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Abstract. Workload flows in enterprise systems that use the multi-tierparadigm
are often characterized as bursty, i.e., exhibit a form of temporal dependence.
Burstiness often results in dramatic degradation of the perceived user perfor-
mance, which is extremely difficult to capture with existingcapacity planning
models. The main reason behind this deficiency of traditional capacity planning
models is that the user perceived performance is the result of the complex inter-
action of a very complex workload with a very complex system.In this paper, we
propose a simple and effective methodology for detecting burstiness symptoms in
multi-tier systems rather than identifying the low-levelexactcause of burstiness
as traditional models would require. We provide an effective way to incorporate
this information into a surprisingly simple and effective modeling methodology.
This new modeling methodology is based on the index of dispersion of the service
process at a server, which is inferred by observing the number of completions
within the concatenated busy periods of that server. The index of dispersion to-
gether with other measurements that reflect the “estimated”mean and the 95th
percentile of service times are used to derive a Markov-modulated process that
captures well burstiness and variability of the true service process, despite in-
evitable inaccuracies that result from inexact and limitedmeasurements. Detailed
experimentation on a TPC-W testbed where all measurements are obtained by HP
(Mercury) Diagnostics, a commercially available tool, shows that the proposed
technique offers a simple yet powerful solution to the difficult problem of infer-
ring accurate descriptors of the service time process from coarse measurements
of a given system. Experimental and model prediction results are in excellent
agreement and argue strongly for the effectiveness of the proposed methodology
under both bursty and non-bursty workloads.
Keywords: capacity planning, multi-tier systems, transactions, sessions, bursty
workload, bottleneck switch, index of dispersion.

1 Introduction

The performance of a multi-tier system is determined by the interactions between the
incoming requests and the different hardware architectures and software systems that
serve them. In order to model these interactions for capacity planning, a detailed char-
acterization of the workloads and of the application is needed, but such a “customized”
analysis and modeling may be very time consuming, error-prone, and inefficient in
practice. An alternative approach is to rely on live system measurements and to assume
that the performance of each software or hardware resource is completely characterized
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Workloads” appeared in the HotMetrics 2008 Workshop (non-copyrighted) [5].



by its meanservice time, a quantity that is easy to obtain with simple measurement
procedures. The mean service times of different classes of transaction requests together
with the transaction mix can be used as inputs to the widely-used Mean Value Analysis
(MVA) models [13, 26, 30] to predict the overall system performance under various
load conditions. The popularity of MVA-based models is due to their simplicity and
their ability to capture complex systems and workloads in a straightforward manner.
In this paper, we present strong evidence that MVA models of multi-tier architectures
can be unacceptably inaccurate if the processed workloads exhibit burstiness, i.e., short
uneven spikes of peak congestion during the lifetime of the system. Motivated by this
problem, we define here a new methodology for effective capacity planning under
bursty workload conditions.

Internet flash-crowds are familiar examples of bursty traffic and are characterized by
periods of continuous peak arrival rate that significantly deviate from the average traffic
intensity. Similarly, a footprint of burstiness in system workloads is the presence of short
uneven peaks in utilization measurements, which indicate that the server periodically
faces congestion. In multi-tier systems, congestion may arise from the super-position
of several events including database locks, variability inservice time of software op-
erations, memory contention, and/or characteristics of the scheduling algorithms. The
above events interact in a complex way with the underlying hardware/software systems
and with the incoming requests, often resulting in short congestion periods where the
entire system is significantly slowed down. For example, even for multi-tier systems
where the database server is highly-efficient, a locking condition on a database table
may slow down the service of multiple requests that try to access the same data and
make the database the bottleneck server for a time period. During that period of time,
the database performance dominates the performance of the overall system, while most
of the time another resource, e.g., the application server,may be the primary cause
of delays in the system. Thus, the performance of the multi-tier system can vary in
time depending on which is the current bottleneck resource and can be significantly
conditioned bydependenciesbetween servers that cannot by captured by MVA models.
However, to the best of our knowledge, no simple methodologyexists that captures in
a simple way this time-varyingbottleneck switchin multi-tier systems and its perfor-
mance implications.

In this paper, we present a new approach to integrate workload burstiness in perfor-
mance models, which relies on server busy periods (they are immediately obtained from
server utilization measurements across time) and measurements of request completions
within the busy periods. All measurements are collected with coarse granularity. After
giving quantitative examples of the importance of integrating burstiness in performance
models, we analyze a real three-tier architecture subject to TPC-W workloads with dif-
ferent burstiness profiles. We show that burstiness in the service process can be inferred
effectively from traces using theindex of dispersionfor counts of completed requests,
a measure of burstiness frequently used in the analysis of time series and network
traffic [8, 11]. The index of dispersion jointly captures servicevariability andburstiness
in a single number and can also be related to the well-known Hurst parameter used in
the analysis of long-range dependence [4]. Furthermore, the index of dispersion can be
inferred reliably also if the length of the trace is short. Using the index of dispersion, we
show that the accuracy of the model prediction can be increased by up to30% compared
to standard queueing models parameterized only with mean service demands [21].

Exploiting basic properties of bursty processes, we are also able to include in the
analysis the95th percentile of service times, which is widely used in computer perfor-



mance engineering to quantify the peak-to-mean ratio of service demands. Therefore,
our performance models are specified by three parameters only for each server: the
mean, the index of dispersion, and the95th percentile of service demands, making
a strong case of being practical, easy, yet surprisingly accurate. To the best of our
knowledge, this paper makes a first strong case in the use of a new practical modeling
paradigm for capacity planning that encompasses workload burstiness. We stress that
the prediction models we propose do not require explicit identification of the cause(s) of
the observed burstiness. Instead, they use a powerful but simple abstraction that captures
the effects of burstiness in complex multi-tiered environments.

