
R-OSGi: Distributed Applications through
Software Modularization

Jan S. Rellermeyer, Gustavo Alonso, and Timothy Roscoe

Department of Computer Science, ETH Zurich
8092 Zurich, Switzerland,

{rellermeyer, alonso, troscoe}@inf.ethz.ch

Abstract. In this paper we take advantage of the concepts developed for
centralized module management, such as dynamic loading and unloading
of modules, and show how they can be used to support the development
and deployment of distributed applications. We do so through R-OSGi, a
distributed middleware platform that extends the centralized, industry-
standard OSGi specification to support distributed module management.
To the developer, R-OSGi looks like a conventional module management
tool. However, at deployment time, R-OSGi can be used to turn the
application into a distributed application by simply indicating where the
different modules should be deployed. At run time, R-OSGi represents
distributed failures as module insertion and withdrawal operations so
that the logic to deal with failures is the same as that employed to
deal with dependencies among software modules. In doing so, R-OSGi
greatly simplifies the development of distributed applications with no
performance cost. In the paper we describe R-OSGi and several use cases.
We also show with extensive experiments that R-OSGi has a performance
comparable or better than that of RMI or UPnP, both commonly used
distribution mechanisms with far less functionality than R-OSGi.

1 Introduction

Modular design is a cornerstone of software engineering, and much effort has been
invested in concepts and tools to manage modules and the dependencies among
them. Nowadays, modularization pervades programming languages, development
environments, and even system architectures. In particular, recent years have
seen the emergence of “module management systems” which handle loading and
unloading of modular program units at runtime, and dynamically creating and
destroying bindings between services in different modules.

In this paper we explore using centralized module management as the basis
for the design and deployment of distributed applications. Our work is based on
the OSGi specification [1], a widely used module management API designed to
work on a single system that we extend extend to work in a distributed setting.

The key insight is that the module boundaries instituted by centralized mod-
ule management systems are generally well-suited to being repurposed as distri-
bution boundaries. In the past, networked applications have typically distributed



2 J.S. Rellermeyer, G. Alonso, and T. Roscoe

their functionality by interposing communication proxies at procedure calls or
object method invocation, with mixed results. In particular, the issue of trans-
parency has dogged distributed computing platforms based on these models: as
Waldo et. al. [2] point out, a remote procedure invocation has fundamentally
different semantics to a local call, and consequently fundamentally different ex-
ception handling code must be written by the programmer.

In contrast, module management systems like OSGi are designed to han-
dle unloading of modules at any time, and include event notification function-
ality to enable programmers (indeed, to require them) to cleanly handle ser-
vices disappearing without notice. We take advantage of this by representing
communication-related failures as local module unloading events.

By doing so, we effectively turn software modules into the potential units of
distribution. The result is Remoting-OSGi (R-OSGi), a distributed middleware
platform that can transparently distribute parts of an application by simply
distributing its software modules. R-OSGi is a middleware layer on top of OSGi.
This matches the lightweight design of OSGi and allows us to use R-OSGi on
any OSGi enabled application.

R-OSGi makes the following contributions:

1. Seamless embedding in OSGi : From the OSGi framework’s point of view,
local and remote services are indistinguishable. Existing OSGi applications
can be distributed using R-OSGi without modification.

2. Reliability : The distribution of services does not add new failure patterns
to an OSGi application. Developers deal with network-related errors in the
same way they deal with errors caused by module interaction.

3. Generality : The middleware is not tailored to a subset of potential services.
Every valid OSGi service is potentially accessible by remote peers.

4. Portability : The middleware runs Java VM implementations for typical resource-
constrained mobile devices, such as PDAs or smartphones. The resource re-
quirements of R-OSGi are by design modest.

5. Adaptivity : R-OSGi does not impose role assignments (e.g., client or server).
The relation between modules is generally symmetric and so is the dis-
tributed application generated by R-OSGi.

6. Efficiency : R-OSGi is fast, its performance is comparable to the (highly
optimized) Java 5 RMI implementation, and is two orders of magnitude
faster than UPnP.

In the next section we discuss in more detail the relevance of module man-
agement systems for distributed applications, using OSGi as a case study. In
Section 4 we discuss the architecture and design of R-OSGi, and describe the
implementation in detail in Section 5. Section 6 presents performance results for
R-OSGi, and Section 7 details several use cases including ubiquitous computing
devices and a tool for refactoring a large, pre-existing OSGi-based application
in Eclipse to run in a distributed setup. We conclude in Section 8.



R-OSGi: Distributed Applications through Software Modularization 3

2 Background

Models and frameworks for building distributed systems have a long history. The
conventional approach is to make remote invocations identical to local procedure
or method calls, as exemplified by Remote Procedure Calls (RPC) [3], Java Re-
mote Method Invocation (RMI), the Common Object Request Broker Architec-
ture (CORBA) [4], or the Distributed Component Object Model (DCOM) [5].
While providing a form of distribution transparency at the level of invocations,
the application must nevertheless be manually factored into distributed com-
ponents, and the large-scale structure of the application usually reflects this
factoring. The same is generally true for analogous operating system-based ap-
proaches, such as Amoeba [6] or SOS [7].

Alternatively, centralized applications written in a component framework
can be automatically factored into distributed components. Coign [8] parti-
tions COM-based Windows applications into two parts that can be distributed
in a client/server configuration. Coign instruments the code through binary
rewriting, analyzes the dependencies between COM components and calculates a
graph-cutting according to a cost metric for introducing network communication
between the subgraphs. Similarly, JOrchestra [9] automatically partitions a pro-
gram by rewriting bytecode to replace local methods with remote invocations,
and object references with proxy references. In these approaches, the distribution
is orthogonal to the original design, and occurs along object boundaries which
were typically not designed with distribution in mind, giving rise to the kind of
transparency and performance problems described in [2].

