verify that
burstiness does exist in the queue length at the database,sghere the queue holds
less than 10 jobs for some periods, while sharply increasas high as 90 jobs during
other periods. More importantly, the burstiness in the lolzda queue length exactly
matches the burstiness in the CPU utilizations of the datasarver. Thus, at some
periods almost all the transaction processing happenereaiththe application server
(with the application server being a bottleneck) or at thtallase server (with the
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database server being a respective bottleneck). This teatie alternated bottleneck
between the application vs the database servers.

In contrast, no burstiness can be observed in the queuélérghe shopping and
the ordering mixes, although these two workloads have dtglo Variability in their
utilizations, see Figures 6(b) and 6(c). These results@msistent with those shown in
Figures 5(b) and 5(c), where the application server is thi@ syestem bottleneck.

According to the TPC-W specification, different transaatigpes may have differ-
ent number of outbound database queries. For examplé{dhreetransaction has two
database queries in maximum and one in minimum for eachacéios request while
the Best Sellettransaction always has two outbound database queriesgmsatition
request. To analyze whether burstiness in the database desegth originates from
some particular transaction types, we measure the numloerrent requests for each
transaction type over time. After revisiting all 14 transac types, we find that the
sources of this burstiness are indeed due to specific trimisagpes. Figures 7 and 8
show the results for two representative transaction tythe®est Selletransaction and
theHometransaction, under three transaction mixes.

In Figure 7, the overall database queue length across timeasplotted as a base
line. As shown in Figure 7(a), although in the browsing mixdyohl% of requests
belongs to théest Selletransaction type, the number of these requests dominates th
overall database queue length: the spikes in the overaligjlength in the database
clearly originate from this particular transaction typertRermore, there is burstiness
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Fig. 9. The closed queueing network for modeling the multi-tieteys

in the number of requests for this transaction type and thistimess “matches” well
the overall queue length in the database server. In addfiiwrsome extremely high
spikes, e.g., at timestamp 40 in Figure 7(a), the requestsather popular transaction
type, theHometransaction, also contribute to burstiness (see Figudg.glaese figures
indicate thaBest SelleandHometransactions share some resources required for their
processing at the database server, and it leads to extrerstnbgs during such time
periods.

For the shopping and the ordering mixes, there is no visibkstiness in either
the queue length at the database server or the number ohtuweguests for each
transaction type, as shown in Figure 7(b)-(c) and Figurg-8h respectively.

In summary, we showed that

— burstiness in the service times can be a result of a certaiklearl combination
(mix) in the multi-tier applications (e.g., burstiness lretservice times may exist
under the browsing mix in the TPC-W testbed);

— burstiness in the service times can be caused by a bottlewdtdh between the
tiers, and can be a result of “hidden” resource contentidwden the transactions
of different types and across different tiers.

Systems with burstiness result in unstable behavior thakiiemely hard to ex-
press and model. The super-position of several events, aidatabase locking con-
ditions, variability in service time of software operattgimemory contention, and/or
characteristics of the scheduling algorithms, may inteirma complex way, resulting
in burstiness in the system. The question is whether instéadentifying the low-
level exactcauses of burstiness as traditional models would requite,oan provide
an effective way to infer this information using live systemeasurements in order to
capture burstiness into new capacity planning models.

3.4 Traditional MVA Performance Models Do not Work

In this section, we use standard performance evaluatiohadetogies to define an
analytical model of the multi-tier architecture presente&ection 3.1. Our goal is to
show that existing queueing models can be largely inaceimaterformance prediction
if the system is subject to bottleneck switches. We show @ti&e 4 how performance
models can be generalized to correctly account for buisdiaad bottleneck switches
based on the index of dispersion.

We model the multi-tier architecture studied in our expents by a closed queue-
ing network composed of two queues and a delay center as shdvigure 9. Closed
queueing networks (see [13] for an introduction) are eithbtl as the standard capacity
planning models for predicting the performance of distigioLarchitectures using inex-
pensive algorithms, e.g., Mean Value Analysis (MVA) [22E vefer to these models in
the rest of the paper &8VA models
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Fig. 10. MVA model predictions versus measured throughput.