The rest of the paper is organized as follows. In Section 2, weintroduce service
burstiness using illustrative examples and present the methodology for the measurement
of the index of dispersion to parameterize the proposed model. In Section 3, we discuss
the multi-tier architecture and the TPC-W workloads used inexperiments and show
that existing queueing models can not work if bottleneck switch exists in the system.
The proposed modeling paradigm that integrates burstinessin performance models
is presented in Section 4. Section 4 also shows the experimental results that validate
the accuracy of the new methodology in comparison with standard mean-value based
capacity planning. Finally, Section 6 draws conclusions.

2 Burstiness in Performance Models: Do We Really Need It?

In this section, we show some examples of the importance of burstiness in performance
models. In order to show that burstiness can consistently affect the performance of a
system and gain intuition about its fundamental features, we use a simple example. Let
us consider the four workloads shown in Figure 1.

Each plot represents a sample of20, 000 service times generated from the same
hyperexponential distribution with meanµ−1 = 1 and squared coefficient-of-variation
SCV = 3. The only difference is that we impose to each trace a unique burstiness
profile. In Figure 1(b)-(d), the large service times progressively aggregate in bursts,
while in Figure 1(a) they appear in random points of the trace. In particular, Figure 1(d)
shows the extreme case where all large requests are compressed into a single large burst.
Thus, we use the term “burstiness” to indicate traces that are not just “variable” as the
sample in Figure 1(a), but that also aggregate in “bursty periods” as in Figure 1(b)-(d).

What is the performance implication on systems of the different burstiness profiles
in Figure 1(a)-(d)? Assuming that the request arrival timesto the server follow an
exponential distribution with meanλ−1 = 2 and1.25, a simulation analysis of the
M/Trace/1 queue3 at 50% and80% utilization, respectively, provides the response
times, i.e., the service time plus waiting/queueing times in a server, shown in Table 1.

Irrespectively of the identical properties of the service time distribution, burstiness
clearly has paramount importance for queueing prediction,both in terms of response
time mean and tail. For instance, at 50% utilization the meanresponse time for the
trace in Figure 1(d) is approximately40 times slower than the service times in Figure
1(a) and the95th percentile of the response times is nearly80 times longer. In general,
the performance degradation is monotonically increasing with burstiness; therefore it
is important to distinguish the behaviors in Figure 1(a)-(d) via a quantitative index.

3 We remark that workload burstiness rules out independence of service time samples, thus the
classic Pollaczek-Khinchin formula for theM/G/1 queue does not apply if the service time
distribution is bursty.
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Fig. 1. Four workload traces with identical hyper-exponential distribution (meanµ−1 = 1,
SCV = 3), but different burstiness profiles. Given the identical variability, trace (d) represents
the case of maximum burstiness where all large service timesappear consecutively in a large
burst. The index of dispersionI , introduced in this paper for the characterization of workloads
in multi-tier architectures and reported on top of each figure, is able to capture the significantly
different burstiness of the four workloads. As the name suggest, the dispersion of the bursty
periods increases up to the limit case in Figure (d) asI grows.

Response Time (util=0.5) Response Time (util=0.8) Index of Dispersion
Workload mean 95th percentile mean 95th percentile I
Fig. 1(a) 3.02 14.42 8.70 33.26 3.0
Fig. 1(b) 11.00 83.35 43.35 211.76 22.3
Fig. 1(c) 26.69 252.18 72.31 485.42 92.6
Fig. 1(d) 120.49 1132.40 150.32 1346.53 488.7

Table 1.Response time of theM/Trace/1 queue relatively to the service times traces shown in
Figure 1. The server is evaluated for utilizationsρ = 0.5 andρ = 0.8.

Overall the results in Table 1 give intuition that we really need burstiness in perfor-
mance models. The index of dispersion introduced in the nextsection is instrumental to
capture the difference in the burstiness profiles and provides a simple way to generalize
queueing models to effectively capture the performance of bursty workloads and the
effects of bottleneck switch.



2.1 Characterization of Burstiness: the Index of Dispersion

We use theindex of dispersionI for counts to characterize the burstiness of service
times [8, 11]. This is a standard burstiness index used in networking [11], which we
apply here to the characterization of workload burstiness in multi-tier applications.

The index of dispersion has a broad applicability and wide popularity in stochastic
analysis and engineering [8]. From a mathematical perspective, the index of dispersion
of a service process is a measure defined on the squared coefficient-of-variationSCV
and on the lag-k autocorrelations4 ρk, k ≥ 1, of the service times as follows:

I = SCV

(

1 + 2

∞
∑

k=1

ρk

)

. (1)

The joint presence ofSCV and autocorrelations inI is sufficient to discriminate traces
like those in Figure 1(a)-(d), e.g., for the trace in Figure 1(a) the correlations are stat-
ically negligible, since the probability of a service time being small or large is sta-
tistically unrelated to its position in the trace. However,for the trace in Figure 1(d),
consecutive samples tend to assume similar values, therefore the sum of autocorrelation
in (1) is maximal in Figure 1(d). The last column of Table 1 reports the values ofI for
the four example traces. The values strongly indicate thatI is able to reflect the different
burstiness levels in Figure 1(a)-(d) which directly affectthe performance results.

Note thatI = 1 if service times are exponential, thus the index of dispersion may be
interpreted qualitatively as the ratio of the observed service burstiness with respect to a
Poisson process; therefore, values ofI of the order of hundreds or more indicate a clear
departure from the exponentiality assumptions and, unlessthe realSCV is anomalously
high, I can be used as a good indicator of burstiness. Although the mathematical def-
inition of I in (1) is simple, this formulation is not practical for estimation because of
the infinite summation involved and its sensitivity to noise. In the next subsection, we
describe a simple alternative way of estimatingI.

