
Biologically-Inspired Distributed Middleware
Management for Stream Processing Systems

Geetika T. Lakshmanan and Robert E. Strom

IBM T. J. Watson Research Center, Hawthorne, NY 10532, USA
{gtlakshm,robstrom}@us.ibm.com

Abstract. We present a decentralized and dynamic biologically-inspired
algorithm for placing dataflow graphs composed of stream processing
tasks onto a distributed network of machines, while minimizing the end-
to-end latency. Our algorithm responds on-the-fly to placement requests
of new flow graphs or to modifications of an already running stream pro-
cessing flow graph, and dynamically adapts to changes in performance
characteristics such as message rates or service times as well as to changes
in processor availability or link performance during runtime. Our algo-
rithm is derived by analogy to pheromone-based cooperation between
ants to fulfill goals such as food discovery. We have conducted extensive
simulation experiments to show the scalability and adaptability of our
algorithm.

Key words: Distributed Stream Processing, Task Placement, On-The-
Fly Management, Biologically-Inspired, Self-Managing Middleware

1 Introduction

The complexity of current computer systems has motivated computer scien-
tists to turn towards nature for inspiration. The fault tolerance properties and
decentralized control achieved in natural systems combined with the intuitive
simplicity of their design make them particularly appealing for solving problems
in computer systems. Immune system architectures for computer security meth-
ods [1], firefly-inspired synchronicity for wireless sensor networks [2], bee colony
behavior-based middleware platforms [3] and ant-based ad hoc network multi-
casting [4] are but a few examples of the ways in which biology has influenced
the design of computer systems. Investigation of the collective foraging behavior
of ants has sparked the field of ant colony optimization (ACO) algorithms [5].
These are probabilistic techniques for solving computational problems which
can be reduced to finding optimal paths in graphs. Ant-based algorithms have
been applied to solve combinatorial optimization problems such as the travel-
ling salesman problem, quadratic assignment problem, graph coloring, job-shop
scheduling, sequential ordering and vehicle routing [5]. In addition to these static
problems, where characteristics do not change over time, ant-based algorithms
have also been applied to stochastic time varying problems such as routing in

2 Biologically-inspired Distributed Middleware Management

telecommunications networks [6]. Given the adaptive capabilities built into ant-
based algorithms, they are particularly well suited to such problems where solu-
tions must be adapted online to changing conditions.

Adaptive online task placement is currently an important problem in dis-
tributed stream processing systems [7–13]. A distributed stream processing sys-
tem (DSPS) streams data from multiple data sources or producers to multiple
clients or consumers interested in the results derived from processing conducted
on the data. Between the producer and consumer the data is processed through
a number of computational tasks that are linked via a dataflow graph. Each task
receives one or more streams of input data messages, either from a producer or
from an upstream task, each message in a stream arriving asynchronously. In
response to a message, a task performs a computation, which may access the
message, read and modify internal state representing past history, and may or
may not generate one or more messages which are sent either to consumers or to
downstream tasks. Examples of tasks include operators, such as an incremental
join, an aggregation, or a facial recognition operator. Flow graphs may be de-
signed by an application designer, or may be separately specified by consumers
who write queries. Each query defines the particular messages a particular con-
sumer requires and the operators or computational tasks needed to derive these
messages from producer streams.

There are a number of well known distributed stream processing systems in
both academic and commercial settings [7–13]. These systems support applica-
tions such as processing financial market data, managing sensor network data
collected from geographically dispersed sources and detecting network intrusion
and other kinds of security violations in computer systems. Stream data sources
typically produce large volumes of data at high and variable rates. Providing low
latency, high throughput execution in the midst of dynamically changing data
and network conditions as well as new, diverse processing requests is a challenge.
One way to reduce traffic and improve performance of the DSPS is by dynam-
ically placing stream processing tasks on the machines available in the stream
processing network in order to maximally satisfy some objective function.

In this paper we present a biologically-inspired algorithm for dynamically
placing tasks on a network of machines in a distributed stream processing system.
Obtaining an optimal solution to the static task assignment problem, where the
problem characteristics do not change, is computationally intractable [14]. The
problem we address in this paper is even more difficult, due to the following
additional requirements:

– Dynamic and incremental; We cannot assume that the entire flow graph
and network description is known once and for all prior to deployment.
The placement may need to react to changes, which may be (a) changes
to the flow graph, such as a new query, or new consumer, (b) changes to
the performance characteristics of the streams or operators, (c) changes to
the availability or capacity of the machines or links. The system must react
incrementally: that is, small changes to part of the system may induce small

Biologically-Inspired Distributed Middleware Management 3

changes to the placement, rather than re-doing a single placement algorithm
from scratch.

– Decentralized: We cannot assume a centralized server with global knowl-
edge; instead we require that the placement execute in a distributed fashion
on the same network of machines on which the stream processing system is
executing.

Our biologically-inspired solution is grounded on techniques from ACO. ACO-
based algorithms have several salient features that make them appealing for
placement in distributed systems. ACO algorithms translate problems into find-
ing optimal paths in graphs. Finding optimal paths is achieved through stig-
mergy [5], a method of indirect communication in a self-organizing emergent
system. Stigmergy is achieved in ants through pheromone deposits. The concen-
tration of pheromone guides ants towards appropriate routes. Simulating stig-
mergy in the context of ants in a computer system can be done in a completely
decentralized manner using routing tables stored at every node. Successful global
behavior is achieved by purely local decisions made at each node. The routing
tables are updated by ant-like agents that carry very little state, and perform
simple computations at nodes in order to update routes. Ant-like agents can
be implemented online, in parallel with the functionality of the data processing
system. As a result, the solution is naturally decentralized and dynamic.

