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Abstract. Users and administrators of large-scale infrastructures (e.g., datacen-
ters and PlanetLab) are frequently in need of monitoring groups of machines
in the infrastructure. Though there exist several distributed querying systems for
this monitoring purpose, they are not group-based; they mostly focus on querying
the entire system. In this paper, we present Moara, a new querying system that
makes two novel contributions. First, Moara builds aggregation trees for differ-
ent groups and adaptively maintains the trees to optimize the total message cost.
Second, Moara supports a query language allowing groups to be specified implic-
itly via predicates consisting of arbitrarily nested unions and intersections. Our
evaluations on Emulab, on PlanetLab, and with large-scale simulations, demon-
strate Moara’s ability to answer complex queries within a fraction of a second,
to deal with high levels of dynamism in groups, and to incur a low bandwidth
overhead per host per query in comparison to existing centralized and distributed
aggregation systems.

1 Introduction
Large-scale distributed infrastructures have become increasingly common in various
domains. Today’s enterprise data centers [1] are equipped with thousands of machines
and run thousands of different applications and services. Federated computing infras-
tructures such as PlanetLab [2], proposed GENI infrastructure [3], and computational
grids [4] consist of thousands of hosts providing resources for a number of projects.

A frequent need of the users and the administrators of such infrastructures is moni-
toring and querying the status of groups of machines in the infrastructure, as well as the
infrastructure as a whole. These groups may be static or dynamic, e.g., the PlanetLab
slices, the machines running a particular service in a datacenter, or the machines with
CPU utilization above 50%. Further, users typically desire to express complex criteria
for the selection of the host groups to be queried. For example, “find top-3 loaded hosts
where (ServiceX = true) and (Apache = true)” is a query that targets two groups - hosts
that run service X and hosts that run Apache. Dynamic groups mean that the size and
composition of groups vary across different queries as well as time.

In general, users and administrators desire to monitor the performance of these
groups, to troubleshoot any failures or performance degradations, and to track usage
of allocated resources. These requirements point to the need for a group-based query-
ing system that can provide instantaneous answers to queries over in-situ data targeting
one or more groups. In fact, several existing distributed aggregation systems [5–7] can
be considered as a special case of group-based querying systems, as they target querying
of only a single group, i.e., the entire system.

Any group-based querying system should satisfy three requirements: flexibility, effi-
ciency, and scalability. First, the system should be flexible to support expressive queries
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that deal with multiple groups, such as unions and intersections of different groups. Sec-
ond, the system should be efficient in query resolution—it should minimize the message
overhead while responding quickly with an answer. Third, the system should scale with
the number of machines, the number of groups, and the rate of queries.

In this paper, we propose Moara, a new group-based distributed aggregation sys-
tem that targets all three requirements. A query in Moara has three parts: (query-
attribute, aggregation function, group-predicate), e.g., (Mem-Util, Average, Apache =
true). Moara returns the resulting value from applying the aggregation function over the
values of query-attribute at the machines that satisfy the group-predicate.

Moara makes two novel design contributions over existing systems [5–7]. First,
Moara maintains aggregation trees for different groups adaptively based on the under-
lying environment and the injected queries to minimize the overall message cost and
query response time. Basically, the aggregation tree for a group in Moara is an op-
timized sub-graph of a global spanning tree, which spans all nodes in the group. By
aggregating data over these group-based aggregation trees, Moara achieves lower mes-
sage cost and response latency for queries compared to other aggregation systems that
contact all nodes. Further, we adapt each aggregation tree to deal with dynamism.

Second, Moara’s query processor supports composite queries that target multiple
groups simultaneously. Composite queries supported by Moara are arbitrary nested set
expressions built by using logical operators or and and, (respectively set operations ∪
and ∩) over simple group-predicates. Simple group-predicates are of the form (attribute
op value), where op ∈ {<, >,≤,≥, =, 6=}. Consider our previous example “find top-
3 loaded hosts where (ServiceX = true) and (Apache = true)”, which is a composite
query that targets the intersection of two groups - hosts that run service X and hosts
that run Apache. Instead of blindly querying all the groups present in a query, Moara’s
query processor analyzes composite queries and intelligently decides on contacting a
set of groups that minimizes the communication overhead.

We implemented a prototype of Moara by leveraging the FreePastry DHT (Dis-
tributed Hash Table) [8] and SDIMS [7] systems. Our evaluation consists of experi-
ments on Emulab [9] and PlanetLab, as well as large-scale simulations. Our experimen-
tal results indicate that, compared to previous global hierarchical aggregation systems,
Moara reduces response latency by up to a factor of 4 and achieves an order of magni-
tude bandwidth savings. Our scalability experiments confirm that Moara’s overhead for
answering a query is independent of the total number of nodes in the system, and only
grows linearly with the group size. Finally, we show that Moara can answer complex
queries within hundreds of milliseconds in systems with hundreds of nodes under high
group churn.

In this work, we focus on efficiently supporting one-shot queries (as opposed to re-
peated continuous queries) over a common set of groups, since we expect this type of
queries to be more common in the kind of infrastructures we are targeting at — dat-
acenters and federated computing systems. We expect most users will be performing
one-shot queries over common groups (e.g., the same PlanetLab slice, machines in a
datacenter, etc) during the time when their service or experiment is running. Further, a
user interested in monitoring groups continually can invoke one-shot queries periodi-
cally. Our use cases in Section 2 motivate this design decision further.
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Any distributed system subjected to dynamism in the environment, suffers from the
CAP dilemma [10], which states that it is difficult to provide both strong consistency
guarantees and high availability in failure-prone distributed settings. Moara treads this
dilemma by preferring to provide high availability and scalability, while providing even-
tual consistency guarantees on aggregation results. This philosophy is in line with that
of existing aggregation systems such as Astrolabe [6] and SDIMS [7]. Moara could also
allow the use of metrics proposed by Jain et al. [11,12] in order to track the imprecision
of the query results; however, studying these is beyond the scope of the current paper.

2 Motivation and Use Cases
We highlight the need for on-demand flexible querying and for dealing with dynamism
by presenting two motivating scenarios - data centers and federated infrastructures.