2.2 Measuring the Index of Dispersion

Instead of (1), we provide an alternative definition of the index of dispersion for a
service process as follows. LetNt be the number of requests completed in a time
window of t seconds, where thet seconds are countedignoring the server’s idle time
(that is, by conditioning on the period where the system is busy, Nt is a property of
the service process which is independent of queueing or arrival characteristics). If we
regardNt as a random variable, that is, if we perform several experiments by varying
the time window placement in the trace and obtain different values ofNt, then the index
of dispersionI is the limit [8]:

I = lim
t→+∞

V ar(Nt)

E[Nt]
, (2)

4 Autocorrelation is used as a statistical measure of the relationship between a random variable
and itself [4]. In a time series of random variables{Xn}, wheren = 0, . . . ,∞, ρk expresses

the value of the autocorrelation coefficient as follows:ρk =
E[(Xt−µ−1)(Xt+k−µ−1)]

σ2 , where
µ−1 is the mean,σ2 is the common variance of{Xn}, andk denotes the time separation
between the occurrencesXt andXt+k.



whereV ar(Nt) is the variance of the number of completed requests andE[Nt] is the
mean service rate during busy periods. Since the value ofI depends on the number of
completed requests in an asymptotically large observationperiod, an approximation of
this index can be also computed if the measurements are obtained with coarse granu-
larity. For example, suppose that the sampling resolution is T = 60s, and assume to
approximatet → +∞ ast ≈ 2 hours, thenNt is computed by summing the number of
completed requests in120 consecutive samples. Repeating the evaluation for different
positions of the time window of lengtht, we computeV ar(Nt) andE[Nt]. Here, we
use the pseudo-code in Figure 2 to estimateI directly from (2). The pseudo-code is a
straight-forward evaluation ofV ar(Nt)/E[Nt] for different values oft. Intuitively, the
algorithm in Figure 2 calculatesI of the service process by observing the completions
of jobs in concatenated busy period samples. Because of thisconcatenation, queueing
is masked out and the index of dispersion of job completions serves as a good approxi-
mation of the index of dispersion of the service process.

Input
T , the sampling resolution (e.g.,60s)
K, total number of samples, assumeK > 100
Uk, utilization in thekth period,1 ≤ k ≤ K
nk, number of completed requests in thekth period,1 ≤ k ≤ K
tol, convergence tolerance (e.g.,0.20)
Estimation of the Index of DispersionI

1. get the busy time in thekth periodBk := Uk · T , 1 ≤ k ≤ K;
2. initializet = T andY (0) = 0;
3. do

a. for eachAk = (Bk, Bk+1, . . . , Bk+j),
∑j

i=0
Bk+i ≈ t,

aa. computeNk
t =

∑j

i=0
nk+i;

b. if the set of valuesNk
t has less than100 elements,

bb. stop and collect new measures because the trace is too short;
c. Y (t) = V ar(Nk

t )/E[Nk
t ];

d. increaset by T ;
until |1 − (Y (t)/Y (t − T ))| ≤ tol, i.e., the values ofY (t) converge.

5. return the last computed value ofY (t) as estimate ofI .

Fig. 2. Estimation ofI from utilization samples.

3 Burstiness in Multi-Tier Applications: Symptoms and Causes

Today, a multi-tier architecture has become the industry standard for implementing
scalable client-server enterprise applications. In our experiments, we use a testbed of
a multi-tier e-commerce site that is built according to the TPC-W specifications. This
allows to conduct experiments under different settings in acontrolled environment,
which then allows to evaluate the proposed modeling methodology that is based on
the index of dispersion.

3.1 Experimental Environment

TPC-W is a widely used e-commerce benchmark that simulates the operation of an
online bookstore [10]. Typically, this multi-tier application uses a three-tier architec-
ture paradigm, which consists of a web server, an application server, and a back-end
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Fig. 3. E-commerce experimental environment.

database. A client communicates with this web service via a web interface, where the
unit of activity at the client-side corresponds to a webpagedownload. In general, a web
page is composed by an HTML file and several embedded objects such as images. In
a production environment, it is common that the web and the application servers reside
on the same hardware, and shared resources are used by the application and web servers
to generate main HTML files as well as to retrieve page embedded objects. We opt to
put both the web server and the application server on the samemachine called the front
server5. A high-level overview of the experimental set-up is illustrated in Figure 3 and
specifics of the software/hardware used are given in Table 2.

Processor RAM OS
Clients (Emulated-Browsers) Pentium D, 2-way x 3.2 GHz4 GB Linux Redhat 9.0
Front Server - Apache/Tomcat 5.5Pentium D, 1-way x 3.2 GHz4 GB Linux Redhat 9.0
Database Server - MySQL5.0 Pentium D, 2-way x 3.2 GHz4 GB Linux Redhat 9.0

Table 2.Hardware/software components of the TPC-W testbed.

Since the HTTP protocol does not provide any means to delimitthe beginning or
the end of a web page, it is very difficult to accurately measure the aggregate resources
consumed due to web page processing at the server side. Accurate CPU consumption
estimates are required for building an effective application provisioning model but there
is no practical way to effectively measure the service timesfor all page objects. To
address this problem, we define aclient transactionas a combination ofall processing
activities that deliver an entire web page requested by a client, i.e., generate the main
HTML file as well as retrieve embedded objects and perform related database queries.