Simulating stigmergy alone is not sufficient to achieve distributed task place-
ment in stream processing systems using ants. Establishing an optimal path
between the producers and consumers of a query requires ensuring that the path
qualifies in terms of some quality of service metric (for instance the end-to-end
latency between the producers and consumers of the query), as well as ensuring
that the nodes in this path have sufficient capacity to process operators of the
query without adversely affecting the performance of queries whose operators
are already deployed on these nodes. The algorithm we present in this paper
accomplishes both of these goals by introducing different “species” of ants and
relying on a queueing model to estimate service time of tasks on a server. Place-
ment in our algorithm is orchestrated by three different species of ants. Routing
ants establish paths between the producers and consumers of a query by de-
positing pheromone in pheromone tables maintained at every node. Scouting
ants estimate the cost of placing query operators on a set of machines in a path
between a producer and a consumer of that query. Enforcement ants execute
the placement of a query on a path. To the best of our knowledge, this work
represents the first biologically-inspired algorithm for dynamic task placement
in distributed stream processing systems.

The rest of this paper is organized as follows. After describing related work in
Section 2, we provide complete details of our algorithm in Section 3. In section 4
we investigate our algorithm in simulation and end with conclusions.

4 Biologically-inspired Distributed Middleware Management

2 Related Work

Operator placement has received significant attention in the distributed stream
processing systems community. Existing literature consists of a wide variety
of heuristic algorithms that range from static global optimization solutions to
complete or partial decentralized solutions that perform local adjustments to
placement dynamically during runtime.

Query Operator Placement in Distributed Stream Processing Systems In Flux,
a dynamic load balanced strategy is developed in the context of continuous
queries[15]. A centralized controller is responsible for collecting workload infor-
mation and making load balancing decisions. Another approach computes place-
ment by minimizing the average time, estimated by a queueing model, required
for an event originating at the producer to reach its destined consumer, also
using a centralized controller[16]. Operator placement has also been examined
in the context of in-network stream query processing for sensor network environ-
ments with progressively increasing computational power network bandwidth up
a hierarchy of nodes[14]. This approach provides theoretical analysis of a cen-
tralized placement algorithm that minimizes the total cost of computation as
well as communication, but does not consider how the algorithm will respond to
dynamic changes during runtime. A global optimization scheme for maximizing
the weighted throughput of all queries in the system is proposed in [17]. Weights
are provided as input and represent the importance or priority of a query oper-
ator. With the exception of[17], these placement schemes require a centralized
controller to recompute the placement of the entire operator graph in order to
respond to dynamic changes in the environment such as the introduction of new
operators, changes in the network data rates, and changes in the availability of
machines and network links. In [17], rather than recomputing an optimal place-
ment in response to bursty data rates, a centralized controller jointly optimizes
the input and output rates of operators, as well as their instantaneous process-
ing rates. The global optimization scheme does need to be re-run however, when
new operators need to be deployed, and when existing operators expire. Most
recently a centralized placement algorithm has been proposed for a scheduler
for System S, a distributed stream processing middleware, which balances the
load on nodes and network traffic, and minimizes the inter-node traffic while
respecting a host of constraints [18].

Decentralized algorithms have been proposed to minimize network usage and
dynamically adjust placement in response to network changes during runtime[19,
20]. These algorithms focus on minimizing communication cost, and do not ex-
plicitly have a load-balancing strategy. One of these algorithms also considers
reusing computation between overlapping queries [19]. It does not, however, com-
pute the performance impact of reusing queries on existing queries. Reusing ex-
isting computation is important in certain stream processing applications where
a majority of query processing requests are redundunt, such as in the financial
services industry. An approach has been developed to address this that focuses
exclusively on reusing component streams to satisfy new placement requests us-

Biologically-Inspired Distributed Middleware Management 5

ing a queueing-based quality-of-service impact projection algorithm [21]. This
scheme does not outline how to compute an optimal placement when no existing
computation can be reused.

Several decentralized algorithms only consider load management for com-
puting an optimal placement [10, 22]. A data flow aware load selection strategy
has been proposed in [23]. This approach aims to achieve lower communication
cost by restricting the scattering of data flows, but does not assign placement
by explicitly minimizing the end-to-end latency between the producers and con-
sumers of queries. Furthermore, the load balancing scheme in this algorithm is
based on partner selection which assigns a fixed number of load balancing can-
didate partners for each node, and load is moved individually for each machine
between its partners. Another approach uses runtime monitoring information
to adapt a decentralized placement algorithm that maximizes business utility
which is defined as a function of the required bandwidth, available bandwidth
and delay on a given edge of the network [24]. This approach proposes stream
management middleware in which nodes self-organize into utility-aware clusters
and requires cluster coordinators to maintain state for all nodes in a cluster. A
component composition algorithm has also been proposed that dynamically com-
poses quality-aware and resource-efficient stream processing applications from a
system’s currently available components while balancing the load [25]. Although
this approach utilizes distributed composition probing, it requires global state.

Biologically-inspired Task Placement ACO algorithms have been applied to
static task placement problems in which task and machine characteristics are
fixed. In [26] the authors address the Quadratic Assignment Problem where
each ant visits nodes and assigns a task to each node such that the product of
the flows between activities is minimized by the distance between their locations.
Tasks are assumed to be static and data rates are constant. Another variant is
the Job-Shop Scheduling problem [27] where a job consists of an ordered se-
quence of operations. The problem is to assign the operations to time intervals
in such a way that the maximum of the completion times of all operations is
minimized and no two jobs are processed at the same time on the same ma-
chine. The static nature of the problems is a critical assumption that bolsters
the success of these algorithms, and therefore they cannot simply be extended
to solve dynamic task placement problems. In [6], an ant-colony optimization
scheme is applied to dynamic traffic monitoring and routing. They outline how
latency minimizing paths can be established between sources and destinations
using ant colonies.

On the evolutionary front, considerable work has concentrated on applying
genetic algorithms to static and dynamic task placement. None of these algo-
rithms, however, are applicable to data stream processing systems where place-
ment is concerned with tasks that are part of data flow graphs and execute on
continuous streams of data.

6 Biologically-inspired Distributed Middleware Management

3 Design and Algorithm

In this section we define our model, introduce necessary terminology, and present
details of our ant-inspired task placement algorithm for distributed stream pro-
cessing systems.