Consolidated Data Centers: In the last few years, medium and large-scale enter-
prises have moved away from maintaining their own clusters, towards subscribing to
services offered by consolidated data centers. Such consolidated data centers consist of
multiple locations, with each location containing several thousands of servers [1]. Each
server runs heterogeneous operating systems including virtual machine hosts. While
such consolidation enables running unified management tasks, it also introduces the
need to deal with scale.

Workloads on these data centers typically include Terminal Services, SOA-based
transaction workloads (e.g., SAP), and Web 2.0 workloads, e.g., searching and collab-
oration. Figure 1 presents some on-demand one-shot queries that data center managers
and service owners typically desire to run on such a virtualized enterprise. Several of
these one-shot queries are for aggregating information from a common group of nodes
including cases where groups are expressed as unions of groups (e.g., the third query
in table), or intersections (e.g., the last query). We would like to generalize this to pro-
vide managers with a powerful tool supporting flexible queries using arbitrarily nested
unions and intersections of groups. In addition, these workloads vary in intensity over
time, causing considerable dynamism in the system, e.g., terminal services facing high
user turnaround rates.

Federated Computing Infrastructures: In today’s federated computing infras-
tructures such as PlanetLab [2] and global Grids [4], as well as in proposed infrastruc-
tures, e.g., GENI [3], users wish to query current statistics for their distributed applica-
tions or experiments. For instance, PlanetLab creates virtual subgroups of nodes called
“slices” in order to run individual distributed applications. Monitoring is currently sup-
ported by tools such as CoMon [13] and Ganglia [14], which periodically collect CPU,
memory, and network data per slice on PlanetLab [2]. Due to their periodic nature, they
are not open to on-demand queries that require up-to-date answers. Further, increasing
the frequency of data collection is untenable due to storage and communication costs.

In contrast to the above systems, we need a system to answer one-shot queries that
seek to obtain up-to-date information over a common group of machines, that can be run
on-demand or periodically by an end-host, and are flexibly specified. Some examples of
our target queries include: number of slices containing at least one machine with CPU
utilization > 90% (basic query), CPU utilization of nodes common to two given slices
(intersection query), or free disk space across all slices in a given organization (union
query).
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Tasks Queries
Resource Allocation Average utilization for servers belonging to (i) floor F, (ii) cluster C, (iii) rack R

Number of machines/VMs in a given cluster C
VM Migration Average utilization of VMs running application X version 1 or version 2

List of all VMs running application X and are VMWare based
Auditing/Security Count of all VMs/machines running firewall

Count of all VMs running ESX server and Sygate firewall
Dashboard Max response time for Service X

Count of all machines that are up and running Service X
Patch management List of version numbers being used for service X

Count of all machines that are in cluster C and running service X.version Y

Fig. 1: Illustrative Queries for Managing the Virtualized Enterprise
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Fig. 2: (a) Usage of PlanetLab nodes by different slices. We show both node assignment to slices
and active usage of nodes. Data collected from a CoTop snapshot [15]. (b) Usage of HP’s utility
computing environment by different animation rendering jobs. We show the number of machines
each job uses.

Need for Group-based Aggregation: As illustrated by above two target scenarios,
we expect that most of the queries are one-shot queries over common groups of ma-
chines. Moreover, the predicate in a query specified as a logical expression involves
several groups, e.g., some groups in the above examples include the set of nodes in a
PlanetLab slice, the set of nodes running a given Grid task, the set of nodes with CPU
utilization > 90%, etc. In the worst case, such a group may span the entire system.

In practice though, we expect the group sizes to vary across different queries and
with time. In Figure 2(a), we plot the distribution of PlanetLab slice sizes, analyzed
from an instance of CoMon [13] data. Notice that there is a considerable spread in
the sizes. As many as 50% of the 400 slices have fewer than 10 assigned nodes, thus a
monitoring system that contacts all nodes to answer a query for a slice is very inefficient.
If we consider only nodes that were actually in use (where a slice has more than one
process running on a node), as many as 100 out of 170 slices have fewer than 10 active
nodes. In another example case, Figure 2(b) presents the behavior of two jobs over a
20-hour period from a real 6-month trace of a utility computing environment at HP with
500 machines receiving animation rendering batch jobs. This plot shows the dynamism
in each group over time.

These trace studies indicate that group sizes can be expected to be varying across
time in both consolidated centers as well as in federated computing infrastructures.
Thus, an efficient querying system has to avoid treating the entire system as a single
group and globally broadcasting queries to all nodes.
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3 The Basics of Moara
In this section, we first discuss how Moara end-nodes maintain data and how queries
are structured. Then we discuss how Moara builds trees for individual groups.

3.1 Data and Query Model
Information at each node is represented and stored as (attribute, value) tuples. For ex-
ample, a machine with CPU capacity of 3Ghz can have an attribute (CPU-Mhz, 3000).
Moara has an agent running at each node that monitors the node and populates (at-
tribute, value) pairs.

A query in Moara comprises of three parts: (query-attribute, aggregation function,
group-predicate). The first field specifies the attribute of interest to be aggregated, while
the second field specifies the aggregation function to be used on this data. We require
this aggregation function to be partially aggregatable. In other words, given two partial
aggregates for multiple disjoint sets of nodes, the aggregation function must produce
an aggregate that corresponds to the union of these node sets [6, 7]. This admits aggre-
gation functions such as enumeration, max, min,sum, count, or top-k. Average can be
implemented by aggregating both sum and count.

The third field of the query specifies the group of machines on which the above
aggregation is performed. If no group is specified, the default is to aggregate values
from all nodes in the system. A group-predicate (henceforth called a “predicate”) is
specified as a boolean expression with and and or operators, over simple predicates of
the following form: (group-attribute op value), where op ∈ {<, >,=,≤,≥, 6=}. Note
that this set of operators allows us to implicitly support not in a group predicate. Any
attribute that a Moara agent populates can be used as either query-attribute or group-
attribute.

A simple query contains a simple predicate. For example, the simple predicate (Ser-
viceX = true) defines all machines running ServiceX. Thus, a user wishing to compute
the maximum CPU usage across machines where ServiceX is running will issue the
following query: (CPU-Usage, MAX, (ServiceX = true)). Alternately, the user could
use a composite predicate, e.g., (ServiceX = true and Apache = true). This composite
query is defined with set operators ∪ and ∩.