Recent centralized module management systems, e.g., MJ [10] and OSGi, in
contrast to typical component frameworks, impose boundaries between modules
which are explicit at the level of program code. This is done to better deal
with dynamically loading, updating, and unloading of modules at runtime. We
describe OSGi in more detail below, as it forms the basis of our system.

However, we note that to date, efforts to add distribution support to OSGi
have either followed the OSGi specifications in providing protocol adapters to
existing Jini [11] and Universal Plug and Play (UPnP) [12] infrastructures, or
(as with the Newton Project [13]) introduce an additional component model for
distribution independent of OSGi’s module boundaries and based on an existing
infrastructure like Jini. Both approaches are what might be termed “invasive”:
they require the application to be explicitly structured (or restructured) around
the distribution model provided by Jini or UPnP, and hence the application
must be factored in such a way as to conform to one of these component models.
What is clearly missing is a way to have across remote OSGi instances without
loosing the generality of the OSGi model, or, equivalently, to allow an OSGi
application to be easily distributed along OSGi module boundaries. Filling this
gap is the main result of this paper.



4 J.S. Rellermeyer, G. Alonso, and T. Roscoe

3 Overview of OSGi

Before discussing the design and implementation of R-OSGi, we briefly describe
all the relevant aspects of the OSGi model. The OSGi specification is maintained
by the OSGi Alliance (including vendors and users). OSGi is used in a number of
systems (e.g., Eclipse [14]) and several open-source implementations exist, such
as Apache Felix [15], Knopflerfish [16], and Concierge [17].

3.1 Basics of OSGi

OSGi is both (1) a programming model to develop Java applications from mod-
ular units (bundles) decoupled through service interfaces, and (2) a runtime
infrastructure or framework for controlling the life cycle of bundles. Among
other features, OSGi allows developers to dynamically manipulate bundles: new
bundles can be added and existing bundles updated or removed all at runtime.
OSGi maintains consistency across modules by keeping track of the dependencies
between modules.

As in systems such as Tomcat [18], OSGi implements module management by
using a separate class loader per bundle and disposing of the entire class loader
when the bundle is unloaded. However, unlike Tomcat, where shared code has
to be placed into the scope of a special shared class loader, all bundles loaded
by an OSGi framework are allowed to define shared Java packages and interact
through services.

3.2 OSGi Services

OSGi implements a centralized service-oriented architecture with loosely cou-
pled services (Figure 1). In the OSGi model, any Java class can be published as
a service to be used by other bundles in the system. Typically, a service includes
an implementation (an instance of a class), one or more service interfaces under
which the service is published, and a set of service properties. The OSGi frame-
work maintains a registry of all services published in the system. Bundles can
retrieve services by the name of their interface, and optionally use LDAP-style
RFC 1960 [19] filter predicates on service properties for higher selectivity.

Fig. 1. OSGi Framework with Bundles and Services



R-OSGi: Distributed Applications through Software Modularization 5

Over the indirection of a service reference, a client bundle can bind to the
service object and invoke operations on it from its own code. Since services might
not be present or even disappear during the life cycle of the service’s client, access
to service objects must be mediated and controlled. OSGi does this by sending
events whenever the state of a service changes. The typical pattern of service
usage is to listen to such events and either disable parts of the requesting bundle
when the requested service becomes unavailable or even trigger a halt of the
whole bundle, if the presence of the service is required for correct operation of
the bundle.

3.3 The OSGi Whiteboard Pattern

Besides services invoked from other bundles, OSGi services can also be used
to simplify different variations of producer/consumer exchanges. Typically, the
publish/subscribe pattern is used for this purpose: each event source maintains
its own registry of subscribed listeners and delivers events to all subscribers as
the events take place. The whiteboard pattern [20] used in OSGi simplifies this
process. Instead of requiring each listener to subscribe to individual events and
the source to hold the subscriptions, the OSGi service registry is used. Listeners
register themselves under a specific listener service interface. Once this is done,
the listener is not required to dynamically track all sources of events, instead,
it has implicitly acquired a global subscription to all existing and future event
sources. The OSGi registry is thus the whiteboard to which all listeners may
subscribe. Event sources can retrieve all registered listeners whenever an event
occurs. With such an approach, the coupling between listener and source is
reduced to a minimum and the listener can place the subscription even if no
source is currently present. It has been shown that the whiteboard pattern is
often more efficient than traditional publish/subscribe in terms of code size and
the total resulting number of classes [20].

4 The R-OSGi Approach

R-OSGi allows a centralized OSGi application to be transparently distributed
at service boundaries by using proxies. Figure 2 shows a simplified example with
one service provider (I ) and one service consumer (J ). To bundles on peer J, the
R-OSGi proxy is indistinguishable from local OSGi services such as service A and
B. The R-OSGi protocol on the proxy is used to make remote invocations to the
original service, which is located on peer I, and events from I are transparently
forwarded to J and occur as if they were issued by a local bundle. The only
difference between local and remote services are additional properties that allow
services aware of distribution to perform specialized operations, e.g., for system
management.

R-OSGi uses four principal techniques to achieve the goal of transparency:
(1) dynamic proxy generation at bind-time for cross-network invocation of ser-
vices, (2) a distributed Service Registry based on SLP complementary to the



6 J.S. Rellermeyer, G. Alonso, and T. Roscoe

Fig. 2. Architectural Overview

centralized version in OSGi, (3) mapping network and remote failures to local
module hotplug events, and (4) type injection to resolve distributed type system
dependencies. We describe these in turn.

4.1 Dynamic Service Proxies

R-OSGi creates transparent client proxies for remote services on the fly. To
a service client, these proxies behave as a local service and are also provided
by locally-instantiated bundles. However, a proxy bundle redirects all service
method calls to the original service residing on the remote machine and propa-
gates the result of the method call back to the local client.