3.1 Stream Processing Model

We assume that every data source has knowledge of the flow graphs which spec-
ify the tasks executed on the data streams it produces. We also assume that
stream processing tasks are asynchronous software components with multiple
inputs, multiple outputs, and possible internal state. Tasks may execute asyn-
chronously; messages sent between tasks are asynchronous. Task topology may
change in response to dynamic requests to change the graph, but such changes
are assumed to happen at rates much less frequent than the input streaming
message rates. Servers can be actual machines, or processes or threads within
a machine. At any point during execution, a server has some number of tasks
assigned to it, representing a partition of the total dataflow graph. There is a
single queue of messages waiting to be processed by the server. When the server
is idle and the queue is non-empty, a message is dequeued, delivered to the ap-
propriate task, and processed by that task, which may in turn generate internal
messages for other downstream tasks in the same server. Processing of the mes-
sage finishes when all such downstream tasks have finished executing. There may
be one or more messages queued up for delivery to consumers or to downstream
tasks in other servers; these messages are queued to links which are assumed to
asynchronously transport these messages to consumers or to the queues in the
appropriate servers. In this paper we do not address how to resolve problems
such as lost messages that result from link or server failure. There are several
well known techniques that address this [28].

Total latency depends upon the sum of server queueing delay, task processing
time in each server, link queueing delay and link latency in each link, across the
paths between producers and consumers.

In our approach, the streaming data messages and the tasks are augmented
with ants (following our biological metaphor) and cells. Ants are implemented
as special control messages distinct from data messages; cells are implemented
as special tasks distinct from the tasks being placed. Each server contains one
cell containing information about that server and its neighbors. Cells hold data,
called pheromones, again following our metaphor; ants travel back and forth
between cells carrying various information depending upon the kind of ant.

3.2 Approach Overview

Inspired by the success of Di Caro and Dorigo [6] in using ants to establish routes
in telephone networks, we extend their work to accomplish task placement in a
stream processing system. In particular we enhance their work to incorporate
a queueing model as well as different species of ants. In addition to routing

Biologically-Inspired Distributed Middleware Management 7

ants, we introduce scouting ants, and enforcement ants. These ants are respon-
sible for placing each query. Placement is conducted through three stages. First,
routing ants are dispatched by leaders, located at producers. Routing ants con-
tinuously travel between producers and destinations, depositing pheromones on
their return trip in routing tables at every server that reflect different preference
weights given to alternative next hops. Their destinations represent consumers of
a query. Pheromone concentrations guide ants along best paths to their destina-
tions. Once routing ants have established paths to the destination of a query, the
leader dispatches scouting ants towards the same destination. Each scouting ant
travels a particular path guided by pheromone concentrations towards its desti-
nation and computes the cost of a proposed hypothetical placement of the query
along the path. Upon reaching its destination, it returns to the leader with its
hypothetical placement report. In the third stage, after the leader has received
enough reports from the scouts it had previously dispatched, it picks the best
report, and dispatches an enforcement ant to execute the placement of the query
outlined by the report. Once a query has been placed, the leader periodically
dispatches routing and scouting ants for the query in order to ensure that its
placement adapts to changes in the query tasks, as well as to changes in network
conditions, data characteristics, and other queries being placed. If a more opti-
mal placement of the query is found, then the leader picks the new placement,
and dispatches enforcement ants to execute the new placement and discontinue
the previous one. The concept of the pheromone vector and the role of routing
ants are exactly as defined in the model by Di Caro and Dorigo [6]. The addi-
tional role of scouting ants and enforcement ants as well as the incorporation of
the queueing model represent our novel contribution.

3.3 Pheromone Vector

There exists one cell per server which contains state relevant to an ant traversing
this server. Each cell is aware of the set of destinations. Each cell C has a set
of neighbors N(C). For each destination D, a cell C maintains a pheromone
vector [6] that maps each neighbor n into a probability ΦC

D,n of choosing neighbor
n as the next hop to travel from cell Cs server to destination D. Because these
are probabilities,

∑
n∈N(C) ΦC

D,n = 1, for each destination D. Initially, when no
information is known about one route versus another, the values of ΦC

D,n may
be set to be equiprobable (uniformly distributed). For each destination D, a cell
C also maintains ΓC = {µC→D, σ2

C→D}, where µC→D is the mean and σ2
C→D is

the variance of the time to traverse both links and service queues on the best
path from C to D.

Each query has one or more producers. Each producer site (or, if the producer
is an external site, then at the server site which is the point of attachment of the
producer, and which will act as a proxy for the producer for the purpose of this
algorithm) contains a leader. Whenever a query is added, deleted, or changed, or
whenever an unchanged query is requested to redo its placement, a leader at one
producer is selected. If there is a single producer, the selected leader is the leader
at that single producer. If there are multiple producers, the producer along the

8 Biologically-inspired Distributed Middleware Management

longest path to the consumer is selected. Thus the flow graph is clipped to a
single linear chain of tasks, which we refer to as a subquery. Figure 1(b) shows
the path selected by the ants for placement of the query in Figure 1(a) which
has fan-in. Once the subquery is placed, the same algorithm is re-executed, one
producer at a time, to place the tasks on paths from other producers that join
in to a task on this path. Figure 1(d) shows the path selected by the ants for the
placement of the query in Figure 1(c) which has fan-out. Once the subquery is
placed, the same algorithm is re-executed, one consumer at a time, to place the
tasks on paths that span out of the fan-out point.

Fig. 1. (b) shows the path selected by ants for placement for the query in (a) which has
fan-in. (d) shows the path selected by ants for the placement of the query in (c) which
has fan-out. P and C stand for producers and consumers. F stands for the FILTER
operator, J for JOIN, S for SPLIT, A for AGGREGATION.