Note that the query model can be easily extended so that instead of a query-attribute,
a querier can specify any arbitrary program that operates upon simple (attribute, value)
pairs. For example, a querier can specify a program that evaluates (CPU-Available >
CPU-Needed-For-App-A) as query-attribute, to see how many nodes are available for
the application A. Similarly, group-predicate can be extended to contain multiple at-
tributes by defining new attributes. For example, we can define a new attribute att as
(CPU-Available > CPU-Needed-For-App-A), which takes a boolean value of true/false.
Then att can be used to specify a group. However, for this paper, we mainly focus on the
techniques for efficiently answering the queries for given group-predicates and hence
restrict query model to contain only simple attributes.

3.2 Scalable Aggregation
We describe here how Moara aggregates data for each group.

DHT trees: For scalability with large number of nodes, groups, and queries, Moara
employs a peer-to-peer in-network aggregation approach that leverages the computing
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and network resources of the distributed infrastructure itself to compute results. These
trees are used for spreading queries, and aggregating answers back towards the source
node. In our architecture, a lightweight Moara agent runs at each server from which
data needs to be aggregated. These agents participate in a structured overlay routing
algorithm such as Pastry [8], Tapestry [16], or Chord [17]. These systems allow routing
within the overlay, from any node to any other node, based on the IDs of these nodes
in the system. Moara uses this mechanism for building aggregation trees called DHT
trees, akin to existing systems [7, 18, 19]. A DHT tree contains all the nodes in the
system, and is rooted at a node that maps to the ID of the group. For instance, Figure 3
shows the tree for an ID with prefix 000 using Pastry’s algorithm with one-bit prefix
correction. We choose to leverage a DHT, since it handles physical membership churn
(such as failures and join/leave) very modularly and efficiently. Also, we can construct
aggregation trees clearly, given a group predicate.

Basics of Resolving Queries: Given a simple
000

111 110

010

011

001

101 100

Fig. 3: DHT tree for an ID with pre-
fix 000

query with predicate p, Moara uses MD-5 to hash
the group-attribute field in p and derives a bit-string
that stands for the group ID. The DHT tree for this
ID is then used to perform aggregation for this query,
e.g., Figure 3 shows the DHT tree for an attribute
“ServiceX” that hashes to 000.

When a simple query is generated at any node in
Moara, it is first forwarded to the root node of the
corresponding DHT tree via the underlying DHT
routing mechanism. The root then propagates it down-
wards along the DHT tree to the leaves. When a leaf receives a query, it evaluates the
predicate p in the query (e.g., ServiceX=true). If the result is true, it replies to its parent
the local value for the query attribute ( e.g., CPU-Usage). Otherwise, it sends a null
reply to its parent. An internal node waits to reply to its parent until all its children have
replied or until a timeout occurs (using values in Section 7). Then, it aggregates the val-
ues reported by its children, including its own contribution if the predicate is satisfied
locally, and forwards the aggregate to its parent. Finally, the root node replies to the
original querying node with the aggregated value.

Moara Mechanisms: The above “global aggregation” approach has every node
in the system receive every query. Hence, it is inefficient in resolving queries targeting
specific groups. Moara addresses this via three mechanisms.

First, Moara attempts to prune out branches of the tree that do not contain any
node satisfying the predicate p. We call this tree a pruned tree or a group tree for p.
For example, in Figure 3, if nodes 111, 110, and 010 do not satisfy the predicate, then
the root does not forward the query to 010. However, this raises a challenge – how do
internal nodes know whether any of their descendants satisfy the predicate. For instance,
if node 110 decides to install ServiceX and thus satisfies the predicate, the path from
the root to this node will need to be added to the tree. Further, if the composition of a
group changes rapidly, then the cost for maintaining the group tree can become higher
than query resolution costs. Section 4 presents Moara’s dynamic adaptation mechanism
that addresses this dilemma.
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Second, Moara reduces network cost and response latency by short-circuiting the
group trees, thus reducing the number of internal tree nodes that do not satisfy the pred-
icate. For instance, in Figure 3, if node 010 does not satisfy the predicate but node 110
does, then the former can be eliminated from the tree by having 110 receive queries
directly from the root. Section 5 describes how this reduces the bandwidth cost of ag-
gregating a group with m nodes in a system of N nodes, from O(m log N) to O(m).

Third, Moara efficiently resolves composite queries involving multiple groups by
rewriting the predicate into a more manageable form, and then selecting a minimal
set of groups to resolve the query. For example, an intersection query (CPU-Util, avg,
(floor=F1 and cluster=C12)) is best resolved by sending the query to only one of the
two groups - either (floor=F1) or (cluster=C12) - whichever is cheaper. This design
decision of Moara is detailed in Section 6.

4 Dynamic Maintenance
Given a tree for a specific group, Moara reduces bandwidth cost by adaptively pruning
out parts of the tree, while still guaranteeing correctness via eventual completeness.
Eventual completeness is defined as follows - when the set of predicate-satisfying nodes
as well as the underlying DHT overlay do not change for a sufficiently long time after
a query injection, a query to the group will eventually return answers from all such
nodes. For now, we assume that the dynamism in the system is only due to changes
in the composition of the groups (“group churn”); we will describe how our system
handles node and network reconfigurations (churn in system) later in Section 7.

To resolve queries efficiently, Moara could prune out the branches of the corre-
sponding DHT tree that do not contain any nodes belonging to the group. However,
to maintain completeness of the query resolution, Moara can perform such aggres-
sive pruning only if it maintains up-to-date information at each node about the status
of branches at that node. For groups with high churn in membership relative to the
number of queries (e.g., CPU-Util < 50), maintaining group status at each node for
all its branches can consume high bandwidth - broadcasting queries system-wide may
be cheaper. For relatively stable groups however (e.g., (sliceX = true) on PlanetLab),
proactively maintaining the group trees can reduce bandwidth and response times. In-
stead of implementing either of these two extreme solution points, Moara uses a dis-
tributed adaptation mechanism that, at each node, tracks the queries in the system and
group churn events from children for a group predicate and decides whether or not to
spend any bandwidth to inform its parent about its status.

Basic Pruning Mechanism: Each Moara node maintains a binary local state vari-
able prune for each group predicate. If prune for a predicate is true (PRUNE state),
then the branch rooted at this node can be pruned from the DHT tree while querying
for that predicate. Whenever a node goes from PRUNE to NO-PRUNE state, it sends
a NO-PRUNE message to its parent; the reverse transition causes a PRUNE message
to be sent. When the root or an internal node receives a query for this predicate, it will
forward the query to only those of its children that are in NO-PRUNE state.