The approach of dynamically generating the proxy code at the client facili-
tates spontaneous interaction between services, but also reduces to a minimum
the data (in the form of Java bytecode) that must be stored on the server or
transferred over the network when a client binds to (or fetches) a service.

The typical information required to create a proxy for a particular service
interface is determined by bytecode analysis of the original service when it is
registered. When a client fetches the service interface, the service provider re-
sponds with the corresponding Java bytecode for the interface along with any
serialized properties of the service.

From the interface bytecode, the client can then generate a full proxy for the
service. No precompiled skeletons or stubs need to be provided by the imple-
mentor of the service, and no actual proxy code needs to be transferred. This
is particularly useful in the case of servers running on resource-constrained de-
vices, since the service provider bundle does not need to retain any code for the
client proxy.

4.2 Service Registration and Location

OSGi is built around a centralized service registry. In order to transparently
distribute OSGi applications, a distributed registry implementation is required.
It is not possible to make a distributed service registry look like a local registry



R-OSGi: Distributed Applications through Software Modularization 7

without changing the OSGi framework implementation. Thus, to avoid limiting
the generality of the platform, R-OSGi works with a complementary service
discovery protocol and builds proxies for remote services which then register
their services with the conventional OSGi service registry. Hence, conventional
OSGi bundles can be used (and distributed) in R-OSGi without modification.

OSGi uses an explicit binding model whereby the client bundle invokes (as a
synchronous method call) the service registry, which hands over a set of service
references in return. The request contains two arguments: the class name of
the requested service and a filter expression which can, for instance, be used to
distinguish between equivalent implementations of the same service type. Filters
are based on the LDAP filter syntax (RFC 1960 [19]). A client in possession of
a valid service reference can then attempt to establish a binding to the service,
and afterwards invoke operations on it.

While the explicit binding model simplifies the handling of network and re-
mote node failures in R-OSGi (see Section 4.3), the approach of building proxies
for services introduces a potential scalability problem since in a large distributed
system there might be a large number of nodes, and a large number of services.
Each service proactively announcing its availability and the system generating
proxies for every available service might increase network traffic, and tie up
processing resources at the nodes.

R-OSGi’s distributed service registry alleviates this problem by making ser-
vice discovery (and thus the proxy generation) reactive. Bundles can register
services of type DiscoveryListener and set properties to convey information
about the service interfaces they are interested in, optionally including a filter
string. Following the whiteboard pattern, R-OSGi keeps track of all registered
listeners by observing service registration events from the local service registry.
It initiates remote service discovery whenever there is an entity in the system
that has announced a demand for a service.

Likewise, peers announce their offers of services to the network and allow
remote access to them according to a locally-determined policy. Whenever a
new service is registered with the local framework with properties that indicate
it should be offered remotely, R-OSGi triggers registration of this service with
the remote service discovery layer.

Explicit determination of which services to offer for remote access in this way
can be performed by the application, at the cost of loss of transparency (since the
application must set the required properties). Alternatively, a surrogate bundle
separate from the application but residing on the same node can listen for local
service registrations, and selectively re-export some services remotely without
requiring the application itself to be distribution-aware.

4.3 Transparent Distribution

Transparently distributing programs designed for a single address space context
has been a problematic concept. Waldo et. al. [2] provide a good summary of the
main problems: networked systems are fundamentally different in behavior to



8 J.S. Rellermeyer, G. Alonso, and T. Roscoe

centralized ones, and the semantics of an invocation are also fundamentally dif-
ferent. Consequently, the argument goes, it is unlikely that a centralized program
will perform with acceptable performance, let alone correctly, when factored into
distributed components. The basic problems here are communication latency and
non-determinism, and unreliability (either due to message loss or partial failure
of the nodes or network). These arguments are powerful and persuasive.

R-OSGi sidesteps these issues by intelligently exploiting the way that OSGi
programs are already written – the assumption of unknown performance char-
acteristics of cross-bundle calls. Furthermore, rather than masking distributed
failures, R-OSGi exposes these events to application bundles, but in a form that
the bundle is already designed to handle: the disappearance of service bundles
through module unloading.

R-OSGi conceptually maps failures arising from the distribution of compo-
nents to local hot-plug events. From the OSGi model, developers are used to
guarding the code against the case that parts of the system are not available.
Usually, this is done by listening to service events or using the OSGi Service-
Tracker. In a purely local configuration, services can become unavailable when
some entity in the system, in particular a user of the system, decides to stop
or to uninstall the bundle that has provided the service. By mapping network
malfunctions to these events that are already handled by the applications, we
introduce no failure patterns that are not already possible in purely centralized
situations.

For instance, if a service providing peer fails, we detect the breakdown of
the network channel and the failure to reconnect. Having observed this, R-OSGi
immediately uninstalls the proxy bundle. Even if the network operates without
failures, the original service can throw exceptions. We serialize these exceptions
and rethrow them in the proxy bundle to mime the exact behavior of the original
service.

OSGi Services give no guarantee about execution time regardless of whether
they are local or remote. Side effects of services such as threaded design or
database accesses (e.g., a persistence service), can lead to an execution time
that appears to be non-deterministic from the client point of view. A user might
even decide to replace a fast implementation of a service by an extended but
overall slower implementation and the client has to live with this situation. Fur-
thermore, services are often event-driven and since events in OSGi are typically
dispatched asynchronously, no assumptions about timing can be made. This is a
considerable difference to plain objects, that are most often expected to execute
methods within a very short time. A further difference between R-OSGi in com-
parison to systems like CORBA is that the granularity of distributed entities is
much larger. In OSGi, services encapsulate whole functional units and the de-
pendencies between services are typically restricted to semantical dependencies
at the application level. Objects in contrast tend to have a larger number and
often nested interconnections that make bad effects of the network more severe.