3.4 Routing Ants: Forward Direction Seeking Paths

Intermittently, a leader residing at a producer of a query, releases a routing ant
with destination D, the server ID of a consumer of the query, and source cell
CS . The number of ants and how frequently they are released are set as user
defined parameters in our implementation. The ant carries on its back (i.e. the
payload of a control message contains) the following information: its destination
D, the path it has taken so far (the ID of each server hosting each cell it has
passed through), and the delay it has experienced so far at each hop, passing
through processing queues and link queues. Initially, only the source cell CS is
in the path. At each step, at a cell C that is not the destination D, the routing
ant does the following:

1. It records on its back how long it has waited in the server queue at cell C.
2. It chooses a next hop towards D, by making a probabilistic choice of next hop

neighbor, i, based upon the pheromone vector ΦC
D,i at C, choosing among

Biologically-Inspired Distributed Middleware Management 9

the neighbors it did not already visit, or over all the neighbors in case all of
them had been previously visited.
If a cycle is detected, that is, if an ant is forced to return to an already
visited node, the cycle’s nodes are removed from the ant’s memory, and all
information relating to them is destroyed. If the cycle lasted longer than the
lifetime of the ant before entering the cycle, (that is if the cycle is greater
than half the ant’s age) the ant is destroyed.

3. It enqueues itself on the link towards the next hop neighbor, i, waiting to
crawl through the link.

4. When it arrives at the next hop neighbor, i, it records on its back how long
it has waited in queueing and propagation time passing through the link.

5. If it is not now at the destination D, it queues itself at the tail of the server
queue of the next hop neighbor, i. Once it is dequeued, it repeats steps 1-5.

6. If it is now at the destination D, it turns around and begins its reverse
journey back towards CS .

3.5 Routing Ants: Reverse Direction Reinforcing Paths

Once a routing ant has reached destination D, it reverses direction and crawls
backward towards the server CS hosting its source cell. It knows how to reach
its source, because it has stored on its back the path it had actually taken. On
the reverse path, at each hop, it bypasses the server queues and goes directly to
each cell C, to update its pheromone vector ΦC

D,n and the estimates, ΓC . After
arriving at cell C from a cell C−1, the ant will update ΦC

D,C−1, which represents
the probability of choosing cell C − 1 as the next hop when attempting to reach
D from C. The pheromone vector at cell C is updated by incrementing the
probability ΦC

D,C−1 associated with neighbor cell C − 1 and the destination D,
and decreasing (by normalization) the probabilities ΦC

D,n associated with other
neighbor nodes n, n 6= C−1. The update procedure modifies the probabilities of
the various paths, based on the experience the ant had recorded on its back when
it chose the particular next hop neighbor on its forward path from CS to D. While
this experience can incorporate a variety of factors, in our implementation, we
restrict it to 1

TCS→D
, the inverse of the trip time, which can be computed using

the information the ant loads on its back in the forward path to D, outlined in
Section 3.4. Inverse trip time alone cannot be treated as an exact error measure,
given its dependence on the load on the network. Therefore, the values stored
in the model ΓC are used to guide the adjustment of the trip times. Di Caro
and Dorigo experiment [6] with a number of linear, quadratic and hyperbolic
combinations of the trip time values and the estimates, ΓC in order to create
a reinforcement signal, r ≡ r(1

TC→D
, ΓC), r ∈ [0, 1]. In our implementation, we

define r as 1
TCS→D

and use ΓC to decide when to update the pheromone vector.
If the elapsed trip time of a sub-path is statistically good (i.e. it is less than µ +
I(µ, σ), where I is an estimate of the confidence interval for µ), then the time
value is used to update the pheromone vector ΦC

D,n and the estimates, ΓC . On
the other hand, trip times of sub-paths not deemed good, in the same statistical

10 Biologically-inspired Distributed Middleware Management

sense, are not used. The pheromone vector value ΦC
D,C−1(t) at time t is increased

by the reinforcement value at time t + 1 as follows:

ΦC
D,C−1(t + 1) = ΦC

D,C−1(t) + r.(1− ΦC
D,C−1(t)) = ΦC

D,C−1(t).(1− r) + r . (1)

Thus the probability is increased by a value proportional to the reinforcement
received, and to the previous value of the node probability. Given the same
reinforcement, small probability values are increased proportionally more than
big probability values.

The probability ΦC
D,n for all neighbor nodes n ∈ N(C) where n 6= C − 1 is

decayed. This is essential to eliminate poor quality paths to D. These n−1 nodes
receive a negative reinforcement by normalization. Normalization is necessary to
ensure that the sum of probabilities for a given pheromone vector is 1.

ΦC
D,n(t + 1) = ΦC

D,n(t).(1− r), n 6= C − 1 . (2)

After the routing ant has performed the reinforcement step on the cell at each
hop back to the source, it dies. If a cell’s pheromone vector for a destination
is not updated beyond a given amount of time, the vector is destroyed. This
ensures that a cell only maintains information that is relevant to the current set
of queries deployed in the stream processing system, and furthermore prevents
cell size from exploding arbitrarily.

3.6 Queueing Model

In this section we summarize the queueing-based flow performance model, pre-
sented in [16], which is utilized by ants in our algorithm to estimate the queueing
delay experienced by a data packet in a server.

We define a flow as a path in a flow graph from a producer to a consumer that
consists of an ordered sequence of tasks. Each server hosts a subset of the queries
deployed in the stream processing network. This subset can consist of a number
of logically unrelated segments of various flows, denoted as F . The service time
of a flow is the sum of the service times of the tasks in the flow. Since some
tasks are executed more than once if their ancestors in the execution sequence
produce more than one event, batch sizes are incorporated in this calculation.
For a given flow f , let θi be the set of tasks in the path from task ti to the root
task t1, the entry task for events in this flow, with θ1 = {}. Let Bj represent the
batch size of task tj , task i’s ancestor, such that j < i and j > 0. The service
time Sf of a flow f ∈ F is the total amount of time a server is occupied due to
an incoming event arriving at f , and this can be calculated as:

Sf =
∑

i

Si

∏

j|tj∈θi

Bj . (3)

The key insight driving the method in [16] is to first aggregate the input streams
to a server into a single stream and simulate the behavior of all task flows
through the server as one flow. Marginal metrics for individual flows can then be

Biologically-Inspired Distributed Middleware Management 11

computed from the combined result. The aggregation/disaggregation approach
proposed by Whitt [31] for servers with multiple incoming streams and multiple
flows is appropriate for computing this. We begin by presenting the aggregation
formulas applicable to our model.