Note that it is incorrect for an internal node to set its state for a predicate to PRUNE
based merely on whether it satisfies the predicate or not. One or more its descendants
may satisfy the predicate, and hence the branch rooted at the node should continue to
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receive any queries for this predicate. Further, an internal or a leaf node should also
consider the churn in the predicate satisfiability before setting the prune variable. For
example, suppose the predicate is (CPU-Util < 50) and a leaf node’s utilization is fluc-
tuating around 50% at a high rate. In this case, the leaf node will be setting and unsetting
prune variable, leading to a large number of PRUNE/NO-PRUNE messages.

Due to the above reasons, we define the prune variable as a variable depending on
two additional local state variables—sat and update. sat is a binary variable to track if
the subtree rooted at this node should continue receiving queries for the predicate. Thus
sat is set to 1 (SAT) if either the local node satisfies the predicate or any child node is
in NO-PRUNE state.

update is a binary state variable that denotes whether the node will update its prune
variable or not. So, when update = 1 (UPDATE state), the node will update the prune
variable; but, when update = 0 (NO-UPDATE state), the node will cease to perform
any updates to the prune variable irrespective of any changes in the local satisfiability,
or any messages from its children. In other words, a node does not send any PRUNE
or NO-PRUNE messages to its parent when it is in NO-UPDATE state. So, to ensure
correct operation, a node can move into NO-UPDATE state only after setting prune =
0. This guarantees that its parent will always send the queries for the predicate to this
node. Formally, we maintain the following invariants:

update = 1 AND sat = 1 =⇒ prune = 0
update = 1 AND sat = 0 =⇒ prune = 1

update = 0 =⇒ prune = 0
The transition rules for the state machine at each node is illustrated in Figure 4. Note

that a node sends a status update message to its parent whenever it moves from PRUNE
to NO-PRUNE state or vice-versa. This state machine ensures the following invariant –
each node in the system performs at least one of the following: (a) sends status updates
upwards to its parent, or (b) receives all queries from its parent. This invariant suffices
to guarantee eventual completeness because after the group stops changing, any node
that satisfies the predicate will be in SAT state. Therefore, the node and its ancestors
will all be in NO-PRUNE state, and thus the node will receive the next query. Our
technical report [20] elaborates with pseudo-code how Moara evaluates each variable.

Adaptation Policy: To decide the tran-

UPDATE
SAT

NO−PRUNE

Decided  by
dynamic
adaptation policy

SAT
NO−PRUNE

NO−UPDATE

NO−UPDATE

NO−SAT
NO−PRUNE

NO−SAT
PRUNE

UPDATE

SAT 1−>0

SAT 1−>0SAT 0−>1

SAT 0−>1

Start

Fig. 4: State machine for dynamic adaptation
mechanism

sition rules for the update state variable,
Moara employs an adaptation mechanism
that allows different policies. Our goal is
to use a policy that minimizes the overall
message cost, i.e., sum of both update and
query costs. In Moara, each node tracks
the total number of recent queries and lo-
cal changes it has seen (in the tree) - we
discuss details of how to keep track of re-
cent queries and local changes in our technical report [20]. Each node keeps two query
counts - qn, the number of queries recently received by the system while the node is in
NO-SAT state, and qs, the number of recent queries received by the system while it was
in SAT state. The node also keeps track of the number of times the sat variable toggled
between 0 and 1, denoted as c.



9

A node in NO-UPDATE state would exchange a total of BNU = 2× (qn +qs) mes-
sages with its parent (two per query), while a node in UPDATE state would exchange
BUP = c + 2 × qs messages (one per change, and two per query). Thus, to minimize
bandwidth, the transition rules are as follows: (1) a node in UPDATE state moves to
NO-UPDATE if BNU < BUP , i.e., 2×qn < c; (2) a node in NO-UPDATE state moves
to UPDATE if BNU > BUP , i.e., 2× qn > c. In order to avoid flip-flopping around the
threshold, we could add in hysteresis, but our current design performs well without it.

One corner issue with the above approach is that when a node is in the PRUNE
state, it does not receive any more queries and thus cannot accurately track qn. Note
that this does not affect the correctness (i.e., eventual completeness) of our protocol
but may cause unnecessary status update messages. To address this, the root node of
an aggregation tree in Moara assigns a sequence number for each query and sends that
number piggybacked along with the queries. Thus, any node that receives a query with
sequence number s is able to track qn using the difference between s and its own last-
seen query sequence number.

State Maintenance: By default, each node does not maintain any state, which is
considered as being in NO-UPDATE state. A node starts maintaining states only when
a query arrives at the node. Without dynamic maintenance, merely maintaining pruned
trees for a large number of predicates (e.g., a tree for each slice in the PlanetLab case
or a tree for each job in the data center) could consume very high bandwidth in an
aggregation system. With dynamic maintenance, pruning is proactively performed for
only those predicates that are of interest at that time. Once queries stop, nodes in the
aggregation tree start moving into NO-UPDATE state with any new updates from their
children and hence stop sending any further updates to their parents.

We note that a node in NO-UPDATE state for a predicate can safely garbage-collect
state information (e.g., predicate itself, recent events information, etc) for that predicate
without causing any incorrectness in the query resolution. So, once a predicate goes out
of interest, eventually no state is maintained at any node and no messages are exchanged
between nodes for that predicate. Several policies for deciding when to garbage-collect
state information are possible: we could 1) garbage-collect each predicate after a time-
out expires, 2) keep only the last k predicates queried, 3) garbage-collect the least fre-
quently queried predicate every time a new query arrives, etc. However, studying these
policies is beyond the scope of this paper. We also note that we do not consider DHT
maintenance overhead. In addition, note that global aggregation trees are implicit from
the DHT routing and hence require no separate maintenance overhead.

