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Abstract. Data centers are the most critical infrastructure of companies demand-
ing higher and higher levels of quality of service (QoS) in terms of availability
and scalability. At the core of data centers are multi-tier architectures providing
service to applications. Replication is heavily used in this infrastructure for either
availability or scalability but typically not for both combined. Additionally, most
approaches replicate a single tier, making the non-replicated tiers potential bot-
tlenecks and single points of failure. In this paper, we present a novel approach
that provides both availability and scalability for multi-tier applications. The ap-
proach uses a replicated cache that takes into account both the application server
tier (middle-tier) and the database (back-end). The underlying replicated cache
protocol fully embeds the replication logic in the application server. The protocol
exhibits good scalability as shown by our evaluation based on the new industrial
benchmark for J2EE multi-tier systems, SPECjAppServer.
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1 Introduction

The new vision of Enterprise Grids [1] is demanding for the creation of highly scal-
able and autonomic computing systems for the management of companies’ data cen-
ters. Data centers are the most critical infrastructure of companies demanding higher
and higher levels of quality of service (QoS) in terms of availability and scalability. At
the core of data centers lies a multi-tier middleware architecture providing services to
applications. A multi-tier architecture provides separation of concerns in regard to pre-
sentation (front end), business logic (middle-tier), and data storage (back-end). Clients
interact with the front end, which acts as a client of the middle-tier or application server.
Most computation is done at this level and data is stored in the back-tier.
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Replication can provide both scalability (load can be distributed across the replicas),
and fault-tolerance (load submitted to a failed replica can be redirected to available
replicas). Recent work on multi-tier replication, however, only replicates the application
server tier while using a single database [2–7].We call these shared database approaches
horizontal replication (they replicate a single tier). The main shortcoming is that the
shared database becomes a bottleneck and a single point of failure. An alternative is
to replicate both tiers independently. However, attaining a consistent integration in a
scalable way is still an open problem [8]. Furthermore, some of the approaches, e.g.,
FT-CORBA [9, 10] or [6] for J2EE focus on availability and use either primary-backup
or active replication. Thus, they do not address scalability since neither technique allows
the sharing of load among replicas.

J2EE application servers cache an object oriented view of the database items used
by the application. In order to keep this view consistent with the database, application
servers implement a concurrency control policy for the cache. They typically provide
serializability as correctness criteria, implemented via locking or optimistic schemes,
since databases have relied on serializability for a long time. However, today many
databases provide snapshot isolation as the highest isolation level (e.g., Oracle, Post-
greSQL, FireBird, etc.) and others implement it (MS SQL Server). Therefore, current
application server implementations are incorrect when used with databases providing
snapshot isolation. Snapshot isolation provides a similar level of isolation as serializa-
bility (it passes the tests for serializability of standard benchmarks such as the ones
from TPC). Snapshot isolation is usually implemented via a multi-version mechanism
in which transactions see a snapshot of the database as of transaction start [11]. There-
fore, readers and writers do not interfere. In contrast, when implementing serializability,
read-write conflicts lead to blocking or aborts, reducing the potential concurrency and
the performance of the system. That is avoided by snapshot isolation.

In this paper we propose a replicatedmulti-version cache that improves performance
by avoiding frequent access to the database. It also provides availability, consistency,
and scalability. In our architecture each application server is connected to a local copy
of the database. The pair of application and database server is the unit of replication
(vertical replication). This avoids that the database becomes a single point of failure
and a bottleneck. Our replication solution is fully implemented within the application
server tier on top of an off-the-shelf database. This fact is important for pragmatic rea-
sons since it enables the use of the replication platform with any existing database and
without requiring access to the database code. The replicated cache is based on snap-
shot isolation. That is, using a single server, the cache provides caching transparency,
i.e., its semantics is the same as a system that does not use caching. In a replicated sys-
tem, it provides one-copy correctness and fault-tolerance, that is, the replicated system
behaves as a non-replicated system (consistency) that never fails.

To the best of our knowledge this paper is the first to provide a scalable and in-
tegrated solution for the replication of both the application server and database tier.
It is also the first paper to implement snapshot isolation for the cache of the applica-
tion server tier so that it works properly with a database based on snapshot isolation.
We have implemented the replicated multi-version cache and integrated it into a com-
mercial open source J2EE application server, JOnAS [3]. The performance of the im-



plementation has been evaluated with the new industrial benchmark, SPECjAppServer
[12]. The prototype outperforms the non-replicated application server and shows good
scalability in terms of throughput and response time.

In the remainder of the paper, Section 2 introduces background on J2EE and snap-
shot isolation. Sections 3 and 4 present the replication model and the cache protocol,
respectively. Failure handling is described in Section 5. The performance evaluation is
shown in Section 6. Section 7 presents related work, and Section 8 conclusions.