R-OSGi: Distributed Applications through Software Modularization 9

4.4 Type Injection

In OSGi, all code is modularized into bundles and imports of code from other
bundles have to be explicitly declared in the bundle JAR manifest. Several im-
plications arise in the context of proxy bundles. The service interface might use
types in method parameters or return values that do not belong to the standard
Java classes and cannot be assumed to be present at the client. This can either
be the case if the type is declared by a class of the original service bundle, or
because the package to where the class belongs was imported by the original
service bundle. It has to be assured that the generated proxy is resolvable, i.e.,
it contains all the types that are used by methods of the service. R-OSGi thus
has a special strategy to ensure type consistency for the service interface. Type
injection is used to make service proxies self-contained.

When the (remotely accessible) service is registered, every type occurring in
the service interface is observed by a static code analysis. If the type is contained
in the service bundle and the package is declared to be exported by the service
bundle, the corresponding class is added to the so-called injection list. Referenced
types not contained in the service bundle are left out. In a second step, the
transitive closure of all injections is formed, once again distinguishing between
own and imported classes. The injections are saved with the service registration.
Whenever a client fetches the service, the injections are transmitted in addition
to the service interface and the service properties. During proxy generation, the
injections are materialized and stored in the proxy bundle. The packages of all
referenced classes not included in the injections are declared as imports of the
proxy bundle. The packages of all injected classes are declared as exports to
ensure type consistency within the framework. Classes from the packages java.*
and org.osgi.* are excluded from the whole process since it is assumed that
they belong to the execution environment. The result of the injection strategy
is a minimal set of classes and package imports that make the service proxy
self-contained and resolvable.

Beyond the described code analysis to determine the minimal set of injec-
tions, service registrations can be manually provided with classes that have to
be injected into the bundle. This can be useful in particular cases, e.g., if an
argument of a service method is an interface and the service provider wants to
add an instantiable implementation of this interface.

5 Implementation

5.1 Distributed Service Registry

R-OSGi implements the distributed registry using the Service Location Protocol
(SLP) [21–23] as the underlying mechanism. We discuss the choice of SLP over
more apparently natural choices like Jini in this section. Rather than using a
C-based daemon implementation of SLP like OpenSLP, we instead developed
a pure Java implementation, jSLP [24]. jSLP implements all the mandatory
features of the SLP protocol, plus most of the optional features, yet has a code



10 J.S. Rellermeyer, G. Alonso, and T. Roscoe

footprint of only 55kBytes. We do not discuss jSLP further here for reasons of
space; further information and complete source code can be found at [24].

SLP has several compelling features for R-OSGi: its adaptivity, the inher-
ently distributed lookup process, and the similarity with OSGi in the naming of
services. To use SLP as a fully decentralized service registry, we exploit the adap-
tive behavior of the SLP protocol. In SLP, when a dedicated Directory Agent is
present, clients communicate exclusively with this central registry server. If no
DA is present, the clients use multicast (as in SSDP [25]). Through this feature,
R-OSGi implements a distributed SLP layer that can be used in a wide range
of situations. In terms of naming, both OSGi and SLP identify a service by a
single string. In OSGi, this is the fully qualified name of the interface under
which the service has been registered. In SLP, the name is a service URL of
the form service:serviceType ://URL where the service type is of the form
abstractType :concreteType By describing all OSGi services by the same ab-
stract type service:osgi and using the fully qualified name of the interface
as the concrete type, we have a bidirectional mapping between OSGi and SLP
services. OSGi supports LDAPv2 filter predicates on service properties to al-
low more declarative and fine-granular services matching. This feature becomes
particularly useful when the service registry is no longer a central but a large
distributed one. With the choice of the SLP protocol that also supports LDAP
filters over service attributes, R-OSGi leverages the power of expressive service
predicate matching for the distributed case.

After a service is discovered, R-OSGi introduces an intermediate step before
the actual service is delivered (i.e., imported into the local framework). This is
important for security reasons as it allows users to, e.g., see the available remote
services in a GUI before connecting to them. With such a step, R-OSGi matches
the behavior of OSGi, which also uses an indirection over service references. R-
OSGi also supports explicit connection to a remote peer if the application has a
priori knowledge of the distribution of services in the system.

5.2 Network Channels and Message Transport

The communication structure of R-OSGi is purely message-based. For efficiency
of parsing and handling, all messages are binary. Messages consist of a header
that indicates the type of the message plus some common attributes, and a body
with the parts specific to the message type.

Network channels in R-OSGi are by default persistent TCP connections using
the TCP keep-alive option. As long as there is traffic within the timeout period,
the connection is kept open. This reduces the overhead for the TCP handshake
that would otherwise precede every call to a service. R-OSGi is nevertheless
extensible. We have, for instance, implemented tunneling of R-OSGi messages
through HTTP to support communication through firewalls.

When a connection through a network channel is established, the two peers
exchange symmetric leases (Figure 3). A lease contains the names of the services
that the peer offers as well as the event topics the peer is interested in. The latter
is used in the context of remote events as discussed in Section 5.5. In R-OSGi,



R-OSGi: Distributed Applications through Software Modularization 11

syn

syn ack

ack

Lease 

services=serviceList_J, 

topics = topicList_J

Lease 
services=serviceList_I, topics = topicList_I

TCP TCPChannel
Peer I

Channel
Peer J

connected

established

established

connected

Fig. 3. R-OSGi Channel Establishment and symmetric leases

unlike in systems like Jini, a lease is more a contract between the two peers
than a temporal limitation. Whenever changes to services or to subscriptions
are announced through the lease, the peer that has issued the lease is obliged to
invalidate the existing lease.