Finally, since Moara maintains state information for each predicate, it could be more
efficient if we aggregated different predicates. For example, predicates such as CPU-
Util > 50, CPU-Util > 60, and CPU-Util > 70 could be aggregated as one predicate,
CPU-Util > 50, so that Moara could maintain only one tree. This design choice requires
careful study on the tradeoff between the state maintenance overhead and the bandwidth
overhead incurred by combining different trees with the same attribute. This is outside
of the scope of this paper, since we focus on the tradeoff of the bandwidth overhead
based on the query rate and the group churn rate.
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5 Separate Query Plane

Given a tree that contains m predicate-satisfying nodes, using the pruned DHT trees
of the previous section may lead to O(m log N) additional nodes being involved in
the tree. These extra nodes would typically be internal tree nodes that are forwarding
queries down or responses up the tree, but which do not satisfy the predicate themselves.
This section proposes modifications to the protocol described in Section 4 in order to
reduce the traffic through these internal nodes.

Our idea is to bypass the internal nodes, thus creating a separate query plane which
involves mostly nodes satisfying the predicate. This optimizes the tree that we built
(Section 4) further by eliminating unnecessary internal nodes. This reduces the tree to
contain only O(m) nodes, and thus resolves queries with message costs independent of
the number of nodes in the system. Note that this technique has similarities to adapta-
tions of multicast trees (e.g., Scribe [18]), but Moara needs to address the challenging
interplay between dynamic adaptation and this short-circuiting.

To realize a separate query plane, each node uses the states, constraints and transi-
tions as described in Section 4. In addition, each node runs operations using two locally
maintained sets: (i) updateSet is a list of nodes that it forwards to its parent; (ii) qSet is a
list of children or descendant nodes, to which it forwards any received queries. We con-
sider first, for ease of exposition, modified operations only for nodes in the UPDATE
state. When a leaf node in UPDATE state begins to satisfy the tree predicate, it changes
to SAT state as described in Section 4 and sets its UpdateSet to contain its ID. In ad-
dition, when sending a NO-PRUNE message to its parent, it also sends the updateSet.
Each internal node in turn maintains its qSet as the union of the latest received update-
Sets from all its children, adding its own ID (IP and port) if the tree predicate is satisfied
locally. The leaf nodes do not need to maintain qSets since they do not forward queries.

Finally, each internal node maintains its updateSet by continually monitoring if
|qSet| < threshold, where threshold is a system parameter. If so, then updateSet is the
same as qSet, otherwise updateSet contains a single element that is the node’s own ID
regardless of whether the predicate is satisfied locally or not. Whenever the updateSet
changes at a node and is non-empty, it sends a NO-PRUNE message to its parent along
with the new updateSet informing the change. Otherwise, it sends a PRUNE message.

The above operations are described assuming that all nodes are in UPDATE state.
When a node is NO-UPDATE state, it maintains qSet and updateSet as described above,
but does not send any updates to its parent. For correctness, a node moving from UP-
DATE to NO-UPDATE state sends its own ID along with the NO-PRUNE message to
its parent so that it receives future queries.

If parameter threshold=1, the above mechanisms produce the pruned DHT tree de-
scribed in Section 4, while threshold > 1 gives trees based on a separate query plane.
This is because with threshold=1, an internal node that receives an updateSet from any
of its children will pass along to its parent an updateSet containing its own ID, even
if the predicate is not satisfied locally. However, with threshold > 1, the only inter-
nal nodes that do not satisfy the predicate locally but receive queries, are ones that are
maintaining a qSet of size ≥ threshold. Such nodes are required to receive queries so
that they can be forwarded to its descendants. However, the tree bypasses several other
nodes that do not satisfy the predicate, thus obtaining bandwidth savings. Specifically,
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an internal node that has |qSet| < threshold and does not satisfy the predicate, does not
include its own ID in the updateSet, and thus does not receive queries.

Having a high value of threshold in the sys-
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Fig. 5: Separate Query Plane for thresh-
old=1. We assume all nodes are in UP-
DATE mode. Each node’s qSet is shown
next to it, and updateSet on the link to its
parent.

tem bypasses several internal nodes in the tree.
However, this comes at the expense of a higher
update traffic since any updateSet changes need
to be communicated to the parent. Figure 5 shows
an example with threshold=1. The overhead of
forwarding a query in the separate query plane
is O(m) for a group with m nodes, independent
of system size (details can be found in our tech-
nical report [20]).

Our SQP design with updateSet and qSet vari-
ables at nodes, as described above, allow us to
easily use the adaptation policy rules described
in Section 4. Further details on this can be found
in our technical report [20].

6 Composite Queries
So far, we have described how to build and maintain a single tree corresponding to one
simple predicate. We now describe how a query with a composite predicate is satisfied.
Specifically, we first expand on the multiple possible trees, one tree per simple predicate
in the composite query, that such a query entails (Section 6.1). Then, we explain how
Moara plans a given query (Section 6.2), and how it selects a low-cost groups of nodes
to execute a given composite query (Section 6.3).

6.1 Maintaining Multiple Trees
Section 4 explains the maintenance of trees for simple predicates, starting from the time
a predicate is first encountered. If this predicate does not reappear again in subsequent
queries in the system, then all nodes in the tree will eventually move to NO-UPDATE
state (due to group churn events), and thus there will be no load, either query or update,
along the tree. Thus, Moara trees become silent and incurs zero bandwidth cost if not
used, obviating the need to explicitly delete trees for simple predicates. Furthermore,
Moara does not maintain trees for composite queries, since these might be exponentially
large in number - instead, it decides which simple predicate trees (existing or not) will
be selected to execute a given composite query. This decision process is described next.

6.2 Composite Query Planning
Consider the following composite query: “find the average free memory across ma-
chines where service X and Apache are running”. Suppose we have one group tree for
(ServiceX=true) and another tree for (Apache=true). A naı̈ve way to resolve the query
would be to query both trees in parallel. However, we observe that bandwidth can be
saved, without compromising completeness of answers, by (1) sending the query to any
one of the trees (because it is an intersection query), and (2) choosing the tree that incurs
a lower query cost.
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Based on this observation, Moara answers arbitrary nested queries involving and
and or boolean expressions across simple predicates by selecting a small cover. A
cover for a given composite query Q is defined as a set of groups (selected from among
simple predicates inside Q) which together contain all nodes that satisfy the composite
predicate in Q. Thus, we only need to send Q to a cover to obtain a complete answer.

We can compute a cover for a query Q by exploring the boolean expression structure
recursively as follows:
• cover(Q=“A”) = {A} if A is a predefined group.
• cover(Q=“A or B”) = cover(A) ∪ cover(B).
• cover(Q=“A and B”) = cover(A), cover(B), or (cover(A) ∪ cover(B)).