2 Background and Motivation

2.1 J2EE

J2EE [13] is a framework that provides a distributed component model along with other
useful services such as persistence and transactions. J2EE components are called En-
terprise Java Beans (EJBs). In this paper, we consider the EJB 2.0 specification. There
are three kinds of EJBs: session beans (SBs), entity beans (EBs) and message driven
beans. We will not consider message driven beans in this paper. SBs represent the busi-
ness logic and are volatile. SBs are further classified as stateless (SLSBs) and stateful
(SFSBs). SLSBs do not keep any state across method invocations. In contrast, SFSBs
are associated with a client and keep session related information across invocations.

EBs model business data and are stored in some persistent storage, usually a database.
EBs are shared by all the clients. An EB typically represents a tuple of the database.
Thus, the set of EBs can be viewed as a cache of the database. Therefore, EBs are ac-
cessed within the context of transactions. EBs are typically managed by the application
server (container managed persistence). The J2EE application server (AS) takes care
of reading from and writing to the database by generating the adequate SQL statements
(object oriented to relational model translation). Furthermore, it implements some con-
currency control mechanism on the cache to satisfy the isolation level provided by the
database, typically serializability.

In J2EE, transactions are coordinated by the Java Transaction Service (JTS). Trans-
actions access this service using the Java Transaction API (JTA). In J2EE transactions
can be handled either explicitly (bean managed transactions) or implicitly (container
managed transactions, CMT). With CMTs, the container intercepts bean invocations
and demarcates transactions automatically. We will focus on CMTs.

2.2 Snapshot Isolation

Snapshot Isolation (SI) [11] is a multi-version concurrency control mechanism used
in databases (e.g., Oracle, PostgreSQL, MS SQL server). One of the most important
properties of SI is that readers and writers do not interfere. This is a big gain compared
to serializability, the traditional correctness criteria for databases, where a locking im-
plementation prevents concurrent reads and writes on the same object while optimistic
concurrency control aborts the reader.

SI can be implemented as follows. The system maintains a counterC of committed
transactions. At commit time, C is incremented and the new value is assigned to the
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Fig. 1. Snapshot Isolation

committing transaction T as commit timestamp CT(T). At start, a transaction T receives
as start timestamp ST(T) the current value of C. When a transaction writes a data item
x, it creates a new (private) version of x. When reading a data item x a transaction
T either reads its own version (if it has already performed a write on x) or it reads
the last committed version as of the start of T . That is, it reads the version created by
a transaction T ′ so that CT (T ′) is the maximum CT of all transactions that wrote x
and CT (T ′) ≤ ST (T ). By reading from a snapshot, reads and writes do not interfere.
However, if two concurrent transactions want to write the same data item, SI requires
one to abort. Such conflicts can be detected at commit time.When a transaction T wants
to commit, a validation phase checks whether there was any concurrent transaction T ′

(i.e. CT (T ′) > ST (T )) that already committed and wrote a common data item. If such
a transaction exists T aborts, otherwise it commits. If T commits, its changes (writeset)
are made visible to other transactions that start after T i commits.

Fig.1(a) shows an example with four transactions. We assume C = 10 and the
transaction T with CT (T ) = 10 updated x (not shown in the figure). Now T 1, T 2
and T 3 start concurrently and all receive as start timestamp the value 10. T 2 writes x.
Its validation succeeds and CT (T 2) is set to 11. T 3 reads the version of x created by
T . Since it is read-only, no validation is necessary and it does not receive a commit
timestamp. T 1 reads the version of x created by T , and then writes x creating its own
version.When T 1wants to commit, however, validation fails since there is a committed
transaction T 2, CT (T 2) > ST (T 1), and T 2 also wrote x. Therefore, T 1 has to abort.
Finally, T 4 starts after T 2 commits and receives ST (T 4) = 11. It reads the version of
x created by T 2.

2.3 Application Server Caching and Replication

J2EE implementations provide caching for entity beans as follows. An entity bean (EB)
represents a cached tuple of the database. We denote the entity bean representing tuple
x as EBX . When accessing an EB, if it is not in memory the corresponding tuple is
read from the database. If the EB is updated, the associated tuple will be updated at
the database when the corresponding transaction commits. The EB is then cached in
memory so that it can be directly accessed by further transactions. Access to EBs is
typically controlled via locking in order to provide serializability. However, this can
lead to executions that neither provide serializability nor snapshot isolation when the
database system uses snapshot isolation.
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Let’s look at an example. Assume two transactions T 1 and T 2 start concurrently at
the application server (Fig.1(b)). T 1 wants to write x and y. For that, the application
server reads the values of x and y intoEBX andEBY , respectively, T 1 gets locks and
updates both beans. Concurrent transaction T 2 reads z into EBZ , and then wants to
read y but is blocked because T 1 has a lock onEBY . Now T 1 commits. The new values
for x and y are written to the database and the locks are released. BothEBX andEBY
remain cached. T 2 receives the lock on EBY and reads the current value of EBY ,
namely the value written by T 1. Now assume the cache replacement policy evictsEBX
from the cache. Later, T 2 wants to read x. x is reread into a new incarnation of EBX .
However, since the database uses snapshot isolation and T 2 is concurrent to T 1 in the
database, the old value of x is read. Therefore, T 2 reads for y the value written by
T 1 but for x a previous value. This does neither conform to snapshot isolation nor to
serializability.