In the MVA model shown in Figure 9, the two queues are used stratt perfor-
mance of the front server and of the database server, résggcThe delay center is
instead representative of the average user think finbeetween receiving a Web page
and submitting a new page download regfieEhe two queues serve jobs according
to a processor-sharing scheduling discipline. In the rpplieation, the servlet code is
a mix of instructions at the front server and the databaseesewrithout an expensive
analysis of the source code, it is truly difficult to charaiziethe switch of the execution
from the front server to the database server and back, werthie a simplification by
assuming that requests first execute at the front serveoutitiny interruption and then
the residual service time is processed at the databasa sédamsequently, with this
simplification, the two queues in Figure 9 are connectediiiese

The proposed MVA model can be immediately parameterizedhleyfollowing
values:

— the mean service timg&rg of the front server;

— the mean service timg&p g of the database server;
— the average user think ting;

— the number of emulated browsers (EBs).

Note that the arrival process at the multi-tier system, Whscin the real system the
arrival of new TPC-W sessions, is fully reproduced by thparameter. In fact, a new
TPC-W session is generated4inseconds after completion of a previously-running user
session: thus, the feedback-loop aspect of TPC-W is fulyurad by the closed nature
of the queueing network and the user think timeompletes the model of the TPC-W
arrival process.

The values 06 rs andSp s can be determined with linear regression methods from
the CPU utilization samples measured across time at the éweis [30]. InsteadZ
and the number of EBs are imposed to set a specific scenariex&mple, in Figure 10,
we evaluate an increase of the number of EBs under the fixekltinie Z = 0.5s; other
choices of the delay are possible, see Section 4.2 for astigou Indeed, increasing the
EB number is a typical way in capacity planning to exploreithpact of increasingly
larger traffic intensities on system performance. FigursHidvs the results of the MVA

5 The main difference between a queue and a delay server iththatean response time at the
latter isindependenof the number of requests present.

“In the following sections, we consider the burstiness aatet to the execution of these
requests at the front server and at the database server.b®wacion ignores the order of
execution of portions of the servlet code and has no impatti@burstiness estimates because
the requests complefasterthan the monitoring window of the measurement tool. Thus, fo
an external observer, it would be impossible to distingbistwveen samples collected from the
real system and those of the abstracted system where thdirsidexecutes only at the front
server and then completes at the database server.



model predictions versus the actual measured throughpBtdTs) of the system as a
function of the number of EBs.

The three plots in the figure illustrate the accuracy of theAMiodel under the
browsing, shopping, and ordering mixes. The results shawtkie MVA model predic-
tion is quite accurate for the shopping and ordering mixdsleathere exists a large
error up t036% between the predicted and the measured throughputs fortiesh
ing mix, see Figure 10(a). This indicates that MVA models daal very well with
systemswithout burstiness (e.g., the ordering mix in Figure 10(c)) and wsithtems
where burstiness doestresult in a bottleneck switch (e.g., the shopping mix in Fégu
10(b)). However, the fundamental and most challenging oaberrstiness that causes
bottleneck switches reveals the limitation of the MVA madgltechnique, see Figure
10(a). This is consistent with established theoreticalltefor MVA models, which
rule out the possibility of capturing the bottleneck switchphenomenon [2].

4 Integrating Burstiness in Performance Models

Here, we use a measure of burstiness for the parameterizdtioe performance model
presented in Figure 9. In Section 4.1, we first present théodeiogy for integrating
the burstiness in queueing models and then discuss the iropaeasurement gran-
ularity in Section 4.2. The experimental results that \atkdthe proposed model are
given in Section 4.3.

4.1 Integrating I in Performance Models

In order to integrate the index of dispersion in queueingefmadve model service times
as a two-phase Markovian Arrival Process (MAP [19, 23, 6]. AMAR2) is a Markov
chain that jumps between two states and the active statemlatss the current rate of
service. For example, one state may be associated with glowice times, the other
may represent fast service times. While processing theeseguof jobs, the MAR2)
jumps between these two states according to predefinedeinees. Simultaneously,
the service rate offered to the jobs changes according toutrent state. The variation
of service rates of the MAR) is sufficient to reproduce the burstiness observed in
the measured trace. The challenge is to assign the serteeohthe two states and
the jumping frequencies such that the service times reddiyethe jobs served by
the MAPR(2) in the queueing model have the same burstiness properttee skrvice
times in the measured trace. Fortunately, M&Pservice rates and jumping frequencies
can be fitted with closed-form formulas given the me&a;V, skewness, and lay-
autocorrelation coefficient; of the measured service times [9, 7].