The aggregate flow service rate, µ̂, the sum of the expected values of indi-
vidual flow service rates, can be computed as:

µ̂ =
λ̂∑
f

λf

µf

. (4)

where µf = 1
Sf

is the service rate of flow f and λf is its input rate, and the

aggregate λ̂ is the sum of the expected values of the individual flow input rates.
The squared coefficient of variance for all the flow service times can be computed
as:

c2
s =

µ̂2

λ̂

∑

f

λf

µ2
f

(c2
sf

+ 1)

− 1 . (5)

where c2
sf
≡ σ2[Sf]

E[Sf]2 is the squared coefficient of the variance of flow f in which
E[Sf] is the flow’s mean service time, and σ2[Sf] is the variance of the flow’s
service time. Assuming a general distribution for arrivals, Whitt’s formula [31]
can be used:

ĉ2
a = (1− w) + w

∑

f

c2
af

λf

λ̂

 . (6)

where
w = [1 + 4(1− ρ)2(v − 1)]−1 . (7)

where
v = [Σf (

λf

λ̂
)2]−1 . (8)

where c2
af

is the coefficient of variance for the flow f , and ρ = λ̂
µ̂ , is the load.

We can now use these to compute the expected queueing delay, Qf , for a
given flow in a server via a G/G/1 approximation due to Marchal[32]:

Qf =
(

ρ

1− ρ

) (
ĉ2
a + ĉ2

s

2

) (
1
µ̂

)
. (9)

We can now compute the expected latency Lf of a flow f through a server
as the sum of its expected service time and the queueing delay:

Lf = Qf + Sf . (10)

We can model the delay experienced by a packet across a network link in
the standard way employed in queueing theory. The link is modeled as a server,
and a packet on the link experiences a queueing delay and a transmission delay.
The queueing delay is a function of the link bandwidth and size of the messages
crossing the link.

12 Biologically-inspired Distributed Middleware Management

3.7 Scouting Ants: Hypothetical Placement

Once a threshold number of routing ants return, the selected leader dispatches
multiple scouting ants. Each scouting ant carries information about the tasks
in the subquery to be placed, as well as the ID of the server hosting CS , the
cell releasing the scout, and D, the ant’s destination which is the consumer con-
nected to the subquery. Each scouting ant will explore, in parallel with its team
members, one hypothetical alternative for placing these tasks along a path from
the given producer to the consumer. Exploration proceeds along cells selected
on a hop-by-hop basis using the weighted probabilities in the pheromone vec-
tor in each cell. At each cell residing at a server, the scouting ant computes a
hypothetical placement of tasks in the subquery. It uses a queueing model to
estimate: (1) The given servers contribution to the latency of the hypothetically
placed tasks, denoted as Lnew; (2) the computational time of other tasks cur-
rently deployed on this server, denoted as Lprev, given the hypothetically placed
tasks. Hypothetical placement calculations do not affect actual placement. The
computational time of tasks currently deployed on the server has to be taken
into account because it is affected and augmented by the additional stream vol-
ume introduced by a hypothetically placed task. In particular, when a new data
stream is directed through a server, it affects the queueing delay experienced
by data packets in all other data streams flowing through the server, and con-
sequently affects the time it takes to service tasks on these other data streams.
The ant greedily places tasks on a server provided that the sum of Lnew and
Lprev does not exceed a user-specified delay threshold, LT :

Lnew + Lold < LT . (11)

The queueing model summarized in the previous section is used to perform
this estimate. If the delay threshold, LT , is not specified by the user, then the
ant ensures that the load on a server resulting from the combined existing and
hypothetical flows does not become unacceptable. Specifically, the ant ensures
that the load on a server, defined as ρ = λ̂

µ̂ in section 3.6, where λ̂ is the sum of
the expected values of the individual stream input rates and µ̂, the sum of the
expected values of individual stream service rates, is strictly less than a constant
α, α ∈ [0, 1].

A parameter g, such that g > 0 and g ∈ Z, represents the level of greediness of
the scout, and controls the number of tasks the scout is willing to hypothetically
place on the server, which is not necessarily the maximum number of tasks that
can be placed on the server without violating the delay threshold, before moving
on to the next server. The leader initializes scouts with randomly generated
values for the parameters α and g.

At each cell, the scout records in its placement report (a) the ID of the server
at which the cell resides, (b) which tasks it is placing on the server, and the sum
of (c) the component of the latency of the hypothetically placed subquery at that
server, and the impact on the latency of tasks in other subqueries deployed at
that server. It then crawls to the next cell, using the pheromone vector exactly
as the routing ants do. If it reaches the destination D without having been able

Biologically-Inspired Distributed Middleware Management 13

to place all of its tasks, it declares failure and remains at the cell, CD, in the
destination server. If a number of failed scouts that traversed the same path with
different levels of greediness, g, accumulate at CD, one of them re-traces its steps
to CS and applies a negative reinforcement to the path in order to discourage
future ants from pursuing the same path. If the scout succeeds in placing the
tasks, it retraces its steps, and presents its scouting report to the producer. On
its reverse path, the scout may conduct local load balancing of hypothetically
placed tasks by estimating and comparing the service times of the same task on
adjacent servers, and moving the task to the server on which placement is more
efficient.

3.8 Enforcement Ants

If a scout succeeds in hypothetically placing all the tasks of the subquery, it
returns to its dispatch leader, carrying a scouting report, consisting of the com-
plete hypothetical placement, together with the latency statistics it recorded at
each step. The leader waits a designated period of time for scouts to return.
When a threshold number of scouts return the leader selects the best scouting
report and dispatches enforcement ants to perform the placement outlined in
this report. If a timeout occurs with too few scouts returning successfully, the
leader may send out more scouts. Although, generally, the leader will wait for
a threshold number of reports to return before making a decision about which
placement to execute, if one of the scouts returns with an outstanding report, i.e.
one with that has insignificant computational impact on the servers, the leader
will proceed to execute this report without completing its wait for a threshold
number of scouts to return. Before executing placement at each node, the en-
forcement ant will recalculate the placement cost of tasks that need to be placed
at each server, and compare this against the statistics in the scout report. If the
current cost of placement exceeds the cost stated in the scout’s report by more
than a threshold, the enforcement ant will return without executing placement,
and the as a result the leader will dispatch more routing and scouting ants to
discover other potential placements of the subquery. Thus, our placement strat-
egy is most effective when local network conditions do not change significantly
during the placement of a subquery.