In order to avoid the anomalies of J2EE cachingwhen used with a snapshot isolation
database, we propose a multi-version cache for EBs that enforces snapshot isolation. For
each EB, instead of keeping a single copy in the cache, a list of potentiallymore than one
version is cached. Each bean version EBX i of data item x is tagged with the commit
timestamp i of the transaction that created (and committed) this version. Additionally,
the multi-version cache is replicated at several application servers in order to provide
scalability, and availability. The semantics of the replicated multi-version cache is as if
there was a single multi-version cache providing snapshot isolation (consistency).

3 Replication Model

We consider a vertical replication model in which a J2EE application server (AS) and
a database (DB) are collocated in the same site [8]. This is the unit of replication, also
called replica. Each AS communicates with its DB and with the remaining ASs. That
is, DBs are not shared among ASs. The set of all replicas is called a cluster (Fig.2).

In here, we are interested in container managed transactions, where each client re-
quest is automatically bracketed as a transaction by the application server. This means,
there is a one-to-one relationship between requests and transactions. Clients call meth-
ods of a session bean, and the session bean may access other session or entity beans. A



client can be connected to any of the replicas. That replica will execute the transactions
of the client. The changes of update transactions have to be executed at all replicas. Our
protocol uses a group communication system [14] for communication among the repli-
cas. The next section discusses the replication protocol when no failures occur. Section
5 discusses failure handling.

4 Replication Protocol

In this section, we describe the multi-version cache replication protocol (Fig.3). We first
present the main ideas and then discuss the protocol in detail.

Overview
When a request is submitted to a replica, a transaction is started at the application server
(AS) and at the database (DB). The transaction might read data that is already cached
at the AS or that has to be read from the DB. The cache protocol makes sure that the
correct version is read according to snapshot isolation. If the transaction is read-only, it
simply commits locally and the result is returned to the client. If the transaction updates
a data item x, a new private version of the corresponding entity bean EBX is cre-
ated. At commit time, the replication protocol multicasts all EB versions created by the
transaction (i.e. its writeset) using a total order multicast provided by the group commu-
nication system. That is, although different replicas might multicast at the same time,
all replicas receive all writesets in the same order. At each replica, the replication pro-
tocol now validates incoming writesets in the same order. If validation determines that
a concurrent transaction that already validated had an overlapping writeset, validation
fails and the transaction is aborted. If validation succeeds, the replica assigns a commit
timestamp, tags the EB versions of the transaction with the commit timestamp and adds
them to the cache. Then the transaction commits at AS and DB. When the transaction
commits at the local replica, the result is returned to the client. Each replica validates
the same set of update transactions in the same order, and decides on the same outcome
for each individual transaction. Thus, each committed transaction has the same commit
timestamp at each replica.

Protocol Details
We now discuss in detail how transactions are executed.When a transaction is submitted
to a replica R, the replica starts a local transaction T at the local AS and a transaction t
at the local DB. The correlation between AS transactions and DB transactions is stored
in a table (Fig.3 line 6). Each transaction T at the AS will be associated with a start
timestamp ST (T ) when it starts (line 3), and a commit timestamp CT (T ) at commit
time (line 54) which is assigned from a counter that is increased every time a trans-
action commits. The start timestamp ST (T ) of a transaction T is the highest commit
timestamp CT (T ′), and indicates that T should read the committed state that existed
just after the commit of T ′. We assume that the initial start timestamp is 0 at all replicas.
Each bean version EBXCT (T ) of a data item x is tagged with the commit timestamp
CT (T ) of the transaction T that updated (and committed) this version. When a trans-
action T reads a data item x it has written before, it reads its own version (lines 10-11).
Otherwise, it first looks for EBX in the cache. It reads the version EBX i such that



i ≤ ST (T ) ∧ !EBXj : i < j ≤ ST (T ), i.e. it reads the last committed version as of
the time it starts (lines 12-13). If no appropriate bean is cached in memory, the transac-
tion reads x from the DB and the correspondingEBX version is created (lines 15-18).
Since a transaction is started at the DB when a transaction starts at the AS, and the DB
provides snapshot isolation, the DB will return the correct version for x. This process
guarantees that each transaction observes a snapshot as of the start of the transaction
and therefore it does not violate snapshot isolation. Since the DB does not show the
versions associated to tuples, when a version of data item x is read from the DB the
corresponding tag of the EBX version is unknown. Thus, the bean is tagged with -1.