For example, for a query with expression ((A and B) or C), the above rules derive
{A,C}, {B,C}, and {A,B,C} as possible covers. We call such covers as structural covers
since we infer them from the structure of the boolean expression.

Once the query originating node calculates the cover for a given query Q, the com-
posite query is forwarded to the roots of trees corresponding to each group in the cover,
the answers from these trees are aggregated, and finally returned to the querying node.
Notice that it is possible for some node(s) to receive multiple copies of the query, if they
are present in multiple trees which appear in the cover for Q. Such nodes reply with the
attribute value to only one of the trees they are present in, eliminating duplicate an-
swers. This requires nodes to remember the query ids (based on sender IP and sequence
number). Such information is cached for 5 minutes in our Moara implementation.

To further save on bandwidth, we would like to select a low-cost cover. This is
done by minimizing both the number of groups in the selected cover, as well as the
total cost of querying this cover. We explore below three ways of deriving a low-cost
cover: (1) structural optimizations, which rewrite the nested query to select a low-cost
structural cover consisting of simple predicates that already appear within the query, (2)
estimates of query costs for individual trees, and (3) semantic optimizations, which take
into account semantic information obtained from users or query attributes.

6.3 Query Optimization: Finding Low-Cost Covers
Given a composite query, Moara first transforms it into a Conjunctive Normal Form
(CNF) expression using distributive laws of and and or operators. A CNF form is a
two level expression of and’s across a series of or terms.

It is important to notice that in the CNF form of a composite predicate for query
Q, each series of or terms is a possible cover - this is due to the same reason as our
intersection optimization explained earlier. Thus, if Moara can evaluate the query cost
of each of these structural covers (as a sum of the query costs for all sets in the cover),
then it can select the minimal cost cover for executing the query Q. We will describe
query cost calculation soon, but before that we give an example of the query rewriting.
The proof of why the CNF form gives the minimal-cost cover for a composite predicate
can be found in our technical report [20].

Figure 6 shows an example transformation. Consider a query targeting ((A or B)
and (A or C)) or D. Moara first transforms the expression to the equivalent CNF: (A
or B or D) and (A or C or D). Moara chooses one cover between the two structural
covers - either {A, B,D} or {A, C,D}, whichever has a lower cost.
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Estimating Query Costs for Trees: In order to enable low-cost cover calculation,
the root node of each tree for a simple predicate continually maintains the query cost for
that tree. The query cost is fetched by the querying node and used in the low-cost cover
calculation described above. Within the tree, the cost for each query is simply 2 × np,
where np is the number of nodes in NO-PRUNE state. The values of np are aggregated
continually up the tree. Each internal node stores this count for its own subtree, modifies
the count according to its own state, and piggybacks this information atop all updates
and query responses to its parents. Although this lazy updating of the counts means the
query costs may be stale at times, this only affects communication overhead, but not the
correctness of the response.

Using Semantic Optimizations: If semantic infor- ((A or B) and (A or C)) or D

CNF Conversion

Cover Evaluation

(A or B or D) and (A or C or D)

min(|A| + |B| + |D|, |A| + |C| + |D|)

Fig. 6: Example query pro-
cessing

mation is available about the groups, then Moara can fur-
ther optimize the communication costs by choosing a bet-
ter cover. We explore two kinds of semantic information
in our system: (i) information from description of the
group, and (ii) user supplied semantic information. For
example, consider two groups A and B defined as fol-
lows: A = {nodes with memory < 2G} and B = {nodes
with memory < 1G}. Then, we can infer from these defi-
nitions that B ⊆ A. In our technical report [20], we detail
a variety of semantic relations between two groups Moara exploits and how Moara op-
timizes further to obtain a low-cost cover.

7 Implementation and Evaluation
We have built a prototype of Moara using SDIMS [7] and FreePastry [8]. All other
Moara protocols, described in Section 3 through Section 6, are built atop these systems.
Here, we discuss our implementation details and evaluation methodology.

Moara Front-End: The Moara front-end is a client-side interface of Moara. It in-
cludes an interactive shell, a query parser, and a query optimizer. Through the interactive
shell, a user can submit SQL-like aggregation queries to Moara. The query parser parses
the queries, and the query optimizer determines the groups that need to be queried
through the algorithm described in Section 6. Once the front-end determines the groups
to be queried, it generates a sub-query for each group. Each sub-query is resolved ex-
actly the same way as a normal query, except that the front-end waits until it receives
all the results from sub-queries, aggregates the results returned by the sub-queries, and
returns the final aggregate to the user.

Reconfigurations: To handle reconfigurations, we leverage the underlying FreeP-
astry mechanism for failure detection and neighbor set repair. Further details can be
found in our technical report [20].

Evaluation Environments: We use simulation, Emulab, and PlanetLab, and choose
a suitable environment to evaluate each of our design choices. We use simulation ex-
clusively for measuring bandwidth consumption in a large-scale environment. We use
Emulab and PlanetLab to mainly measure the latency in realistic environments, namely,
a medium-scale datacenter (Emulab) and a wide-area infrastructure (PlanetLab).

For each design choice (group-based aggregation, dynamic maintenance, separate
query plane, and composite query processor), we choose the evaluation environments
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that are most suitable. First, we evaluate group-based aggregation on Emulab and Plan-
etLab, since group-based aggregation is designed to reduce both latency and bandwidth
consumption. Second, we evaluate dynamic maintenance and separate query plane us-
ing simulation, since both mechanisms are designed for bandwidth optimization and
have wide choices of parameters. However, we evaluate the separate query plane on
Emulab as well to measure the latency. Lastly, we evaluate our composite query pro-
cessor on Emulab, since it only affects latency.

Workload: The workload is characterized by two factors - group churn rate and
query rate. First, since a group is defined over a particular attribute, the group churn
rate depends on how dynamic the attribute is (e.g., a group of (OS = Linux) is likely
to be static, while a group of (CPU-util < 60%) is likely to be dynamic). Second, the
query rate depends on the usage of Moara and is expected to vary widely. For example,
a datacenter operator might typically query a group once an hour on a day, but sev-
eral times a minute on days with high workloads or unscheduled downtimes. Thus, we
parameterize these factors and present the performance of Moara over the parameter
range.