We use these closed-form formulas to define the NIARS follows. After estimat-
ing the mean service time and the index of disperdiaf the trace, we also estimate
the 95th percentile of the service times as we describe at the enlistubsection.
Given the mean, the index of dispersidpand the95th percentile of service times,
we generate a set of MAR)s that havet+20% maximal error onl, see [12, 1] for
computational formulas of in MAP(2)s. Among this set of MAR2)s, we choose the
one with its95th percentile closest to the trace. Overall, the computaticost of fitting
the MAP(2)s is negligible both in time and space requirements. Foants, the fitting



of the MAP(2)s has been performed in MATLAB in less than five minfités the
experiments in this paper.

We conclude by explaining how to estimate @ih percentile of the service times
from the measured trace. We compute #heh percentile of the measured busy times
By, in Figure 2 and scale it by the median number of requests psecein the busy
periods. If the trace has high dispersion (elgx> 100), this estimate is very accurate
because they; jobs that are served in thigh busy period receive a similar service
time S and the busy time is therefo®, =~ nxSy. This approximation consists in
assuming that,, is always constant and equal to its median valuel(n; ). Under this
hypothesis the 95th percentile B, is simplymed(ny) times the 95th percentile &f;.
Conversely, if the trace has low dispersion (elgs; 100), the estimation is inaccurate.
Nevertheless, we observe that we can still use this simgtifin, because under low-
burstiness conditions the queueing performance is doedriat the mean and thteC'V
of the distribution, and therefore a biased estimate ofttik percentile does not have
any appreciable effect on accuracy. In practice, we havedthis estimation approach
to be highly satisfactory for system modeling as shown byetkgerimental results
reported in the next sections.

4.2 Impact of Measurement Granularity and Monitoring Windo ws

Starting from the MAP-based model defined in the previousieecwe validate the
accuracy of the new analytic model using the same experaheatup as in Section
3.4. We denote by, the think time used in the capacity planning queueing nekwor
model that represents the system presented in Section &.4akdation, we always
compare the predictions of this model with a real experinvgmére the TPC-W has
think time Z,,,. The notationZ..,, denotes the TPC-W think time used in experi-
ments to generate the traces from which we estiniaad the MAR2)s. In general,
Zestim Can differ fromZ,,,, e.g., if we want to explore the sensitivity of the system to
different think times we may consider models with differépt,, but the MAR2)s are
parameterized from the same experimental trace obtaimedfertainZ  im # Zgn. A
robust modeling methodology could predict well the perfante of the system also for
Zgn # Zestim and we are seeking for a robust characterization of the@eprocesses
which is insensitive to the valug...;,, that describes a characteristic of the arrival
process to the multi-tier system, rather than a properth@bervers.

In all validations, we seZ,, = 0.5s and evaluate throughput and an increase of
the number of EBs. The default think time value for the TPC-#hdhmark is7s,
but settingZ,,, = 7s we would need to set the number of EBs as high as 1200 to
reach heavy-load. Unfortunately, no existing numericgrapch can solve the model
for exact solutions when the system has such a large numfSince in this work
we are interested in validating models with respect to theact accuracy, we have
explored exact solutions in Section 3.4 by reducing the th8ek time toZ,,, = 0.5s,
such that the system becomes overloaded when the numbesd$ BB und 00 — 150.
Models with larger number of EBs should be evaluated wittraximations, e.g., with
the class of performance bounds presented in [6]. In theofgetper, we only consider

8 Occasionally, and only for certain combinations/aind95th percentile, there may exist more
than one MAR2) with identical mean/, and95th percentile. We have not found this case
during the experiments in this paper, but in general we regend to choose the MAR)
with largest lagt autocorrelation since this results in a slightly more agsjree burstiness
profile that provides conservative capacity planning estis.
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Fig. 11. Comparing the results for the model which fits MAPs with diffiet Z. .., = 0.5s and
Zestim = 75. 0N each bar, the relative error with respect to the experiaheata is also reported.

queueing network models with,,, = 0.5s. By building the underlying Markov chain
and solving the system of linear equations, we solve the meadyic model and get
the analytic results, see [6] for a description of the Markbain underlying a MAP
queueing network.