In order to guarantee that transactions always read the appropriate bean version,
the cache guarantees that for each data item x the following holds: (i) If both T and
T ′ updated x, and CT (T ′) > CT (T ) and the version EBXCT (T ) is cached, then
EBXCT (T ′) is also cached. That is, if the cache contains a certain version of a bean,
then it also contains all later versions of this bean; (ii) If there exists a versionEBXCT (T )

and there exists an active local transaction T ′ that is concurrent to T , i.e., ST (T ′) >
CT (T ), then EBXCT (T ) is cached. That is, a version is cached at least as long as
there exists a concurrent local transaction that has not yet terminated. Having all these
versions cached is important for reads.

Note that our approach requires the DB to provide snapshot isolation. This is needed
because the cache cannot keep the entire database, i.e., all versions of all tuples. To show
that snapshot isolation is needed at the DB level, assume the DB uses the isolation level
read committed (or serializability via locking). Assume further that a transaction T i

reads and modifies x while a concurrent transaction T j updates y and commits. Assume
now further that Ti wants to read y and, due to lack of memory, the version of EBY
that Ti needs to read, was evicted from the cache. Hence, it has to read it from the DB.
Assuming transactions run at the DB with read committed (or serializability) isolation
level, Ti reads the value of y committed by Tj . That is, it will not read the value ofEBY
at the time Ti started. Thus, the AS cannot provide by itself the snapshot isolation level.

In snapshot isolation, when two concurrent transactions update the same data item,
only one may commit, the other has to abort. In order to detect such conflicts early, we
use locking and version checking. When a transaction T i wants to update a data item x,
it has to first acquire a write lock onEBX (line 25). Write locks guarantee that at most
one transaction updates data item x at any time. If another transaction holds a lock on
EBX , T has to wait until the lock is released which is done at transaction abort (line
45) or commit (line 73). Lock requests are inserted into a FIFO wait-queue, i.e., when
a transaction releases a lock the first in the wait queue receives it. Once a transaction T
has a lock, a version check on the version EBX j with the highest version number in
the cache is performed. If j > ST (T ), then this version was created by a concurrent,
already committed transaction, and T must abort (lines 26-27). If no such version exists,
T can perform the update, i.e., create its own version and add it to its writeset (line 29-
31). For now, this version is only seen by T itself. This guarantees that a transaction
observes its own updates (lines 10-11) and prevents other transactions from observing
uncommitted changes.

When a transaction wants to commit, if the transaction was read-only it is simply
committed at the DB (lines 36-37). Otherwise, the writeset is multicast to all replicas



Data:
timestamp = 0;
cache = ∅ ;
committedTx = ∅;
transactionTable = ∅;
mutex;;
oldestActiveTx = array[1..NumberReplicas] of Int = 0;

begin(T)1
set mutex ;2
ST(T) = timestamp;3
WS(T) = ∅;4
t = begin transaction in the DB;5
store(transactionTable, T, t);6
release mutex ;7

end8
read(T, EBX)9

if EBXTprivate ∈ WS(T) then10
return EBXTprivate ;11

else if12
∃EBXi ∈ cache : i = max(j) | EBXj ∈ cache ∧ j < ST (T )
then

return EBXi ;13
else14

t = getTx(transactionTable, T);15
EBX−1 = read(t,EBX) from the DB;16
cache = cache ∪{EBX−1};17
return EBX−1;18

end19

end20
write(T, EBX, value)21

if ∃EBXTprivate ∈ WS(T) then22
write(EBXTprivate, value);23

else24
acquire lock on EBX for T;25
if ∃EBXi ∈ cache | i > ST (T ) then26

abort(T);27
else28

create(EBXTprivate);29
WS(T) = WS(T) ∪{EBXTprivate};30
write(EBXTprivate, value);31

end32

end33
end34
commit(T)35

ifWS(T) == ∅ then36
Commit (getTx(transactionTable, T)) in DB;37

else38
multicast(WS(T), T, minLocalTx(transactionTable));39

end40

end41

abort(T)42
∀ EBXTprivate ∈WS(T) do43

delete(EBXTprivate);44
release lock on EBX;45

end46
abort getTx(T) in DB;47
delete(transactionTable, T);48

end49
upon delivery of (WS(T), T, oldestLocalActiveTx)50

set mutex;51
oldestActiveTx[Sender(T)] = oldestLocalActiveTx;52
if !TK ∈ committedTx : ST (T ) > CT (Tk)∧53
WS(T ) ∩ WS(TK) (= ∅ then