Once the subquery has been placed, placement is recursively executed for
other linear task chains in the flow graph. If a query has more than one producer,
join points in the query are selected and the placement algorithm is recursively
executed from each of these producers to this join point. Specifically, the ID of
a server hosting a join point for a query is initialized as the destination in the
routing, scouting and enforcement ants. These ants are released in parallel from
each of the other producers of the query, and they are responsible for completing
the placement of the subqueries that connect to the join point. For instance in
Figure 1(b), the first subquery comprising of the chain of operators F1, J1 and
J2 is placed. Then placement is re-executed from P1 to place F3 with J2 as
the destination and from P3 to place F2 with J1 as the destination. If a query
has fan-out, then multiple scouting and routing ants are dispatched from the

14 Biologically-inspired Distributed Middleware Management

producer to the point of fan-out. From this point the ants are dispatched in
parallel to each consumer, in order to establish paths and place the remaining
parts of the query between the point of fan-out and the other consumers. For
instance in Figure 1(d), the first subquery comprising of the chain of operators
F1, S2, and A4 is placed. Then placement is re-executed from S2 to place A3
with C1 as the destination, and from S2 to place A5 with C3 as the destination.

3.9 Updating Placement

Once a leader completes the placement of a query through enforcement ants,
it periodically dispatches routing and scouting ants to seek more appropriate
placements of the query in response to changing network conditions, such as
changes in message rates, or changes in the network topology. The number of
routing and scouting ants and the frequency with which they are periodically
dispatched by a leader are initialized as user assigned parameters. The routing
ants update routes to the consumers of the query. The scouting ants traverse
the updated routes to determine new potential placements for the query. The
leader periodically retrieves the current end-to-end service time for a query by
sending an ant along the path on which the query is placed, and compares this
with the service time of hypothetical placement reports of the query gathered by
scouts. If the end-to-end latency of a hypothetical placement of a query is less
than its most recently retrieved end-to-end latency (resulting from an existing
deployment) by a factor β, such that β > 0 and β ∈ R≥0, then the leader
dispatches enforcement ants to execute the new placement of the query, and
discontinue the previous placement of the query. In the case where the query
has one or more stateful tasks that must be moved as a result of the change in
placement, there is a problem of conveying the state from the old location to the
new location, or reconstructing the state at the new location. There are several
well known techniques that address this [15, 29, 30], and we intend to examine
this in future work.

Placement can also be explicitly updated by a user-initiated request in re-
sponse to changes in performance or resource or flow graph characteristics. Users
can initiate an updated query placement request accompanied with a request to
terminate the deployment of the previous version of the query or request relevant
producers to incrementally redo placement of one or more queries.

3.10 Task Reuse

Operator reuse is incorporated into our model. When a scouting ant conducts hy-
pothetical placement of a task on a server, it retrieves the currently hosted tasks
on that server. If the scout finds a reusable task that produces the same result as
the task to be placed, it reuses this task instead of hypothetically instantiating
a new instance. When executing a placement order by the leader, enforcement
ants first check for reusable tasks on each node instead of instantiating a new
instance.

Biologically-Inspired Distributed Middleware Management 15

4 Experimental Evaluation

To evaluate the performance of our algorithm we implemented a discrete event
simulator in Java. We randomly generated queries with both fan-in and fan-out.
Each edge in a query graph is labelled with: (1) the message input rate in units
of messages/millisecond, and (2) the message size in units of bytes/message.
For each task, we define its mean service time in terms of a virtual work unit
(VWU), which corresponds to a time unit (say, 1 second) on some standard
machine such as an IBM ThinkPad T40. The VWU concept is mainly intro-
duced to accommodate different processing capacities of the machines. Tasks in
our queries include query operators such as SELECT, JOIN, PROJECT, AG-
GREGATION and SPLIT. Producers and consumers are assumed to be pinned
to machines in the network. Although we randomly generated queries, we used
meaningful values for the data on query edges and tasks that emulate workloads
of data streams in the financial services industry.The network topology fed to the
simulator was a transit-stub topology, generated by the GT-ITM internetwork
topology generator. Nodes and links are assigned processing and communication
capacities from discrete classes to simulate a heterogeneous system. The machine
processing capacities are defined in units of VWU/millisecond such that if a T40
ThinkPad has processing capacity of 1, then a twice as fast machine would have
a capacity of 2.

For comparison, we also implement three other common approaches: optimal,
random and centralized. The optimal algorithm chooses the best possible place-
ment with the lowest end-to-end latency based on an exhaustive search over all
possible placements. The random algorithm selects a server for hosting each task
at random and serves as a worst case comparison. We also compare against a
centralized placement algorithm [16] whose goal is to produce an assignment of
unpinned tasks to servers such that the expected average latency from producers
to consumers over all paths is minimized. The centralized algorithm also utilizes
a queueing model of the flow graph to determine how to compute the expected
latencies due to the combination of delays for a given assignment. It employs
a steepest descent search to find an approximate solution to the problem of
minimizing the latencies. The algorithm accepts one flow graph as input which
represents the concatenation of all queries that need to be placed. Placement of
the entire flow graph has to be recomputed each time a new query needs to be
placed, or there is a change in the data or network characteristics.