Typically, a continuous period of time during which a clientaccesses a Web service
is referred to as aUser Sessionwhich consists of a sequence of consecutive individual
transaction requests. According to the TPC-W specification, the number of concurrent
sessions (i.e., customers) or emulated browsers (EBs) is kept constant throughout the
experiment. For each EB, the TPC-W benchmark defines the usersession length, the
user think time, and the queries that are generated by the session. In our experimental
environment, two Pentium D machines are used to simulate theEBs. If there arem EBs
in the system, then each machine emulatesm/2 EBs. One Pentium D machine is used
as the back-end database server, which is installed with MySQL 5.0 having a database
of 10,000 items in inventory.

There are 14 different transactions defined by TPC-W. In general, these transac-
tions can be roughly classified of “Browsing” or “Ordering” type, as shown in Table 3.
Furthermore, TPC-W defines three standard transaction mixes based on the weight of

5 We use terms “front server” and “application server” interchangeably in this paper.



Browsing Type Ordering Type
Home Shopping Cart

New ProductsCustomer Registration
Best Sellers Buy Request

Product detail Buy Confirm
Search Request Order Inquiry
Execute Search Order Display

Admin Request
Admin Confirm

Table 3.The 14 transactions defined in TPC-W.

each type (i.e., browsing or ordering) in the particular transaction mix:

– thebrowsing mixwith 95% browsing and5% ordering;
– theshopping mixwith 80% browsing and20% ordering;
– theordering mixwith 50% browsing and50% ordering.

One way to capture the navigation pattern within a session isthrough theCustomer
Behavior Model Graph (CBMG)[16], which describes patterns of user behavior, i.e.,
how users navigate through the site, and where arcs connecting states (transactions)
reflect the probability of the next transaction type. TPC-W is parameterized by the set of
probabilities that drive user behavior from one state to another at the user session level.
During a session, each EB cycles through a process of sendinga transaction request,
receiving the response web page, and selecting the next transaction request. Typically,
a user session starts with a Home transaction request.

The TPC-W implementation is based on the J2EE standard – a Java platform which
is used for web application development and designed to meetthe computing needs of
large enterprises. For transaction monitoring, we use the HP (Mercury) Diagnostics [29]
tool which offers a monitoring solution for J2EE applications. The Diagnostics tool
collects performance and diagnostic data from applications without the need for ap-
plication source code modification or recompilation. It uses bytecode instrumentation,
which enables a tool to record processed transactions and their database calls over time
as well as to measure their execution time (both transactions and their database calls).
We use the Diagnostics tool to measure the number of completed requestsnk in thekth
period having a granularity of 5 seconds. We also use thesar command to obtain the
utilizations of two servers across time with one second granularity.

3.2 Bottleneck Switch in TPC-W

For each transaction mix, we run a set of experiments with different numbers of EBs
ranging from 25 to 150. Each experiment runs for 3 hours, where the first 5 minutes and
the last 5 minutes are considered as warm-up and cool-down periods and thus omitted
in the analysis. User think times are exponentially distributed with meanZ = 0.5s.
Figure 4 presents the overall system throughput, the mean system utilization at the
front server and the mean system utilization at the databaseserver as a function of EBs.
Figure 4(a) shows that the system becomes overloaded when the number of EBs reaches
75, 100, and 150 under the browsing mix, the shopping mix, andthe ordering mix,
respectively. Beyond these EB values, the system throughput remains asymptotically
flat. This is due to the “closed loop” aspect of the system, i.e., the fixed number of EBs
(customers), that is effectively an upper bound on the number of jobs that circulate in
the system at all times.
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The results from Figures 4(b) and 4(c) show that under the shopping and the or-
dering mixes, the front server is a bottleneck, where the CPUutilizations are almost
100% at the front tier but only 20-40% at the database tier. For the browsing mix, we
see that the CPU utilization of the front server increases very slowly as the number of
EBs increases beyond 75, which is consistent with the very slow growth of throughput.
For example, when the front server is already 100% utilized under the shopping and the
ordering mixes, the front server for the browsing mix is justaround 80%. Meanwhile,
for the browsing mix, the CPU utilization of the database server increases quickly
as the number of EBs increases. When the number of EBs is beyond 100, it is not
obvious which server is responsible for the bottleneck: theaverage CPU utilizations
of two servers are about the same, differing by a statistically insignificant margin. In
presence of burstiness in the service times, this may suggest that the phenomenon of
bottleneck switchoccurs between the front and the database serversacross time. This
phenomenon is not specific to the testbed described in the current work. In an earlier
paper [31], a similar situation was observed for a differentTPC-W testbed. That is, a
server may become the bottleneck while processing consecutively large requests, but be
lightly loaded during other periods. In general, additional investigation to determine the
existence of bottleneck switch is required when the averageutilizations are relatively
close or when the workloads are known to be highly variable.
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Fig. 5. The CPU utilization of the front server and the database server across time with 1 second
granularity for (a) the browsing mix, (b) the shopping mix, and (c) the ordering mix under 100
EBs. The monitoring window is 300 seconds.

To confirm our conjecture about the existence of bottleneck switch in the browsing
mix experiment, we present CPU utilizations of the front andthe database servers across
time for the browsing mix, as well as for the shopping and the ordering mixes with 100
EBs, see Figure 5. A bottleneck switch occurs when the database server utilization



becomes significantly higher than the front server utilization, as clearly visible in Fig-
ure 5(a) under the browsing mix workload. As shown in Figures5(b) and 5(c), there
is no bottleneck switch for the shopping and the ordering mixes, although these two
workloads are also highly variable.

The bottleneck switch is a characteristic effect of burstiness in the service times.
This unstable behavior is extremely hard to model. Later, inSection 4.3, we show that
the browsing mix exhibits a significantly higher index of dispersion for both the front
and database server compared to the shopping and ordering mixes.