CT(T) = + + timestamp;54
if local(T) then55

∀EBXTprivate ∈WS(T) do56
replace tag Tprivate with tag CT (T );57
cache = cache ∪{EBXCT (T )};58

end59
else60

t = begin transaction in the DB;61
store(transactionTable, T, t);62
∀EBXTprivate ∈WS(T) do63

if ∃ local transaction LT that has lock on EBX then64
abort(LT)65

end66
acquire lock on EBX for T (put lock request at begin of67
wait queue);
replace tag Tprivate with tag CT (T );68
cache = cache ∪{EBXCT (T )};69

end70

end71
commit (getTx(transactionTable, T)) in the DB;72
∀EBX ∈ WS(T ) release lock on EBX;73
committedTx = committedTx ∪{T};74
delete(transactionTable, T));75

release mutex;76
end77
garbageCollection()78

oldestTx = min(oldestActiveTx);79
∀T ∈ committedTx do80

if CT (T ) < ST (oldestTx) then81
committedTx = committedTx - {T} ;82

end83

end84
oldestLocalTx = oldestActiveTx[R];85
∀EBX ∈ cache do86

if ∃EBXi ∈ cache∧ i (= −1∧ i < ST (oldestLocalTx) then87
cache = cache - EBXi;88
if EBX−1 ∈ cache then cache = cache-EBX−1;89

end90

end91

end92

Fig. 3. Replicated Cache Protocol for Replica R

using a total order multicast (line 39). All replicas in the multicast group (including
senders) receive all messages in the same order. When a replica processes such a mes-
sage (line 50), the corresponding transaction performs a final validation (line 53). This
will help to find conflicts among transactions that executed at different replicas. Since
all transactions perform deterministic validation in the same order, all replicas decide
on the same outcome. A transaction passes validation, if there is no transaction in the
system that is concurrent, already committed and has overlapping changes.

When a transaction T passes validation, it receives a commit timestamp (line 54). At
the local replica, the private versions are tagged with the commit timestamp and added
to the cache (lines 55-59). T and the corresponding DB transaction t commit and the



locks are released (lines 72-73). Note that committing the DB transaction automatically
propagates the changes to the DB. The protocol keeps track of all committed transac-
tions (line 74) for validation purposes. At a remote replica, a DB transaction is started
for T (lines 61-62). T first gets the locks on the data items. If a local transaction T ′ has
a lock on one of the data items it has to abort because it is concurrent to T , has updated
the same data item and is not yet validated and committed (lines 64-65). T has to be
the first to get the lock (line 67). Then, the versions sent in the message are tagged with
the commit timestamp and added to the cache (lines 68-69). From there, the transaction
commits as in the local replica (lines 72-75).

If a transaction T does not pass validation, nothing has to be done. At remote repli-
cas, the message can simply be discarded since nothing has yet been done on behalf
of T . At the local replica, T can only fail validation if a conflicting remote transaction
T ′ was received between sending and receiving T . In this case, however, as described
above T ′ found the lock held by T and T was already forced to abort.

Note that messages are processed serially, that is, one after the other, in order to
guarantee that validation and commit order are the same at all replicas. Furthermore,
starting transactions have to be coordinated with committing transactions in order to
guarantee that transactions see, in fact, the correct snapshot. Therefore, an appropriate
mutex is set (lines 2,7, 51 and 76).

Examples
We illustrate the execution along two examples. Fig.4 shows an example of the evo-
lution of the cache on a single replica (ignoring the replication part). We assume the
cache is empty and the commit counter is at value 10. Transactions T 1 and T 2 obtain
the same start timestamp (10) and each creates a corresponding DB transaction. Then,
T 2 reads x. Since no bean version exists in the cache, the data item is read from the DB
and a version EBX−1 is created. The value of x is a. Now T 1 reads x and y. Since
EBX−1 is cached and −1 ≤ 10, T 2 reads EBX−1. Furthermore y is read from the
DB and stored in EBY−1. Its current value is b. Now T 1 updates EBX to the value
c and EBY to the value d. For that, it creates private versions of EBX and EBY .
Finally, it requests the commit. It receives commit timestamp CT (T 1) = 11, the ver-
sions are tagged with this timestamp and added to the cache. The corresponding DB
transaction commits meaning that the changes are transferred to the DB. Since the DB
implements SI, new versions for both x and y are created also in the DB. When T 2 now
reads y, it does not read EBY11, since 11 > ST (T 2). Instead, it reads EBY−1 that is,
the old value b of y. Since T 2 is read-only, it simply commits in the DB and no commit
timestamp is assigned.