5.3 Proxy Generation

On the client side, the proxy is created through a Proxy Generator. The Proxy
Generator is based on the ASM library [26], and it uses bytecode manipulation
to create the service interface. First, an empty class is created that implements
both the service interface as well as the OSGi specific interface (the BundleAc-
tivator). The OSGi specific parts, including the registration of the service with
the local framework and retrieving the R-OSGi service, are implemented by
emitting generic templates. Subsequently, every method of the service interface
is visited and the corresponding method implementation created. Each method
implementation delegates the method call to the network channel provided by
R-OSGi and invokes the following method:

Object invokeMethod(final String serviceURL,
final String methodSignature, final Object[] args)
throws RemoteOSGiException;

The serviceURL is known at proxy generation time and hard-coded into the
proxy, since every remote service gets its own proxy. The method signature
is also a constant of each method implementation. The args array is built at
runtime by aggregating the actual arguments.

The proxy-implementation of the service interface is packed into a JAR file
together with the service interface. The required metadata is added to the man-
ifest to turn the JAR file into a valid bundle. The service interface is then ex-
ported. This allows other bundles to import the interface if it is not yet known.
Otherwise, the import statement is used and the newly created bundle is linked



12 J.S. Rellermeyer, G. Alonso, and T. Roscoe

against the existing interface to preserve consistency within the framework. R-
OSGi stores the generated bundle and installs it, which leads to a registration
of the proxied service. Since the service is registered under the transmitted in-
terface name, local bundles cannot distinguish between a proxied service and a
local service, thereby preserving full location transparency.

5.4 Method Invocation

Every method invocation corresponding to a remote service is transformed into
the invokeMethod call shown above and sent through the underlying R-OSGi
channel. On the other side of the channel, the first step taken is to lookup the
corresponding service. R-OSGi holds references to all services that are released
for remote access in a HashMap to guarantee a quick lookup. On this service
object, a reflective call of the original method is performed. However, the Java
reflection API requires the formal method parameters for matching and these
can differ from the types of the actual arguments. This is particularly true if one
of the formal parameters is an interface or an abstract class. One option would
be that for every method call, the whole type hierarchy of each of the arguments
is used for matching. To avoid this overhead, the signature of the method is
part of the transmitted message. R-OSGi uses the signature to unambiguously
match the original method. If the reflective method call succeeds, the result
value is packed into a response message and sent back. If an exception occurs,
the exception object is serialized, packed into the response message, and thrown
on the other side of the channel. This makes the syntactic behavior of the remote
service indistinguishable from that of local services.

5.5 Remote Events

As in UPnP, R-OSGi implements both remote service invocation as well as an
event based architecture. R-OSGi uses the OSGi concept of events as described
in the R4 specification of the EventAdmin service. In R-OSGi, the EventAd-
min service is implemented as a whiteboard pattern over the distributed service
registry. A bundle registers for an event by registering an EventHandler service
together with the property event.topics and the optional property event.filter
stating a filter that is matched against the property set of occurring events. Topic
strings of events follow a hierarchical structure and can be matched using wild-
cards. Bundles initially register the EventHandler in the local service registry.
The subscription is announced to peers through a symmetric lease transmitted
during the connection phase. On the other side of the channel, an EventHandler
is registered locally for the stated topics and if any matching events are out-
standing, they are sent back through the channel. To publish an event, bundles
post it to the local EventAdmin service which then sends it to all registered
listeners.



R-OSGi: Distributed Applications through Software Modularization 13

(a) connecting to service (b) displaying a robot service

Fig. 4. ServiceUI for an R-OSGi-driven Lego Mindstorms Robot on a Zaurus PDA

5.6 Presentations

The fact that R-OSGi modules are treated as units for distribution offers unique
opportunities to specialize some of these modules. One such specialization in
R-OSGi is the idea of presentations. A presentation is a single class with an
associated user interface that can be downloaded by the client rather than sim-
ply used remotely. Services can attach presentations by setting the property
service.user interface to the fully qualified name of a class implementing the in-
terface ServiceUIComponent. Declared presentations are automatically injected
into the proxy bundle and registered as services in a whiteboard fashion. On
the client side, it is possible to run the optional R-OSGi ServiceUI bundle. This
bundle displays the information about discovered services and allows the user
to fetch these services. If the service has a presentation attached, the graphical
component provides a Java AWT panel. This panel is displayed in a tabbed
environment to allow the user to interact with multiple remote services.

We have used presentations for controlling smart devices. Figure 4 shows the
screen of a PDA that connects to a Lego Mindstorms robot through R-OSGi.
The software controlling the robot is developed using R-OSGi and contains a
presentation with the user interface to control the robot. The PDA first connects
to the Robot Service as a normal R-OSGi service (Figure 4.a). It then downloads
the presentation with the robot controller interface which now runs locally and
allows the PDA to become the robot controller. As the example shows, with
R-OSGi presentations and the ServiceUI, it is possible to implement the idea of
the universal remote control that can connect to any kind of (R-OSGi enabled)
smart device and control it. The user interface for a service comes directly from
the device and thus allows to connect to previously unknown devices without
any need for configuration or installation of device drivers. Note as well that the



14 J.S. Rellermeyer, G. Alonso, and T. Roscoe

demands on the developer are very small as it is only necessary that the user
interface is designed as a module, something that it is likely to happen regardless
of whether R-OSGi is used.

6 Experimental Evaluation

Since there is no standard benchmark for evaluating the performance of R-OSGi,
we have adapted two suitable benchmarks from other areas.

The Javaparty/KaRMI [27] benchmark measures the performance of alter-
native RMI implementations. It calls various methods of a sample object using
arguments of different size and complexity. We have implemented the Javaparty
benchmark as an OSGi service which is transparently distributed by R-OSGi.
For comparison, we have also implemented it as a service object which is dis-
tributed by RMI and as a UPnP service accessible through the Domoware UPnP
service implementation [28] for OSGi. The benchmark client calls the different
methods multiple times and determines the average invocation time from the
accumulated runtime. Most of the arguments are instances of primitive types or
primitive arrays with increasing length. We skipped the parts of the performance
benchmarks that are specific to the KaRMI system and not relevant to R-OSGi.