3.3 The Analysis of Bottleneck Switch

Now, we focus on the burstiness in a multi-tier application to further analyze the symp-
toms and possible causes of the bottleneck switch. Indeed, for a typical request-reply
transaction, the application server may issue multiple database calls while preparing
the reply of a web page. This cascading effect of various tasks breaks down the overall
transaction service time into several parts, including thetransaction processing time at
the application server as well as all related query processing times at the database server.
Therefore, the application characteristics and the high variability in database server may
cause burstiness in the overall transaction service times.

To verify the above congecture, we record the queue length atthe database server at
each instance that the database request is issued by the application server and a prepared
reply is returned back to the application server. Figure 6 presents the queue length across
time at the database server (see solid lines in the figure) as well as the CPU utilizations
of the database server (see dashed lines in the figure) for allthree transaction mixes.
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Fig. 6. The CPU utilization of the database server (dashed lines) and average queue length at the
database server (solid lines) across time for (a) the browsing mix, (b) the shopping mix, and (c)
the ordering mix. In this figure, they-axis range of both performance metrics is the same because
there are 100 EBs (clients) in the system. The monitoring window is 120 seconds.

Here, in order to make the figure easy to read, we show the case with 100 EBs such
that they-axis range for both performance metrics (i.e., queue length and utilization)
is the same. First of all, the results for the browsing mix in Figure 6(a) verify that
burstiness does exist in the queue length at the database server, where the queue holds
less than 10 jobs for some periods, while sharply increases to as high as 90 jobs during
other periods. More importantly, the burstiness in the database queue length exactly
matches the burstiness in the CPU utilizations of the database server. Thus, at some
periods almost all the transaction processing happens either at the application server
(with the application server being a bottleneck) or at the database server (with the
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Fig. 7. The overall queue length at the database server (dashed lines) and the number of current
requests in system for theBest Sellertransaction (solid lines) across time for (a) the browsing
mix, (b) the shopping mix, and (c) the ordering mix, with 100 EBs and mean think time equal to
0.5s. The monitoring window is 120 seconds.
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Fig. 8.The number of current requests in system for theHometransaction across time for (a) the
browsing mix, (b) the shopping mix, and (c) the ordering mix,with 100 EBs and mean think time
equal to0.5s. The monitoring window is 120 seconds.

database server being a respective bottleneck). This leadsto the alternated bottleneck
between the application vs the database servers.

In contrast, no burstiness can be observed in the queue length for the shopping and
the ordering mixes, although these two workloads have also high variability in their
utilizations, see Figures 6(b) and 6(c). These results are consistent with those shown in
Figures 5(b) and 5(c), where the application server is the main system bottleneck.

According to the TPC-W specification, different transaction types may have differ-
ent number of outbound database queries. For example, theHometransaction has two
database queries in maximum and one in minimum for each transaction request while
the Best Sellertransaction always has two outbound database queries per transaction
request. To analyze whether burstiness in the database queue length originates from
some particular transaction types, we measure the number ofcurrent requests for each
transaction type over time. After revisiting all 14 transaction types, we find that the
sources of this burstiness are indeed due to specific transaction types. Figures 7 and 8
show the results for two representative transaction types,theBest Sellertransaction and
theHometransaction, under three transaction mixes.

In Figure 7, the overall database queue length across time isalso plotted as a base
line. As shown in Figure 7(a), although in the browsing mix only 11% of requests
belongs to theBest Sellertransaction type, the number of these requests dominates the
overall database queue length: the spikes in the overall queue length in the database
clearly originate from this particular transaction type. Furthermore, there is burstiness
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Fig. 9.The closed queueing network for modeling the multi-tier system.

in the number of requests for this transaction type and this burstiness “matches” well
the overall queue length in the database server. In addition, for some extremely high
spikes, e.g., at timestamp 40 in Figure 7(a), the requests ofanother popular transaction
type, theHometransaction, also contribute to burstiness (see Figure 8(a)). These figures
indicate thatBest SellerandHometransactions share some resources required for their
processing at the database server, and it leads to extreme burstiness during such time
periods.

For the shopping and the ordering mixes, there is no visible burstiness in either
the queue length at the database server or the number of current requests for each
transaction type, as shown in Figure 7(b)-(c) and Figure 8(b)-(c), respectively.

In summary, we showed that

– burstiness in the service times can be a result of a certain workload combination
(mix) in the multi-tier applications (e.g., burstiness in the service times may exist
under the browsing mix in the TPC-W testbed);

– burstiness in the service times can be caused by a bottleneckswitch between the
tiers, and can be a result of “hidden” resource contention between the transactions
of different types and across different tiers.

Systems with burstiness result in unstable behavior that isextremely hard to ex-
press and model. The super-position of several events, suchas database locking con-
ditions, variability in service time of software operations, memory contention, and/or
characteristics of the scheduling algorithms, may interact in a complex way, resulting
in burstiness in the system. The question is whether insteadof identifying the low-
level exactcauses of burstiness as traditional models would require, one can provide
an effective way to infer this information using live systemmeasurements in order to
capture burstiness into new capacity planning models.

3.4 Traditional MVA Performance Models Do not Work

In this section, we use standard performance evaluation methodologies to define an
analytical model of the multi-tier architecture presentedin Section 3.1. Our goal is to
show that existing queueing models can be largely inaccurate in performance prediction
if the system is subject to bottleneck switches. We show in Section 4 how performance
models can be generalized to correctly account for burstiness and bottleneck switches
based on the index of dispersion.

We model the multi-tier architecture studied in our experiments by a closed queue-
ing network composed of two queues and a delay center as shownin Figure 9. Closed
queueing networks (see [13] for an introduction) are established as the standard capacity
planning models for predicting the performance of distributed architectures using inex-
pensive algorithms, e.g., Mean Value Analysis (MVA) [22]; we refer to these models in
the rest of the paper asMVA models.
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Fig. 10.MVA model predictions versus measured throughput.