In our second example (Fig. 5) we assume two replicas R1 and R2. We assume the
commit counter at each replica is 10 when transaction T 1 starts at R1 and T 2 at R2.
Both receive start timestamp 10. Now assume both read data item x, reading it from
the local DB and loading it intoEBX−1. The current value is a. Now both transactions
updateEBX . Since they run in different replicas, both acquire the lock, and create their
own private EBX versions. T 1 sets the new value b, T 2 sets the new value c. When
T 1 and T 2 finish at their local replicas, their changes are multicast. Let us assume the
total order is T 1, T 2 and there is no other concurrent conflicting transaction. Let’s first
have a look at R1. When T 1 is delivered at R1, its validation succeeds. T 1 is local at
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Fig. 4. Evolution of the cache in a single replica.

R1. It receives the CT (T 1) = 11 and its version is tagged (EBX11 = b) and added
to the cache. T 1 commits at the DB. When now T 2 is delivered at R1 validation fails
since T 1 is concurrent (CT (T 1) > ST (T 2)), conflicts, and has already committed.
Therefore, nothing is done with T 2 at R1. At replica R2 transactions are validated in
the same order. T 1’s validation succeeds. T 1 is a remote transaction at R2 and has
to acquire the locks. However, T 2 has a lock on EBX . T 2 is local and has not yet
validated. Therefore, it is aborted, its private version discarded and its lock released.
EBX11 = b is created and added to the cache. The value is propagated to the DB
and the transaction committed. When later T 2 is delivered at R2, validation fails. The
transaction has already aborted, and nothing has to be done. Therefore, the two replicas
commit the same transactions and keep the same values (with the same version tag) in
both the cache and the DB.

Dealing with Creation and Deletions of EBs. Creation and deletion of EBs is also
handled by the protocol (not shown in Fig.3). When a new EB is created (no corre-
sponding data item exists in the DB), a private version is created for the transaction and
there is no other version available. A lock is also set on the EB to prevent concurrent
creations of the same EB (with the same primary key). When the transaction commits,
the version becomes available for transactions that started after the creating transaction
committed and the corresponding tuple is inserted in the DB.

Deletions create a tombstone version of the EB. The tombstone is also a private
version of the transaction until commitment. If the transaction tries to access the EB,
it will not find it, since the protocol will find the tombstone and recognize the EB as
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deleted.When the transaction commits, the tombstone versionwill become public. Even
after transaction commit previous versions of the EB cannot be removed, since there
might be active transactions associated to older snapshots (all transactions that started
before the one that deleted the EB committed), that may read the older EB version.

Garbage Collection. Since EB versions are kept in memory (in the cache), they
should be removed to free space in the cache when they are not needed. For this purpose,
there is a garbage collection mechanism that discards unneeded EB versions (Fig.3
garbageCollection). Each replica removes versions that are older than the oldest start
timestamp among local active transactions (lines 85-88). If a version of an EB, EB i, is
not needed (there is no local active transaction with start timestamp smaller than i), then
version EB−1 is also not needed, since EB−1 is older (line 89). Moreover, if EB−1 is
not evicted from the cache and a new transaction T (ST (T ) > i) reads EB, it would
read EB−1, which is incorrect, since it should read a later committed version (EB i or
even a later version, since ST (T ) > i).

Uncommitted updated EBs are pinned in the cache. If the cache gets full with pinned
EBs, the J2EE application server writes locked EBs from the cache to a local disk repos-
itory (not the database) by means of a standard hibernation mechanism. Thanks to this,
our versioning is not affected by the eviction policy of the cache. When a hibernated
EB is going to be accessed the AS brings the hibernated EB to memory including all
EB versions and their tags. Note that updated EBs whose changes have been committed
will be evicted from the cache according to the cache policy.

Writesets (committedTx) are also garbage collected. Since they are used for vali-
dation, a writeset can only be garbage collected when there are no more active concur-
rent transactions in the system (lines 79-82).

Session Replication. Stateful session beans (SFSBs) keep conversational state from
a client and their replication is not required to provide consistency and availability of



EBs. However, if they are not replicated, a failure of a replica will cause the loss of the
conversational state kept in the SFSB corresponding to all previously run transactions
by the client at that replica. The conversation could not be resumed after the failover,
what results in loss of session availability. For this reason, the replication protocol also
replicates the state of SFSBs after each method invocation. Papers [15, 7] focus on this
topic.

5 Failure Handling

Clients connect to the application server through stubs that are obtained from the ap-
plication server through JNDI (Java Naming and Directory Interface). Since stubs are
generated by the application server, the necessary replication logic can be incorporated
in a way fully transparent to clients. We have extended the stubs to be able to perform
replica discovery and load-balancing, relying on IP-multicast. When a client wants to
connect, the stub IP-multicasts a message to an IP-multicast address associated to the
application server cluster. Clients are identified by a unique client identifier. When the
replicas in the cluster receive a connection request, one of them (depending on the client
identifier) returns to the stub a list of available replicas (their IPs) as well as an indica-
tion of their current load. Replicas multicast information about their load periodically
(e.g., piggybacked on the writeset message). The stub then selects a replica randomly
with a selection probability inversely proportional to the load of the replicas to attain
load balancing. The stub connects to the selected replica and sends all client requests to
this replica (sticky client). Each request receives a unique number (a counter kept at the
stub that is incremented after each successful request).