7.1 Simulation Results

We perform simulation experiments to measure the bandwith overhead of Moara’s dy-
namic tree maintenance and separate query plane. Our simulations are performed with
the FreePastry simulator environment, simulating up to 16,384 nodes. Each node main-
tains an attribute A with value ∈ {0, 1}. All queries are simple queries for (A, SUM,
A = 1), which counts the number of nodes where A is set to 1.

Dynamic Maintenance: To study the dynamic maintenance mechanism under dif-
ferent workload types, we stress the system by injecting two types of events - query
events and group churn events - at different ratios. For example, a query:churn ratio of
0:500 represents an extreme type of workload where there is high group churn, but no
queries at all. On the other hand, the query:churn ratio of 500:0 represents the other
extreme where there is high query rate, but no group churn. Each group churn event
selects m nodes at random, and toggles the value of their attribute A. The value of m
determines the “burst size” of attribute churn. We fix the total number of events to 500,
and randomly inject query or group churn events at the chosen ratio. All data points are
averaged over 3 runs.

Figure 7 shows the average number
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of messages per node in Moara under
various query:churn ratios, in a system
of 10,000 nodes with m = 2000-sized
group churn events. In addition to Moara,
we also plot the number of messages
generated by two other static approaches
that lie at the opposing extremes. These
are: 1) the Global approach, where no
group trees are maintained and queries
are sent to all the nodes on the DHT
trees, and 2) Moara (Always-Update)
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approach, where a tree is aggressively maintained by having each child send an update
to its parent on each attribute churn event.

The Global approach is inexpensive when there are fewer queries in the system,
since it avoids the overhead of tree maintenance. On the other hand, with a high-
query:low-churn ratio, Moara (Always-Update) performs well because it always main-
tains group trees and hence incurs lower traffic than Global approach. The plots show
that Moara meets or lowers the message overhead in comparison to either of these ex-
treme design choices, at all values of query:churn ratios. When group churn is high,
Moara suppresses attribute churn events from propagating to other nodes. With more
queries than group churn events, Moara reduces query cost by maintaining trees aggres-
sively. Thus, Moara is able to adapt to various workload patterns.

Separate Query Plane: In Figure 8(a), we plot the query cost against the number
of nodes in the system for different threshold values and different group sizes. Note
that the threshold value of 1 implies the absence of a separate query plane, while higher
threshold values create a separate query plane (refer to Section 5). For this experiment,
we do not introduce any group churn during the experiment. We perform 1,000 queries
and compute the average of the query cost. Even though there is no group churn, there
are updates sent by nodes to their parents as they move into UPDATE state with the first
query message. We count those messages as the update cost.

Figure 8(a) shows that without the separate query plane (threshold=1), the query
cost increases logarithmically as the total system size is raised. However, while main-
taining a separate query plane (threshold>1), the query cost reaches a constant value
and stays flat, independent of the number of nodes in the system. While increasing
the value of threshold decreases query cost, it can lead to more update messages as
discussed in Section 5. In Figure 8(b), we plot the query costs for different threshold
values as a percentage of the query cost for threshold=1 and also plot the percentage
increase in the update costs in comparison to threshold=1. From these two plots, we ob-
serve that (1) with small groups and large total nodes (e.g., 8192 total nodes with group
size=8 or 32), using a query plane saves more than 50% bandwidth in query costs,
and (2) while using a higher value of threshold does reduce bandwidth, the savings are
marginal beyond a threshold of 2 and can incur higher update costs at large group sizes.
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7.2 Emulab Experiments
In this section, we study both the latency and communication overhead of Moara under a
real deployment scenario in Emulab, that emulates a medium-scale datacenter. Specif-
ically, we evaluate three different workloads. First, we study performance of Moara
when querying groups of static attributes (e.g., OS = Linux). We vary the size of groups
and show the benefits of using Moara. Second, we study Moara with groups defined
over dynamic attributes (e.g., CPU-util < 60%). We stress Moara by varying the fre-
quency of changes. Third, we study composite queries with varying numbers of groups
per query.

Methodology: We create a network of 50 machines on a 100 Mbps LAN and in-
stantiate 10 instances of Moara on each machine, thus emulating a 500 node Moara
system. Each experimental run is started with one bootstrap node, followed by a batch
of 100 new instances joining after intervals of 10 seconds each. After the last join, we
wait an additional 5 minutes to warm up before initiating queries and group churn from
a Moara node. Since we are mainly interested in per-query latency and bandwidth con-
sumption, we fix the query rate and repeat the same query multiple times. As previously,
each node maintains one binary attribute A. Our default query is a count, providing the
number of nodes with A=1. All data points are the average of 3 runs.

Static Groups: Figure 9(a) compares the performance of Moara (with separate
query plane) w.r.t. both latency and bandwidth. We vary the group sizes and query
100 times for each experiment. In addition, we compare this performance against an
approach where a single global tree is used system-wide - this is labelled as the SDIMS
approach in the plot. As we can see from the figure, Moara’s latency and bandwidth
scale with the size of the group. The savings are the most significant for small groups
(e.g., set32 which has 32 nodes), where the savings compared to the SDIMS approach
are up to 4X in latency and 10X in bandwidth. The latency is reduced due to the use of
separate query plane because of short-circuiting long chains of intermediate nodes.

Dynamic Groups: We study the effect of group churn due to attribute-value changes
at individual nodes. We considered a group of 100 nodes, with group churn controlled
by two parameters churn and interval. Every interval seconds, we randomly select
churn nodes in the group to leave, and churn nodes outside the group to join.

Figure 9(b) shows the effect on query latency, of different churn values (x-axis) for
two different interval values. Queries are inserted at the rate of one query per second,
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and the data points are averages of 100 queries per run. The plot shows that Moara’s
query latency is not affected significantly by group churn - (1) even when we increase
the group churn rate by a 9-fold factor from Interval=45 to interval=5, Moara experi-
ences only a small increase in latency, and (2) the latency stays low, and around 150 ms
even when the entire group membership changes every 5 seconds.

Figure 10(a) provides an insight into the workings of Moara under the above work-
load, for interval=5, churn=160. Notice that the spikes in query latency occur once
every 5 seconds, around the time that the group churn batch occurs. However, notice
that (1) the peak latency stays within 300 ms, and (2) Moara query latency stabilizes
very quickly after each group churn batch, typically within 1-2 seconds. Thus Moara
shows high resiliency to dynamism due to rapidly occurring attribute-value changes.