The WSTest benchmark [29] measures the performance of web services. It
was originally used to compare web service performance in Java and in .NET.
The benchmark starts a number of agents that concurrently call one of four
sample methods according to a predefined mix. The arguments of the method
calls are complex objects. In the variant originally used by Sun and Microsoft,
only one of the methods is called at once, concurrently by eight agents. Since
UPnP is not able to use complex objects in service calls, we run this benchmark
only for R-OSGi and RMI.

The benchmarks have been measured with the services running on an IBM
R32 notebook with an 1.6 GHz Intel Pentium 4 Mobile CPU and with 512 MB
RAM. The client was a Pentium 4, 3 GHz Desktop machine with 1 GB RAM. For
the PDA tests a Sharp Zaurus 5500 with a StrongArm SA-1110 CPU running
at 206 MHz and with 64 MB RAM has been used. In the notebook and the
workstation, we use Sun J2SE 1.5 as the underlying VM. The Zaurus runs cvm
[30], Sun’s implementation of the CDC Personal Profile.

6.1 Service Binding

In a first experiment, we measured the binding time. In R-OSGi, this is the time
spent to establish the connection, requesting the service, receiving the interface,
and building the proxy. For RMI, this is the time needed to establish the con-
nection and to download the stub from the codebase. The results are presented
in Table 1. As the Table shows, R-OSGi performs better than RMI even though
the client has more work to do. From our observations, the download of the stub
is the source of the overhead in RMI. The differences between the two bench-
marks are because the binding time depends on the complexity of the service



R-OSGi: Distributed Applications through Software Modularization 15

Table 1. Binding Time

Service # Methods Binding Time in µs

R-OSGi RMI

JavaParty 7 147381 163702

WSTest 4 97147 168034

and, in this case, this complexity is related to the number of service methods.
The benchmarks show that R-OSGi is more efficient in terms of binding time
than RMI, an interesting result given the additional functionality that R-OSGi
provides.

We have also tested how R-OSGi scales down to mobile devices by measuring
the binding time for the Javaparty service on a Sharp Zaurus 5500 PDA with
802.11b wireless LAN. The measured binding time was 1585 milliseconds. This
is a much higher overhead but comparable with the latency of such operations
on mobile devices. Furthermore, this penalty has to be paid only once for each
service.

6.2 Service Invocation

In a second experiment we compare the cost of invoking a remote service in
R-OSGi, RMI, and UPnP using the Javaparty benchmark. Since UPnP does
not support complex objects as arguments in service method calls, not all test
methods of the benchmarks could be implemented for UPnP. The results are
shown in Table 3. As the table shows, R-OSGi performs slightly better than
RMI in many cases, especially when the arguments are complex objects. We also
measured the round trip time in the test network which was 193 µs (+-7 µs).
Compared with this value, the ping() method using R-OSGi has an overhead
of only 1.5% whereas for RMI it is about 16%. Those tests that can be run with
UPnP have an execution time two orders of magnitude larger than R-OSGi and
RMI. The main reason is the high verbosity (resulting in higher network delays)
and the expensive parsing of the XML involved.

A similar comparison was done using the WSTest benchmark (Table 2) where
we measured both response time and throughput. R-OSGi has a lower response
time per method and a higher throughput. We also tested the scalability of R-
OSGi using this benchmark. The proposed setup of the WSTest specifications

Table 2. WSTest Benchmark Results

Test R-OSGi RMI

Resp.time (µs) Throughput Resp.time (µs) Throughput

echoVoid 5799.109 1378.583 10914.879 732.583
echoStruct 11464.700 697.633 14067.500 568.533
echoList 12238.550 653.500 15390.130 519.767
echoSynthetic 2439.700 3275.567 3069.710 2604.667



16 J.S. Rellermeyer, G. Alonso, and T. Roscoe

Table 3. Javaparty Benchmark Results

Method invoked Invocation Time in µs and STD
R-OSGi RMI UPnP

void ping() 195.813 ±0.52 225.18 ±0.738 87938.454 ±174.044
int ping() 214.633 ±0.479 227.98 ±0.645 87335 ±27.839
void ping(int) 216.838 ±0.43 227.172 ±0.789 87844.286 ±191.748
void ping(int, int) 227.043 ±0.427 228.885 ±0.509 88558.571 ±126.765
void ping(null) 202.974 ±0.393 228.031 ±0.472 -
void ping(Integer) 218.301 ±0.419 324.855 ±1.162 -
void ping(byte[1]) 246.263 ±0.559 273.345 ±1.317 88770 ±122.241
void ping(byte[2]) 246.237 ±0.425 273.656 ±0.54 88822.857 ±48.613
void ping(byte[4]) 246.58 ±0.517 274.167 ±0.55 88832.857 ±40.958
void ping(byte[8]) 247.94 ±0.51 274.41 ±0.514 88948.571 ±86.426
void ping(byte[16]) 249.463 ±0.492 275.374 ±0.568 89088.571 ±39.071
void ping(byte[32]) 252.988 ±0.514 277.174 ±0.681 89122.857 ±15.779
void ping(byte[64]) 257.396 ±0.47 284.274 ±0.457 89055.714 ±19.166
void ping(byte[128]) 270.142 ±0.704 295.539 ±0.591 89090 ±40.708
void ping(byte[256]) 278.694 ±0.638 317.382 ±0.476 89162.857 ±38.439
void ping(byte[512]) 337.612 ±0.818 363.596 ±0.692 89201.429 ±104.53
void ping(byte[1024]) 429.258 ±0.966 457.977 ±0.947 89467.143 ±32.388
void ping(byte[2048]) 532.447 ±1.031 582.424 ±1.19 89997.5 ±24.875
void ping(byte[4096]) 692.89 ±1.072 718.177 ±1.158 91098.75 ±63.134
void ping(byte[8192]) 1275.493 ±7.605 1095.5 ±2.291 98631.429 ±3185.514
void ping(byte[16384]) 1903.204 ±11.198 1872.352 ±7.369 97718.571 ±36.027
void ping(byte[32768]) 3941.772 ±65.534 3932.065 ±52.933 157588.571 ±93.263
void ping(float[1]) 251.204 ±0.593 275.155 ±0.757 -
void ping(float[2]) 252.204 ±0.574 276.011 ±0.5 -
void ping(float[4]) 253.924 ±0.648 277.676 ±0.374 -
void ping(float[8]) 256.831 ±0.526 279.994 ±0.796 -
void ping(float[16]) 262.098 ±0.488 287.206 ±0.602 -
void ping(float[32]) 273.858 ±0.5 297.677 ±0.662 -
void ping(float[64]) 296.173 ±0.741 317.408 ±0.567 -
void ping(float[128]) 344.244 ±0.701 369.27 ±2.416 -
void ping(float[256]) 439.993 ±0.92 470.157 ±7.577 -
void ping(float[512]) 551.247 ±1.21 605.09 ±9.467 -
void ping(float[1024]) 723.892 ±1.592 749.488 ±3.622 -
void ping(float[2048]) 1224.912 ±2.27 1251.543 ±10.059 -
void ping(float[4096]) 1954.012 ±11.076 1945.257 ±38.723 -
void ping(float[8192]) 4105.288 ±77.579 3982.534 ±59.839 -
void ping(float[16384]) 8036.289 ±132.496 7916.875 ±132.722 -
void ping(float[32768]) 13460.103 ±131.231 13839.062 ±104.921 -
void ping(DM(1024,1024)) 918597.938 ±13063 923121.212 ±12276 -
void ping(DM(2048,2048)) 3557125 ±16284 3614843.75 ±23682 -