The AS replicas build a group using the group communication service. The group
communication system provides the notion of view (currently connected cluster mem-
bers). Whenever a member fails, the available members are informed via a view change
message. The group communication system provides strong virtual synchrony that guar-
antees that the relative order of delivering view changes and multicast messages is the
same at all replicas. The total order multicast used for the writeset messages in the
replication protocol also provides reliable delivery guaranteeing that all available repli-
cas receive the same set of messages [14]. Furthermore, the writeset also contains the
client identifier, request identifier plus the response that is going to be returned to the
client. The remote replicas store for each client the latest request identifier, the outcome
of the transaction (commit/abort), and in case of commit, the response.

Let us now consider the failover logic at the application server side. Each replica
consists of a pair of AS and DB. If any of them fails or the site in which they are
collocated fails, the replica is considered as failed. If only the AS or the DB fails, the
other component automatically shuts down. We assume only crash failures.

At the client side the failure will be detected when the stub times out waiting for
the response to an outstanding request. The stub will reconnect to a new replica and
resubmit that request. Notice that we are considering container managed transactions,
where each client request will be automatically bracketed as a transaction. Thus, there
is a one-to-one relationship between requests and transactions. A failure can now occur



at two logical timepoints. (1) The replica failed before multicasting the writeset related
to the request to the other replicas. (2) The replica failed after multicasting the writeset.

If there have been previous interactions with that client, the new replica to which the
stub connects to will have the last state of the stateful session bean (SFSB) associated
to the client and processes the resubmitted client request in the following way. In case
(1), the new replica does not yet have any information about this request and thus, will
process it as a new request. In case (2) it has already stored the request identifier and
the outcome of the corresponding transaction. It recognizes the resubmitted request as
a duplicate for which it has already the outcome stored. If the outcome was commit, it
returns the response to the client. Otherwise, it returns an exception to the client noti-
fying that the transaction was aborted since snapshot isolation could not be guaranteed
(the failed replica would have done the same if it had not failed).

6 Evaluation

6.1 Evaluation Setup

The evaluation has been performed in a cluster of 10 machines connected through a
100 Mbps switch. Sites have 2 AMD Athlon 2GHz CPUs, 1 GB of RAM, two 320
GB hard disks and run Fedora Linux. Each replica consists of one JOnAS v4.7.1 ap-
plication server (AS) and a PostgreSQL v.8.2 database. JGroups [16] is used as group
communication system.

We use the dealer application of SPECjAppServer in our evaluation. SPECjAppServer
is a benchmark developed by SPEC (System Performance Evaluation Cooperative) to
measure the performance of J2EE application server implementations [12]. In this ap-
plication there is a workload generator (driver) that emulates automobile dealers in-
teracting with the system through HTTP. The driver injects three different transaction
types: purchase vehicles (25%), manage customer inventory (25%), browse vehicle cat-
alog (50%). Browse transactions are read-only, purchase transactions have a significant
amount of writes, and management transactions exhibit the highest fraction of updates.
The main parameter in the tests is the injection rate (Ir), which models the injected
load. The number of clients is Ir × 10. The SPECjAppServer specifies a maximum re-
sponse time for all requests (2 seconds). Furthermore, the response time corresponding
to the 90% percentile may be at most 10% higher than the average response time. The
throughput is measured as the business transactions completed per second (Tx/sec).

We compare the results of our replicated multi-version cache with the traditional
caching of JOnAS (no replication) and a replicated application server (JOnAS) with 2
replicas sharing a single database (horizontal replication) where only stateful session
beans are replicated.

6.2 SPECjAppServer Benchmark Results

Fig. 6(a) shows the overall throughput with increasing loads. The figure shows graphs
for traditional caching without replication, horizontal replication with 2 replicas (HR
Shared DB) and our approach for 1-10 replicas. The first noticeable fact is that tradi-
tional caching and horizontal replication can only handle a load up to 3 Ir. In contrast,
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Fig. 6. SPECjAppServer Results

our replicated multi-version cache outperforms these two implementations by a factor
of 2, even if there is only one replica. The reason is that the multi-version cache is able
to avoid many database reads compared to regular caching. Horizontal replication did
not help because the shared database was already saturated with two application server
replicas. With 3 replicas (not shown), the system deteriorated and did not even achieve
an Ir of 1. The replicated multi-version cache is able to handle a load up to 14 Ir achiev-
ing a throughput of 14 Tx/sec with 10 replicas compared to a load of 6 Ir and throughput
of 6 Tx/sec with a single replica (and 3 Ir resp. 3 Tx/sec with traditional caching). That
is, by adding new replicas a higher number of clients can be served.