We evaluate our ant-inspired algorithm in terms of (1) the quality of its solu-
tion, (2) its adaptability and self-management capabilities, and (3) its scalability.
Figure 2(a) compares the end-to-end latency of a flow graph placed by the op-
timal algorithm with our ant-inspired decentralized algorithm for an increasing
number of query tasks. We observe that although the ant-inspired decentral-
ized algorithm does not guarantee optimal results, the end-to-end latency of the
query graph placed by it is not much worse than the end-to-end latency of the
query graph placed by the optimal algorithm. Figure 2(b) compares the average
end-to-end latency of all queries deployed on the network by the centralized, ran-
dom and optimal algorithms with our ant-inspired decentralized algorithm. The

16 Biologically-inspired Distributed Middleware Management

total number of queries placed is 100. In this experiment 100 ants are released
from each producer every 5 seconds. We observe that our ant-inspired decen-
tralized algorithm consistently achieves better performance than other heuristic
algorithms and similar performance as the optimal algorithm. While conducting
this experiment, we also recorded the predicted running time of our distributed
algorithm as output by our simulator and compared it against the running time
of the centralized algorithm. We find that for queries compiled into flow graphs
with more than 150 nodes, the centralized algorithm takes on the order of hours
to run, where as the predicted running time of our algorithm is on the order of
seconds.

(a) (b)

Fig. 2. Evaluation of the quality of our algorithm’s placement solution. (a) Comparison
of end-to-end latency achieved for increasing number of query tasks. (b) Comparison
of end-to-end latency achieved for increasing number of queries.

Second, we evaluate the effectiveness of dynamically updating placement dur-
ing runtime by our algorithm in response to changes in data characteristics. Fig-
ure 3(a) shows the variation in end-to-end latency for a 10-node query graph with
and without self-optimization while network conditions are changing. During the
100 second simulation, the data rates at all producers of the query are increased
by 10 ms at time 20 and then again by the same amount at time 60. We sample
the end-to-end latency of the query every 10 seconds. The performance with self-
optimization involving dynamic placement updates is clearly better than without
self-optimization. Figure 3(b) shows the variation in average end-to-end latency
for 200 concurrently executing queries with and without self-optimization in re-
sponse to new queries being placed. 50 additional queries are placed at time 20
and at time 60. We observe that our decentralized and incremental algorithm
generates a globally improved solution, as the average end-to-end latency over
all queries, with self-optimization, decreases. We also observe that the change
in average end-to-end latency consistently decreases and reaches a point where
it stops decreasing, indicating that our algorithm does not continue to update
placement indefinitely.

Biologically-Inspired Distributed Middleware Management 17

(a) (b)

Fig. 3. Evaluation of our algorithm’s adaptability and self-optimization capabilities.
(a) End-to-end latency variation for a query with and without self-optimization when
data rates are increased at time 20 and at time 60. (b) Average end-to-end latency
variation of 200 concurrently executing queries with and without self-optimization when
50 additional queries are added at time 20 and at time 60.

Recall from section 3.9 that a decision to discontinue a query’s placement
and move it to a new placement is made when the end-to-end latency of a
hypothetical placement of the query is less than its most recently retrieved end-
to-end latency (resulting from an existing deployment) by a factor β, such that
β > 0 and β ∈ R≥0. We calculate the loss in end-to-end latency incurred due
to sub-optimal deployments of a 10-node query using different values of β in
the presence of network perturbations (cross-traffic). The results are shown in
Table 1. The loss is calculated as the integral over time of the difference between
the maximum achievable end-to-end latency and the current end-to-end latency
of the deployed flow-graph. The loss incurred is sufficiently low for a large number
of values of β, and thus an appropriate value for β can be used to trade-off latency
for a lower number of placement updates.

Table 1. Loss and number of placement updates for different values of β.

β Number of Placement Updates Latency-Loss (ms)

1.1 15 0

1.25 10 25.87

1.5 7 59.23

1.75 2 78.67

2.0 1 101.23

Finally, we evaluate the scalability of the our algorithm illustrated by Fig-
ure 4. We use different distributed stream processing systems with 200 to 600

18 Biologically-inspired Distributed Middleware Management

nodes. As we add more nodes into the distributed stream processing system, the
number of candidate servers for hosting tasks increases proportionally, so as to
increase the capacity of the distributed stream processing system. We impose the
same workload of 300 queries on those different distributed stream processing
systems. Figure 4 shows the performance comparison results. We observe that
our algorithm achieves similar scaling property as the optimal algorithm. For
this experiment, we also recorded the message overhead added by our algorithm
to the traffic in the network. We find that, on average, ant messages occupy
0.01% of the traffic on a link in the network of 200 nodes, and 0.022% of the
traffic on a link in the network of 600 nodes.

Fig. 4. Scalability of our algorithm: success rate of deploying 300 queries on distributed
systems with different number of nodes.

5 Conclusion and Future Work

In this paper we have presented a biologically-inspired, distributed placement
algorithm that reacts on-the-fly to placement requests of new flow graphs or to
modifications of an already running stream processing flow graph, and dynami-
cally adapts to changes in performance characteristics such as message rates or
service times as well as to changes in processor availability or link performance
during runtime. Our incremental algorithm is inspired by pheromone-based co-
operation in ants and possesses many good properties that emerge as a result
of this analogy such as completely decentralized control and no requirements
for global state. Our simulation results show that our algorithm maintains scal-
able and effective self-management, while achieving high quality placement in
terms of end-to-end latency. Although we choose to optimize placement for end-
to-end latency, our model is generic enough to incorporate other metrics such
as bandwidth or the product of bandwidth and latency. Instead of recording
time at every hop along their forward routes, routing ants can record other met-
ric related information from links and servers and use it to create and update

Biologically-Inspired Distributed Middleware Management 19

pheromone entries on their return routes. Although we discussed and evaluated
our algorithm in the context of tasks which are database query operators, it is
applicable to the placement of any sequence of tasks on streams of data.

As future work we plan to develop a theoretical model of our algorithm and
prove its correctness given concurrent placement of tasks by ants. We also in-
tend to define some load placement primitives for each ant in order to prevent
situations where placement continuously oscillates between two or more config-
urations. This can occur when data rates are particularly bursty. In addition
to a queueing model, we would like to explore other methods to estimate the
cost of hypothetical placement that are more suitable for real stream processing
systems. We also intend to implement our algorithm on a real stream processing
system.