Here, we first present validation results on the browsing foixdifferent values
of the measurement granulari,;,,. Since measurements should not interfere with
normal server operations, we have set the monitoring wimgsalution of the Diagnos-
tics tool to a standarth’ = 5s, which means that hundreds of requests may be served
between the collection of two consecutive utilization séapFor instance, when the
user think time in TPC-W is set 8., = 0.5s and the number of EBs &), there are
on averagel65 requests completed in a monitoring windowldf = 5s. A reduction
of the frequency of sampling makes it difficult to collect agka number of samples
(e.g., tens of thousands), and this significantly reducesthtistical robustness of the
index of dispersion estimatesConversely, we have found that decreasing the mean
throughput of the system by an increase/f;;,, can have beneficial effects on the
quality of the index of dispersion estimation without hayto modify the monitoring
window resolution.

Figure 11 compares the analytic results with the experiaien¢asurements of the
real system for the browsing mix. A summary of the think tinaéues used in the two
models is given in Table 4. In all models, we set the mean hggt time toZ,,, = 0.5s
and vary the system loads with different EBs. To evaluateffest of the measurement
granularity on the analytic model, we have estimated twe s&€tMAP(2)s by using
the measured traces from the experiments with 50 EBs and iffeyemt levels of
measurement granularity, i.e., the user think tifg;,, = 0.5s, and Z.g4m, = 7s,
respectively. AsZ. ., inCcreases, we are getting monitoring data of finer grartylari
because in the same monitoring windtwa smaller number of requests is completed.
This makes the estimation of the varianceléf in the algorithm in Figure 2 more
accurate as the finer granularity reveals better the nafueecservice times. This is
intuitive, e.g., in the extreme case whéefg,;,,, is so large that only a single request is

% Robustness depends on the relative frequency of servieetiraks, e.g., if congestion events
due to bursty arrivals as in Figure 1(d) are not frequent) enéarge volume of experimental
data may be needed to distinguish such events from outlietsarrectly identify the bursty
behavior.



Queueing NetwolRMAP(2) Estimation
Model-Z0. Zan = 0.58 Zeostim = 0.5s
Model-Z7 an =0.5s Zesti'm =17s

Table 4. Think time values considered in the accuracy validatioreeixpents.

completed during a single monitoring winddW, then our measurement corresponds
to a direct measure of the request service time and the ag&timzecomes optim#l.

In Figure 11, the corresponding relative prediction emdrich is the ratio of the
absolute difference between the analytic result over thasomed result, is shown on
each bar. The figure shows that precision increases noigiglwhen a finer granu-
larity of monitoring data is used. As the system becomesilydaaded, the model with
finer granularity (i.e.Z.stim as high ags) dramatically reduces the relative prediction
error to 2.4%.

4.3 Validation of Prediction Accuracy on Different Transadion Mixes
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Fig. 12. Modeling results for three transaction mixes as a functicth® number of EBs.

Figure 12 compares the analytical results with the expertalaneasurements of
the real system for the three transaction mixes. The valike dndex of dispersion for
the front and the database service processes are also shaenfigure. Throughout
all experiments, the mean user think tiidg, is set toZ,,, = 0.5s; the MAP(2)s are
obtained from experimental data collected with,;;,,, = 7s.

Figure 12 gives evidence that the new analytic model basedeoimdex of disper-
sion achieves gains in the prediction accuracy with resgeettie MVA model onall
workload mixes, showing that it is reliable also when the kimads are not bursty. In
the browsing mix, the index of dispersion enables the queepeiodel to effectively
captureboth burstiness and bottleneck switch. The results of the prgamalytic
model match closely the experimental results for the brnogvsnix, while remaining
robust in all other cases.

The shopping mix presents an interesting case: as alreadyna in Section 3.4,
the MVA model performs well on the shopping mix despite théstaxg burstiness

19 |ndeed, a large increase @t to this level would be unrealistic because it would hide
possible slowdowns in service times that become evidegtwhén several requests are served
simultaneously, e.g., increased memory access times anitdgs due to an increase in size
of shared data structures. For this reason, it is alwaysabié to increas€.:i», such that
there are some tens of requests completed in a time widlosuring the experiment.



because, regardless of the variation of the workload at #teb@se server, the front
server remains the major source of congestion for the syatairthe model behaves
similarly to a MVA model (i.e., there is no bottleneck swi}ch

In the ordering mix, the feature of workload burstiness is@dt negligible and the
phenomenon of bottleneck switch between the front and ttebdae servers cannot be
easily observed, see Section 3.2. For this case, MVA yidiedigtion errors up to 5%.
Yet, as shown in Figure 12(b) and 12(c), our analytic modgh&r improves MVA's
prediction accuracy. This happens because the index oédiigm/ is able to capture
detailed properties of the service time process, which caa captured by the MVA
model.