uses only eight agents. When, for instance, the echoVoid method is called by 80
concurrent agents, the response time for R-OSGi increases by only 5% whereas
it increases by about 23% for RMI. This indicates that R-OSGi scales very well,
even for large setups with massive distribution.

7 Use Cases

In this section we briefly present two use cases implemented with R-OSGi to
illustrate its potential to distribute complex applications.

7.1 R-OSGi Deployment Tool

The first use case is a tool to help developers to distribute an application by
dragging and dropping between a visualization of the modules of the application



R-OSGi: Distributed Applications through Software Modularization 17

Fig. 5. Screenshot of the R-OSGi Deployment Tool

and a representation of the distributed nodes available. The tool has been writ-
ten as an Eclipse plugin and provides an overview of all nodes running R-OSGi
and where the application could be distributed. Through the R-OSGi capabili-
ties to make explicit connections, the developer can add new OSGi nodes that
are outside of the scope of service discovery. To distribute an application, the
tool takes an ordinary OSGi application as input. It first analyzes the services
and dependencies between the bundles. Then it graphically displays the archi-
tecture of the application as it would run on a single machine. The developer
can then drag and drop bundles into the different available nodes. An example
deployment with three bundles on two different nodes is shown in Figure 5. The
tool visualizes all dependencies arising from this setup and gives the user an
idea how many network communication is involved in a particular setup. Once
the user commits a configuration, R-OSGi does all the work of deploying the
bundles to the corresponding machines and creating surrogate registrations and
discovery listeners. The result is the original application running in a distributed
environment without requiring the developer to change a single line of code. The
developer has full control on how the application is distributed. The tool is only
intended to create static deployments. In the future, we will extend this tool to
seamlessly introduce module replication, and allow the end-user to profit from
fault-tolerance or load balancing by taking advantage of the distributed setup
and the loose coupling of components.

7.2 R-OSGi Tea Machine

As an example of how to use R-OSGi with small devices, we have implemented
a remote-controlled tea machine (along the lines of the Trojan Room coffee



18 J.S. Rellermeyer, G. Alonso, and T. Roscoe

(a) Tea Machine (b) Connected
PDA

(c) Presentation

Fig. 6. R-OSGi-driven Smart Tea Machine

machine [31]). We took an off-the-shelf tea machine that is internally driven by
an Atmel AT89C2051 microcontroller with 2KBytes flash and built a mobile
controller for it using R-OSGi. Since the microcontroller is not powerful enough
to run Java and R-OSGi, we added a serial port to the board and implemented
a plain RS232 protocol to give out status messages and to control the brewing.
The tea machine is connected to and controlled by an external LinkSys NSLU2
(Slug) embedded linux device.

The tea machine can be spontaneously remote-controlled by PDAs. When
a user’s PDA comes within range of the machine, it can download the cor-
responding R-OSGi presentation (Figure 6(c)) and then control the machine
(Figure 6(b)). The controlling is done by method invocations on the service that
is running on the Slug. This service interacts with the machine over the RS232
link. The status information received from the tea machine is transmitted to
the presentation on the PDA as remote events. The current application allows
notifications about the status of the tea machine to be sent per e-mail and also
to a desktop machine by using R-OSGi over HTTP.

This use case demonstrates the potential of the concept of presentations.
The current limitation of the approach is that the problem of different ratios and
resolutions of the displays of mobile devices cannot be solved by using predefined
AWT panels as R-OSGi does now. We will address this in future work and plan
to extend R-OSGi’s presentations to support a more declarative way of defining
user interfaces that support adaptation to the end device.

8 Conclusions

R-OSGi allows distributed applications to be built using the same modularity
features of OSGi, and allows existing OSGi applications to be transparently



R-OSGi: Distributed Applications through Software Modularization 19

distributed along module boundaries. R-OSGi maps partial failures of the dis-
tributed application as a whole onto local module unload events, and represents
traditional distributed systems support functions like service location as exist-
ing OSGi registration services. Experience has shown this novel approach avoids
the problems typically encountered by transparent distribution systems, and we
argue that R-OSGi does not present failure patterns to applications that could
not occur in the centralized case.