References

1. Harmer, P.K., Williams, P.D., Gunsch, G.H., Lamont, G.B: An artificial immune
system architecture for computer security applications. J. Evolutionary Computa-
tion, VOL. 23, NO. 6, 252–280 (2002).

2. Werner-Allen, G., Tewari, G., Patel, A., Welsh, M., and Nagpal, R.: Firefly-Inspired
Sensor Network Synchronicity with Realistic Radio Effects. ACM Conference on
Embedded Networked Sensor Systems, (2005).

3. Suzuki J. and Suda T.: A Middleware Platform for a Biologically Inspired Network
Architecture Supporting Autonomous and Adaptive Applications. IEEE Journal
On Selected Areas In Communications, VOL. 23, NO. 2, 249–260, (2005).

4. Lee, S-Y., Chang, H. S.:An ant system based multicasting in mobile ad hoc network.
IEEE Congress on Evolutionary Computation, VOL. 2, 1583–1588, (2005)

5. Bonabeau, E., Dorigo, M., Theraulaz, G.: Swarm Intelligence. Oxford University
Press, (1999)

6. Di Caro G. and Dorigo M.: AntNet: Distributed Stigmergetic Control for Com-
munucation Networks. Journal of Artificial Intelligence Research 9 (1998): 317-365.

7. Exploratory Stream Processing Systems, http://domino.research.ibm.com/

comm/research_projects.nsf/pages/esps.index.html

8. Financial Services: Real Time Data Processing with a Stream Processing Engine.
White paper. http://www.streambase.com/knowledgecenter.htm

9. Abadi, D., et al.: The design of the borealis stream processing engine. In: Proceed-
ings of CIDR, Asilomar, CA. (2005)

10. Cherniack, M. et al.: Scalable Distributed Stream Processing. In Conference on
Innovative Data Systems Research, (2003).

11. Motwani, R., et al.: Query Processing, Resource Management, and Approximation
in a Data Stream Management System, In Conference on Innovative Data Systems
Research, (2003).

12. Chandrasekaran, S. et al.: TelegraphCQ: Continuous Dataflow Processing for an
Uncertain World, In Conference on Innovative Data Systems Research, (2003).

13. Damani, O., Strom, R.: Smart Middleware and Light Ends for Simplifying Data
Integration, In Conference on Information Reuse and Integration, (2006).

14. Srivastava, U., Mungala, K., Widom, J.: Operator Placement for In-Network
Stream Query Processing. Proc. Principles of Distributed Systems, pp. 250-258,
(2005).

20 Biologically-inspired Distributed Middleware Management

15. Shah, M., Hellerstein, J., Chandrasekaran, S., Franklin, M.: Flux: An adaptive
partitioning operator for continuous query systems. International Conference on
Data Engineering, (2003).

16. Pandit, V., Strom, R., Buttner, G., and Ginis, R.:Performance Modeling and Place-
ment of Transforms for Stateful Mediations, IBM Technical Report No. RI08002,
2004; http://www.domino.research.ibm.com/library/cyberdig.nsf/index.html

17. Amini, L., Jain, N., Sehgal, A., Silber, J., Verscheure, O.: Adaptive control of
extreme-scale stream processing systems. International Conference on Data Engi-
neering, (2006).

18. Wolf, J., et al. SODA: An Optimizing Scheduler for Large-Scale Stream-Based
Distributed Computer Systems. ACM Middleware, (2008).

19. Pietzuch, P., Ledlie, J., Shneidman, J., Roussopoulos, M., Welsh, M., Seltzer, M.:
Network-aware operator placement for stream-processing systems. In: Proc. of 22nd
ICDE, (2006)

20. Ahmad, Y., Cetintemel, U.: Network-aware query processing for stream-based ap-
plications. In: Proceedings of Very Large Data Bases (VLDB), (2004).

21. Repantis T., Gu, X., Kalogeraki, V.: Synergy: Sharing-aware component compo-
sition for distributed stream processing systems. ACM Middleware, pp. 322-341
(2006).

22. Balazinska, M., Balakrishnan, H., Stonebraker, M.: Contract-based load manage-
ment in federated distributed systems. Symposium on Networked Systems Design
and Implementation, (2004).

23. Zhou, Y., Ooi, B., Tan, K., Wu, J.: Efficient dynamic operator placement in a
locally distributed continuous query system. International Conference on Cooper-
ative Information Systems, (2006).

24. Kumar, V., Cooper, B., Schwan, K.: Distributed stream management using utility-
driven self-adaptive middleware. International Conference on Autonomic Comput-
ing, (2005).

25. Gu, X., Yu, P., Nahrstedt, K.: Optimal component composition for scalable stream
processing. In: 25th IEEE ICDCS, Columbus, OH (2005).

26. Maniezzo V., Colorni A., and M. Dorigo: The Ant System Applied to the Quadratic
Assignment Problem. IEEE Transactions on Knowledge and Data Engineering
11(5), 769 (1998).

27. Colorni A., Dorigo M., Maniezzo V., Trubian M.: Ant System for Job-Shop
Scheduling. JORBEL Belgian Journal of Operations Research, Statistics and Com-
puter Science 34, 39–53 (1994).

28. Balazinska, M., Hwang, J.-H., Shah, M.:Fault-tolerance and high availability in
data stream management systems. To appear in Encyclopedia of Database Sys-
tems.

29. Liu, B., Zhu, Y., Jbantova, M., Momberger, B., Rundensteiner, E.:A dynamically
adaptive distributed system for processing complex continuous queries. In: Pro-
ceedings of Very Large Data Bases (VLDB), (2005).

30. Yang, Y., Kramer, J., Papadias, D., Seeger, B.: HybMig: A Hybrid Approach to
Dynamic Plan Migration for Continuous Queries. IEEE Transactions on Knowledge
and Data Engineering, Volume 19, Issue 3, Page(s):398–411, (2007).

31. Whitt, W.: The queueing network analyzer. Bell Systems Technical Journal,
66:2779-2813, (1983).

32. Marchal, W.: Some simpler bounds on the mean queueing time. Operations Re-
search, 22:1083-1088, (1978).