In the MVA model shown in Figure 9, the two queues are used to abstract perfor-
mance of the front server and of the database server, respectively. The delay center is
instead representative of the average user think timeZ between receiving a Web page
and submitting a new page download request6. The two queues serve jobs according
to a processor-sharing scheduling discipline. In the real application, the servlet code is
a mix of instructions at the front server and the database server: without an expensive
analysis of the source code, it is truly difficult to characterize the switch of the execution
from the front server to the database server and back, we thusmake a simplification by
assuming that requests first execute at the front server without any interruption and then
the residual service time is processed at the database server7. Consequently, with this
simplification, the two queues in Figure 9 are connected in series.

The proposed MVA model can be immediately parameterized by the following
values:

– the mean service timeSFS of the front server;
– the mean service timeSDB of the database server;
– the average user think timeZ;
– the number of emulated browsers (EBs).

Note that the arrival process at the multi-tier system, which is in the real system the
arrival of new TPC-W sessions, is fully reproduced by theZ parameter. In fact, a new
TPC-W session is generated inZ seconds after completion of a previously-running user
session: thus, the feedback-loop aspect of TPC-W is fully captured by the closed nature
of the queueing network and the user think timeZ completes the model of the TPC-W
arrival process.

The values ofSFS andSDB can be determined with linear regression methods from
the CPU utilization samples measured across time at the two servers [30]. Instead,Z
and the number of EBs are imposed to set a specific scenario. For example, in Figure 10,
we evaluate an increase of the number of EBs under the fixed think timeZ = 0.5s; other
choices of the delay are possible, see Section 4.2 for a discussion. Indeed, increasing the
EB number is a typical way in capacity planning to explore theimpact of increasingly
larger traffic intensities on system performance. Figure 10shows the results of the MVA

6 The main difference between a queue and a delay server is thatthe mean response time at the
latter isindependentof the number of requests present.

7 In the following sections, we consider the burstiness associated to the execution of these
requests at the front server and at the database server. Our abstraction ignores the order of
execution of portions of the servlet code and has no impact onthe burstiness estimates because
the requests completefasterthan the monitoring window of the measurement tool. Thus, for
an external observer, it would be impossible to distinguishbetween samples collected from the
real system and those of the abstracted system where the codefirst executes only at the front
server and then completes at the database server.



model predictions versus the actual measured throughputs (TPUTs) of the system as a
function of the number of EBs.

The three plots in the figure illustrate the accuracy of the MVA model under the
browsing, shopping, and ordering mixes. The results show that the MVA model predic-
tion is quite accurate for the shopping and ordering mixes, while there exists a large
error up to36% between the predicted and the measured throughputs for the brows-
ing mix, see Figure 10(a). This indicates that MVA models candeal very well with
systemswithout burstiness (e.g., the ordering mix in Figure 10(c)) and withsystems
where burstiness doesnot result in a bottleneck switch (e.g., the shopping mix in Figure
10(b)). However, the fundamental and most challenging caseof burstiness that causes
bottleneck switches reveals the limitation of the MVA modeling technique, see Figure
10(a). This is consistent with established theoretical results for MVA models, which
rule out the possibility of capturing the bottleneck switching phenomenon [2].

4 Integrating Burstiness in Performance Models

Here, we use a measure of burstiness for the parameterization of the performance model
presented in Figure 9. In Section 4.1, we first present the methodology for integrating
the burstiness in queueing models and then discuss the impact of measurement gran-
ularity in Section 4.2. The experimental results that validate the proposed model are
given in Section 4.3.

4.1 Integrating I in Performance Models

In order to integrate the index of dispersion in queueing models, we model service times
as a two-phase Markovian Arrival Process (MAP(2)) [19, 23, 6]. A MAP(2) is a Markov
chain that jumps between two states and the active state determines the current rate of
service. For example, one state may be associated with slow service times, the other
may represent fast service times. While processing the sequence of jobs, the MAP(2)
jumps between these two states according to predefined frequencies. Simultaneously,
the service rate offered to the jobs changes according to thecurrent state. The variation
of service rates of the MAP(2) is sufficient to reproduce the burstiness observed in
the measured trace. The challenge is to assign the service rates of the two states and
the jumping frequencies such that the service times received by the jobs served by
the MAP(2) in the queueing model have the same burstiness properties ofthe service
times in the measured trace. Fortunately, MAP(2) service rates and jumping frequencies
can be fitted with closed-form formulas given the mean,SCV , skewness, and lag-1
autocorrelation coefficientρ1 of the measured service times [9, 7].

We use these closed-form formulas to define the MAP(2) as follows. After estimat-
ing the mean service time and the index of dispersionI of the trace, we also estimate
the 95th percentile of the service times as we describe at the end ofthis subsection.
Given the mean, the index of dispersionI, and the95th percentile of service times,
we generate a set of MAP(2)s that have±20% maximal error onI, see [12, 1] for
computational formulas ofI in MAP(2)s. Among this set of MAP(2)s, we choose the
one with its95th percentile closest to the trace. Overall, the computational cost of fitting
the MAP(2)s is negligible both in time and space requirements. For instance, the fitting



of the MAP(2)s has been performed in MATLAB in less than five minutes8 for the
experiments in this paper.