All results shown in Figure 12 validate the analytic modeddzhon the index of
dispersion: its performance results are in excellent ages with the experimental
values in the system, and it remains robust in systeittsandwithoutthe feature of
workload burstiness and bottleneck switch.

5 Related Work

Capacity planning of multi-tier systems is a critical pdrttee architecture design pro-
cess and requires reliable quantitative methods, see ¢t &ff introduction. Queueing
models are popular for predicting system performance asdaring what-if capacity

planning questions [17, 28,27, 26]. Single-tier queueimglals focus on capturing the
performance of the most-congested resource only (i.etlebetk tier): [28] describes
the application tier of an e-commerce system as a M/GI/1{RSig; [20] abstracts the
application tier of aV-node cluster as a multi-server G/G/N queue.

Mean Value Analysis (MVA) queueing models that capturetad inulti-tier archi-
tecture performance have been validated in [27, 26] usinthgyic workloads running
on real systems. The parameterization of these MVA modejgires only the mean
service demand placed by requests at the different resaurc§?24] the authors use
multiple linear regression techniques for estimating fuatitization measurements the
mean service demands of applications in a single-threaafedage server. In [15], Liu
et al. calibrate queueing model parameters using infereatmiques based on end-
to-end response time measurements. A traffic model for Viédficthas been proposed
in [14], which fits real data using mixtures of distributions

However, the observations in [18] show that autocorrefaitiomulti-tier systems
flows, which is ignored by standard capacity planning mqdualsst be accounted for
accurate performance prediction of multi-tiered systdnteed, [3] presents that bursti-
ness in the World Wide Web and its related applications peeki®ad of the Web server
beyond its capacity, which results in significant degrauatif the actual server perfor-
mance. In this paper we have proposed for the first time radmlstions for capacity
planning under workload burstiness. The class of MAP queueetworks considered
here has been firstintroduced in [6] together with a bounionique for approximate
model solution. In this paper, we have proposed a paramatem of MAP queueing
networks using for the service process of each server ita s&aice time, the index of
dispersion, and th@5-th percentile of service times. The index of dispersion lesn
frequently adopted in the networking literature for ddsiog traffic burstiness [25, 11];
in particular, it is known that the performance of the G/NHTIFS queue in heavy-
traffic is completely determined by its mean service time tiredindex of dispersion
[25]. Further results concerning the characterizatiomnoek of dispersion in MAPs
can be found in [1].



6 Conclusions

Today’s IT and Services departments are faced with the difftask of ensuring that
enterprise business-critical applications are alway#aa and provide adequate per-
formance. Predicting and controlling the issues surraumdiystem performance is a
difficult and overwhelming task for IT administrators. Witemplexity of enterprise
systems increasing over time and customer requiremen®d& growing, effective
models for quick and automatic evaluation of required systesources in production
systems become a priority item on the service provider'shwist”.

In this work, we have presented a solution to the difficultqbeon of model param-
eterization by inferring essential process informatianfrcoarse measurements in a
real system. After giving quantitative examples of the im@ioce of integrating bursti-
ness in performance models pointing out its role relativelthe bottleneck switching
phenomenon, we show that coarse measurements can stillebdetagparameterize
queueing models that effectively capture burstiness andhitity of the true process.
The parameterized queueing model can thus be used to cluselict performance in
systems even in the very difficult case where there is pergibbttleneck switch among
the various servers. Detailed experimentation on a meltéd system using the TPC-
W benchmark validates that the proposed technique offepbast solution to predict
performance of systems subject to burstiness and bot#tesveitching conditions.

The proposed approach is based on measurements that cauatinelyoobtained
from existing commercial monitoring tools. The resultingrgmeterized models are
practical and robust for a variety of capacity planning aadgrmance modeling tasks
in production environments.
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