Composite Queries: The experiments so far have focused on single groups in
Moara. Here, we microbenchmark the performance of Moara on composite queries.
Assuming S1, S2, . . . , Sn are simple single predicate groups, we study three types of
composite queries: (1) Intersection queries of the form S1 ∩S2 ∩ . . .∩Sn, for different
values of n; (2) Union queries of the form S1 ∪S2 ∪ . . .∪Sn, for different values of n;
and (3) Complex queries, which are structured as T1 ∩ T2 ∩ . . . ∩ Tm, where each Ti is
a union of multiple groups. These experiments suffice to characterize Moara’s perfor-
mance since the query optimization reduces all query expressions to one of the three.
Each basic group Si consists of 50 nodes selected at random. The complex expression
we use1 is T1 ∩T2 ∩T3, and each Ti is a union of n basic groups for different values of
n. Figure 10(b) plots the latency for above three types of queries with different values
of n. For composite queries, recall that Moara first sends size probes to root nodes of
group trees, in order to make a query optimization decision. Thus, we plot not only the
total latency of a Moara query, but also the latency excluding the time to finish the size
probes. Each data point is averaged over 300 queries.

First, notice that the average completion times of all queries, including queries with
up to 10 groups, is less than 500 ms. For intersection queries, the completion times
excluding time for size probes (plot line “Inter. no SP”) do not depend on the size of
the expression. This is because Moara selects only one of these groups to propagate the
query. Although size probes are sent in parallel, the latency for size probes increases
slightly since Moara waits until the slowest probe response arrives. For union queries,

1 We found that the number of Ti’s has little effect on latency because Moara queries only one
of all Ti’s.
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the total completion time of a query rises gradually with the size of the expression, as
Moara needs to contact all groups (two “Union” plots). Finally, the completion time for
complex queries is only slightly more than that of union queries, since Moara’s query
optimization selects only one of Ti’s. The additional latency is caused by two factors:
(a) the time taken for size probes is higher as we have to query the sizes for larger
number of groups, and (b) a complex set expression adds more overhead at each node,
because each node evaluates the entire complex expression.

7.3 PlanetLab Experiments
Methodology: We deploy Moara atop 200 PlanetLab nodes, which span several con-
tinents. Each PlanetLab node runs one instance of Moara. The instances are started
sequentially, the system is given 5 minutes to warm up, and then a series of queries is
injected from a Moara front-end running on a local machine. In order to study the be-
havior of Moara’s query latency in-depth, we perform experiments on only one group
at a time, but for different sizes of this group. Each experiment involves a total of 500
queries injected 5 seconds apart. All plotted data points are the average of 3 runs. We
do not timeout on queries, in order to obtain complete answers.

Query Response Latency: Figure 11 plots the cumulative fraction of replies re-
ceived as a function of time since query injection. The plot shows the responsiveness
of Moara in a wide-area setting - even with as many as 100 nodes in the group, the me-
dian answer is received back within 1-2 seconds, while 90% of the answers are received
within 5 seconds. Our technical report presents more results with different groups [20].
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Fig. 11: Moara vs. Centralized Aggregator

gation: Figure 11 compares Moara against
a centralized approach which maintains
no trees but has the Moara front-end
directly query all nodes in parallel re-
gardless of whether they satisfy the given
predicate or not (labelled “Central”).
The response for a query from this cen-
tralized aggregator is considered com-
plete when the centralized aggregator
has received a response from every node regarding the query. The figure plots the cu-
mulative fraction of replies received as a function of time since query injection. This
plot illustrates that the comparison between the centralized aggregator and Moara is
akin to the comparison of “the tortoise and the hare”. For both groups of size 100 and
150, we notice that the centralized aggregator obtains initial replies faster than Moara,
but then it slows down waiting for the remainder of the query answers from nodes.

Our analysis reveals that the latency of the centralized aggregator is affected by the
slowest node or link in the whole system, while the latency of Moara is only affected by
the slowest node or link in the group. Thus, Moara is faster overall in obtaining a large
fraction of replies. Our technical report further discusses this result [20].

8 Related Work
PlanetLab has several management tools in use, such as CoTop, CoMon, etc [15]. How-
ever, none of the tools addresses scalability and expressive queries simultaneously. Sev-
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eral distributed systems have been proposed for aggregating data. Astrolabe [6] provides
a generic aggregation abstraction, but uses a single static tree and hence has limited scal-
ability with the number of metrics. SDIMS [7] constructs multiple trees for scalability
with the number of metrics, but assumes a single group of the entire system. PIER [21]
supports recursive SQL-style queries, but does not leverage in-network aggregation.
Huebsch et al. [22] present a way to optimize global aggregation queries, while Moara
optimizes multiple group-based aggregation trees. Seaweed [5] focuses on dealing with
data unavailability. MON [23] supports one-shot queries and constructs query trees on-
demand, but does not support expressive queries. Finally, Ganglia [14] uses a single
hierarchical tree, but collects all data without in-network aggregation.

Structured overlay based multicast systems such as Scribe [18], SAAR [24], and Se-
lectCast [25] bear some similarities with Moara, e.g., path collapsing of Scribe [18], the
shared control plane idea of SAAR [24], and predicate-based multicast of SelectCast.
However, all these system focus on building efficient trees for multicast where mainte-
nance overhead is assumed to be much smaller than the data plane costs. CUP [26] and
Shruti [27], while proposing adaptation techniques to reduce query cost, addresses a
different optimization problem than us. In these systems, queries are only spread down
to the nodes where updates are also propagated to (rendezvous points). Moara uses up-
dates for pruning the group trees and queries are sent to all predicate-satisfying nodes.

9 Conclusion
In this paper, we have presented the design and evaluation of Moara, a group-based ag-
gregation system. Moara achieves scalability with increasing numbers of machines, in-
jected queries, and groups, by: (1) intelligently resolving composite query expressions,
(2) constructing single-attribute aggregation trees that perform in-network aggregation,
and (3) dynamically maintaining group trees based on query rates and group churn rates,
thus reducing bandwidth consumption. Our experimental evaluations using simulations
and deployments atop Emulab and PlanetLab demonstrate the effectiveness of Moara
in answering queries accurately within hundreds of milliseconds across hundreds of
nodes, and with low per-node bandwidth consumption.
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