We conclude by explaining how to estimate the95th percentile of the service times
from the measured trace. We compute the95th percentile of the measured busy times
Bk in Figure 2 and scale it by the median number of requests processed in the busy
periods. If the trace has high dispersion (e.g.,I >> 100), this estimate is very accurate
because thenk jobs that are served in thekth busy period receive a similar service
time Sk and the busy time is thereforeBk ≈ nkSk. This approximation consists in
assuming thatnk is always constant and equal to its median valuemed(nk). Under this
hypothesis the 95th percentile ofBk is simplymed(nk) times the 95th percentile ofSk.
Conversely, if the trace has low dispersion (e.g.,I < 100), the estimation is inaccurate.
Nevertheless, we observe that we can still use this simplification, because under low-
burstiness conditions the queueing performance is dominated by the mean and theSCV
of the distribution, and therefore a biased estimate of the95th percentile does not have
any appreciable effect on accuracy. In practice, we have found this estimation approach
to be highly satisfactory for system modeling as shown by theexperimental results
reported in the next sections.

4.2 Impact of Measurement Granularity and Monitoring Windo ws

Starting from the MAP-based model defined in the previous section, we validate the
accuracy of the new analytic model using the same experimental setup as in Section
3.4. We denote byZqn the think time used in the capacity planning queueing network
model that represents the system presented in Section 3.4. For validation, we always
compare the predictions of this model with a real experimentwhere the TPC-W has
think time Zqn. The notationZestim denotes the TPC-W think time used in experi-
ments to generate the traces from which we estimateI and the MAP(2)s. In general,
Zestim can differ fromZqn, e.g., if we want to explore the sensitivity of the system to
different think times we may consider models with differentZqn, but the MAP(2)s are
parameterized from the same experimental trace obtained for a certainZestim 6= Zqn. A
robust modeling methodology could predict well the performance of the system also for
Zqn 6= Zestim and we are seeking for a robust characterization of the service processes
which is insensitive to the valueZestim that describes a characteristic of the arrival
process to the multi-tier system, rather than a property of the servers.

In all validations, we setZqn = 0.5s and evaluate throughput and an increase of
the number of EBs. The default think time value for the TPC-W benchmark is7s,
but settingZqn = 7s we would need to set the number of EBs as high as 1200 to
reach heavy-load. Unfortunately, no existing numerical approach can solve the model
for exact solutions when the system has such a large number ofEBs. Since in this work
we are interested in validating models with respect to theirexact accuracy, we have
explored exact solutions in Section 3.4 by reducing the userthink time toZqn = 0.5s,
such that the system becomes overloaded when the number of EBs is around100−150.
Models with larger number of EBs should be evaluated with approximations, e.g., with
the class of performance bounds presented in [6]. In the restof paper, we only consider

8 Occasionally, and only for certain combinations ofI and95th percentile, there may exist more
than one MAP(2) with identical mean,I , and95th percentile. We have not found this case
during the experiments in this paper, but in general we recommend to choose the MAP(2)
with largest lag-1 autocorrelation since this results in a slightly more aggressive burstiness
profile that provides conservative capacity planning estimates.
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Fig. 11.Comparing the results for the model which fits MAPs with differentZestim = 0.5s and
Zestim = 7s. On each bar, the relative error with respect to the experimental data is also reported.

queueing network models withZqn = 0.5s. By building the underlying Markov chain
and solving the system of linear equations, we solve the new analytic model and get
the analytic results, see [6] for a description of the Markovchain underlying a MAP
queueing network.

Here, we first present validation results on the browsing mixfor different values
of the measurement granularityZestim. Since measurements should not interfere with
normal server operations, we have set the monitoring windowresolution of the Diagnos-
tics tool to a standardW = 5s, which means that hundreds of requests may be served
between the collection of two consecutive utilization samples. For instance, when the
user think time in TPC-W is set toZestim = 0.5s and the number of EBs is50, there are
on average465 requests completed in a monitoring window ofW = 5s. A reduction
of the frequency of sampling makes it difficult to collect a large number of samples
(e.g., tens of thousands), and this significantly reduces the statistical robustness of the
index of dispersion estimates9. Conversely, we have found that decreasing the mean
throughput of the system by an increase ofZestim can have beneficial effects on the
quality of the index of dispersion estimation without having to modify the monitoring
window resolution.

Figure 11 compares the analytic results with the experimental measurements of the
real system for the browsing mix. A summary of the think time values used in the two
models is given in Table 4. In all models, we set the mean user think time toZqn = 0.5s
and vary the system loads with different EBs. To evaluate theeffect of the measurement
granularity on the analytic model, we have estimated two sets of MAP(2)s by using
the measured traces from the experiments with 50 EBs and two different levels of
measurement granularity, i.e., the user think timeZestim = 0.5s, andZestim = 7s,
respectively. AsZestim increases, we are getting monitoring data of finer granularity,
because in the same monitoring windowW a smaller number of requests is completed.
This makes the estimation of the variance ofNt in the algorithm in Figure 2 more
accurate as the finer granularity reveals better the nature of the service times. This is
intuitive, e.g., in the extreme case whereZestim is so large that only a single request is

9 Robustness depends on the relative frequency of service time peaks, e.g., if congestion events
due to bursty arrivals as in Figure 1(d) are not frequent, then a large volume of experimental
data may be needed to distinguish such events from outliers and correctly identify the bursty
behavior.



Queueing NetworkMAP(2) Estimation
Model-Z0.5 Zqn = 0.5s Zestim = 0.5s
Model-Z7 Zqn = 0.5s Zestim = 7s

Table 4.Think time values considered in the accuracy validation experiments.

completed during a single monitoring windowW , then our measurement corresponds
to a direct measure of the request service time and the estimation becomes optimal10.

In Figure 11, the corresponding relative prediction error,which is the ratio of the
absolute difference between the analytic result over the measured result, is shown on
each bar. The figure shows that precision increases non-negligibly when a finer granu-
larity of monitoring data is used. As the system becomes heavily loaded, the model with
finer granularity (i.e.,Zestim as high as7s) dramatically reduces the relative prediction
error to 2.4%.