While R-OSGi exploits OSGi’s bundle concept to achieve this goal, it ad-
dresses significant further challenges. R-OSGi ensures consistency among shared
classes by the use of type injection, and uses dynamic client proxy generation to
allow even resource-constrained devices to provide services. R-OSGi is portable
to all J2ME CDC profiles, is code compatible with Java back to Java 1.2, and
runs entirely over a standard OSGi implementation. Despite these advantages,
it is remarkably lightweight: R-OSGi has a file footprint of just 120 kBytes,
slightly outperforms RMI in network tests, and is an order of magnitude faster
than UPnP. Consequently, we argue that R-OSGi is an attractive approach to
efficiently handle the complex structure of pervasive environments.

Acknowledgements

The work presented in this paper was supported (in part) by the National Com-
petence Center in Research on Mobile Information and Communication Systems
(NCCR-MICS), a center supported by the Swiss National Science Foundation
under grant number 5005-67322.

References

1. OSGi Alliance: OSGi Service Platform - Release 4. (2005)

2. Waldo, J., Wyant, G., Wollrath, A., Kendall, S.: A Note on Distributed Computing.
Technical Report SMLI TR-94-29, Sun Microsystems Labs (1994)

3. Birrell, A., Nelson, B.J.: Implementing remote procedure calls. ACM Transactions
on Computer Systems 2(1) (1984) 39–59

4. Object Management Group: The Common Object Request Broker: Architecture
and Specification. 2nd edn. (1995)

5. Brown, N., Kindel, C.: Distributed Component Object Model Protocol –
DCOM/1.0 (Expired Internet Draft). IETF. (1998)

6. Mullender, S.J., van Rossum, G., Tanenbaum, A.S., van Renesse, R., van Staveren,
H.: Amoeba: A Distributed Operating System for the 1990s. IEEE Computer 23(5)
(1990) 44–53

7. Shapiro, M., Gourbant, Y., Habert, S., Mosseri, L., Ruffin, M., Valot, C.: SOS:
An Object-Oriented Operating System - Assessment and Perspectives. Computing
Systems 2(4) (1989) 287–337

8. Hunt, G.C., Scott, M.L.: The Coign Automatic Distributed Partitioning System.
In: Proceedings of the 3rd Symposium on Operating Systems Design and Imple-
mentation (OSDI 1999). (1999)



20 J.S. Rellermeyer, G. Alonso, and T. Roscoe

9. Tilevich, E., Smaragdakis, Y.: J-Orchestra: Automatic Java Application Parti-
tioning. In: Proceedings of the 16th European Conference on Object-Oriented
Programming (ECOOP 2002). (2002) 178–204

10. Corwin, J., Bacon, D.F., Grove, D., Murthy, C.: MJ: A Rational Module System
for Java and its Applications. In: Proceedings of the 18th Annual ACM SIGPLAN
Conference on Object-Oriented Programming, Systems, Languages and Applica-
tions (OOPSLA’03), ACM Press (2003) 241–254

11. Waldo, J.: The Jini architecture for network-centric computing. Communications
of the ACM 42(7) (1999) 76–82

12. UPnP Forum: Universal Plug and Play Device Architecture. (2000)
13. Paremus: The Newton Project. http://newton.codecauldron.org (2006)
14. The Eclipse Foundation: Eclipse Project. http://www.eclipse.org (2001)
15. Apache Foundation: Apache Felix. http://incubator.apache.org/felix (2005)
16. Gatespace Telematics SA: Knopflerfish OSGi. www.knopflerfish.org (2003)
17. Rellermeyer, J.S., Alonso, G.: Concierge: A Service Platform for Resource-

Constrained Devices. In: Proceedings of the EuroSys 2007 Conference. (2007)
18. Apache Foundation: Apache Tomcat. http://tomcat.apache.org (2006)
19. Howes, T.: RFC 1960: A String Representation of LDAP Search Filters. IETF.

(1996)
20. Kriens, P., Hargrave, B.: Listeners considered harmful: The ”whiteboard” pattern.

Technical report, OSGi Alliance (2004)
21. Guttman, E.: Service Location Protocol: Automatic Discovery of IP Network

Services. IEEE Internet Computing 3(4) (1999) 71–80
22. Veizades, J., Guttman, E., Perkins, C.: RFC 2165: Service Location Protocol.

IETF. (1997)
23. Guttman, E., Perkins, C., Veizades, J.: RFC 2608: Service Location Protocol v2.

IETF. (1999)
24. Rellermeyer, J.S.: jSLP project, Java Service Location Protocol. http://jslp.

sourceforge.net (2005)
25. Goland, Y.Y., Cai, T., Leach, P., Gu, Y., Albright, S.: Simple Service Discovery

Protocol (Expired Internet Draft). IETF. (1999)
26. Bruneton, E., Lenglet, R., Coupaye, T.: ASM: A Code Manipulation Tool to

Implement Adaptable Systems. Technical report, France Telecom R&D (2002)
27. Haumacher, B., Moschny, T., Philippsen, M.: The Javaparty Project. http://

www.ipd.uka.de/JavaParty (2005)
28. Demuru, M., Furfari, F., Lenzi, S.: The Domoware UPnP service for OSGi. http:

//domoware.isti.cnr.it (2005)
29. Sun Microsystems: Web Service Preformance. Comparing Java 2 Enterprise Edi-

tion (J2EE platform) and .NET Framework. (2004)
30. Sun Microsystems: J2me Personal Profile for Zaurus. http://java.sun.com/

developer/earlyAccess/pp4zaurus (2002)
31. The University of Cambridge Computer Laboratory: The Trojan Room Coffee

Machine. http://www.cl.cam.ac.uk/coffee/coffee.html (1991)