4.3 Validation of Prediction Accuracy on Different Transaction Mixes
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Fig. 12.Modeling results for three transaction mixes as a function of the number of EBs.

Figure 12 compares the analytical results with the experimental measurements of
the real system for the three transaction mixes. The values of the index of dispersion for
the front and the database service processes are also shown in the figure. Throughout
all experiments, the mean user think timeZqn is set toZqn = 0.5s; the MAP(2)s are
obtained from experimental data collected withZestim = 7s.

Figure 12 gives evidence that the new analytic model based onthe index of disper-
sion achieves gains in the prediction accuracy with respectto the MVA model onall
workload mixes, showing that it is reliable also when the workloads are not bursty. In
the browsing mix, the index of dispersion enables the queueing model to effectively
captureboth burstiness and bottleneck switch. The results of the proposed analytic
model match closely the experimental results for the browsing mix, while remaining
robust in all other cases.

The shopping mix presents an interesting case: as already observed in Section 3.4,
the MVA model performs well on the shopping mix despite the existing burstiness

10 Indeed, a large increase ofZestim to this level would be unrealistic because it would hide
possible slowdowns in service times that become evident only when several requests are served
simultaneously, e.g., increased memory access times in algorithms due to an increase in size
of shared data structures. For this reason, it is always advisable to increaseZestim such that
there are some tens of requests completed in a time windowW during the experiment.



because, regardless of the variation of the workload at the database server, the front
server remains the major source of congestion for the systemand the model behaves
similarly to a MVA model (i.e., there is no bottleneck switch).

In the ordering mix, the feature of workload burstiness is almost negligible and the
phenomenon of bottleneck switch between the front and the database servers cannot be
easily observed, see Section 3.2. For this case, MVA yields prediction errors up to 5%.
Yet, as shown in Figure 12(b) and 12(c), our analytic model further improves MVA’s
prediction accuracy. This happens because the index of dispersionI is able to capture
detailed properties of the service time process, which can not be captured by the MVA
model.

All results shown in Figure 12 validate the analytic model based on the index of
dispersion: its performance results are in excellent agreement with the experimental
values in the system, and it remains robust in systemswith andwithout the feature of
workload burstiness and bottleneck switch.

5 Related Work

Capacity planning of multi-tier systems is a critical part of the architecture design pro-
cess and requires reliable quantitative methods, see [17] for an introduction. Queueing
models are popular for predicting system performance and answering what-if capacity
planning questions [17, 28, 27, 26]. Single-tier queueing models focus on capturing the
performance of the most-congested resource only (i.e., bottleneck tier): [28] describes
the application tier of an e-commerce system as a M/GI/1/PS queue; [20] abstracts the
application tier of aN -node cluster as a multi-server G/G/N queue.

Mean Value Analysis (MVA) queueing models that capture all the multi-tier archi-
tecture performance have been validated in [27, 26] using synthetic workloads running
on real systems. The parameterization of these MVA models requires only the mean
service demand placed by requests at the different resources. In [24] the authors use
multiple linear regression techniques for estimating fromutilization measurements the
mean service demands of applications in a single-threaded software server. In [15], Liu
et al. calibrate queueing model parameters using inferencetechniques based on end-
to-end response time measurements. A traffic model for Web traffic has been proposed
in [14], which fits real data using mixtures of distributions.

However, the observations in [18] show that autocorrelation in multi-tier systems
flows, which is ignored by standard capacity planning models, must be accounted for
accurate performance prediction of multi-tiered systems.Indeed, [3] presents that bursti-
ness in the World Wide Web and its related applications peaksthe load of the Web server
beyond its capacity, which results in significant degradation of the actual server perfor-
mance. In this paper we have proposed for the first time robustsolutions for capacity
planning under workload burstiness. The class of MAP queueing networks considered
here has been first introduced in [6] together with a boundingtechnique for approximate
model solution. In this paper, we have proposed a parameterization of MAP queueing
networks using for the service process of each server its mean service time, the index of
dispersion, and the95-th percentile of service times. The index of dispersion hasbeen
frequently adopted in the networking literature for describing traffic burstiness [25, 11];
in particular, it is known that the performance of the G/M/1/FCFS queue in heavy-
traffic is completely determined by its mean service time andthe index of dispersion
[25]. Further results concerning the characterization of index of dispersion in MAPs
can be found in [1].



6 Conclusions

Today’s IT and Services departments are faced with the difficult task of ensuring that
enterprise business-critical applications are always available and provide adequate per-
formance. Predicting and controlling the issues surrounding system performance is a
difficult and overwhelming task for IT administrators. Withcomplexity of enterprise
systems increasing over time and customer requirements forQoS growing, effective
models for quick and automatic evaluation of required system resources in production
systems become a priority item on the service provider’s “wish list”.

In this work, we have presented a solution to the difficult problem of model param-
eterization by inferring essential process information from coarse measurements in a
real system. After giving quantitative examples of the importance of integrating bursti-
ness in performance models pointing out its role relativelyto the bottleneck switching
phenomenon, we show that coarse measurements can still be used to parameterize
queueing models that effectively capture burstiness and variability of the true process.
The parameterized queueing model can thus be used to closelypredict performance in
systems even in the very difficult case where there is persistent bottleneck switch among
the various servers. Detailed experimentation on a multi-tiered system using the TPC-
W benchmark validates that the proposed technique offers a robust solution to predict
performance of systems subject to burstiness and bottleneck switching conditions.

The proposed approach is based on measurements that can be routinely obtained
from existing commercial monitoring tools. The resulting parameterized models are
practical and robust for a variety of capacity planning and performance modeling tasks
in production environments.
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