At the beginning, adding a new replica will increase the throughput by 2 Tx/sec,
after a certain number of replicas the increase is 1 Tx/sec. From nine to ten replicas the
gain is around 0.5 Tx/sec. The reason is that changes performed by update transactions
have to be applied at all replicas. By increasing the load each replica spends more time
applying changes and has less capacity to execute new transactions. Nevertheless, the
scale-up achieved with our approach by far outperforms horizontal replication.

Even when the replicated cache configurations saturate (the throughput is lower
than the injected load), configurations with a higher number of replicas exhibit a more
graceful degradation. For instance, for Ir =13, both the 5-replica an 8-replica configura-
tion are saturated. However, the achieved throughput with 8 replicas is higher than with
5 replicas, providing clients a better service. This is very important, since it will help
the system to cope with short-lived high peak loads without collapsing.



Fig. 6(b-d) show the response time for browse, purchase and management trans-
actions with increasing load. Interestingly, browse transactions (i.e., read-only trans-
actions) are not affected by the saturation of update transactions. As can be seen in
Fig. 6(b) the response time graphs are almost flat independently of the number of
replicas even at high loads when the system reaches saturation. The reason is that for
read-only queries our application server caching is very effective avoiding expensive
database access in many cases. Also, read-only transactions do not require communica-
tion. We can observe that both regular caching and horizontal replication saturate with
Ir = 3, since the response times increase exponentially for browse transactions.

Purchase transactions (Fig. 6(c)) are quite different since they are update transac-
tions. The response time for all configurations reaches saturation (it grows exponen-
tially) at some time point. The response times for traditional caching and horizontal
replication are worse than for the multi-version approach even for low loads show-
ing that our caching strategy saves expensive access to the database. Furthermore, the
replicated architecture provides low response times until saturation is reached. Finally,
the more replicas the system has, the more graceful is the degradation of the response
time at the saturation point. This is important since acceptable response times can be
provided in case of short-lived peaks.

The different behavior of the purchase transactions compared to browse transactions
has to do with the fact that update transactions propagate their changes to all the replicas
in the system, and also have to write changes to the database. Thus, a higher overhead
is created leading to worse response time. This behavior is even more noticeable in the
case of manage transactions, which have the highest percentage of updates (Fig. 6(d)).
Again, however, degradation of response times is more graceful with larger number of
replicas.

6.3 CPU Analysis

In this section we look at the CPU usage of the database and the application server
during 16 minutes of executing the benchmark. Each of the following figures shows two
graphs. One graph is the CPU usage of the database and the other is the overall CPU
usage. The gap between the two graphs is mostly the application server (and replication
protocol) CPU usage.

The results for regular caching and our multi-version cache with a single replica for
Ir = 4 are shown in Fig. 7. At this load, the system is saturated with a 100% usage of
the CPU with 1 replica and regular caching (Fig. 7(a)). The database consumes most
of the CPU. There are depressions in the utilization graph of the database. They have
to do with the way PostgreSQL handles updates. Periodically, when buffers are full, it
stops transaction processing and forces data to disk. This results in underusing the CPU.
The single replica multi-version cache configuration shows a significantly smaller CPU
usage (Fig. 7(b)). The CPU usage of the database is much smaller due to the multi-
version cache. This saves database access and reduces the CPU resources required by
the database instance. Thus, the system is not saturated for Ir = 4.

Examining the 2-replica configuration of our replicated cache for Ir = 4 (Fig. 8(a)),
the results are quite different. Although there are some high peaks in the CPU usage,
the area covered is much smaller than for the 1-replica configuration. The overall CPU
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Fig. 9.Multi-version cache. CPU Usage: Six replicas

usage has been significantly reduced. This means that for the same load the overhead
at each replica is smaller, resulting in an effective sharing of the load. In the 6-replica
configuration and Ir = 4 (Fig. 9(a)), CPU usage is even further reduced with a very low
amount of CPU devoted to the database. This explains the scalability of our approach.
The more replicas in the system, the better the load is distributed.



No Replication Replication When
JGroups 130,00 update tx
Replication Classes 143,00 update tx
Entity Serialization 3,20 update tx
SFSB Serialization 4,91 SFSBs update
Entity bean caching 152,00 110,00 always
DB Access 227,00 110,00 always

Table 1. JProfiler Results

Fig. 8(b) shows the 2-replica configuration when it is saturated at Ir = 10. At this
load, the database usage of the CPU amounts to 80% which means that the database
is the bottleneck. The 6-replica configuration is not saturated in this setting (Fig. 9(b))
since the CPU usage of the database is lower. This confirms the effective distribution of
the entire load (application server and database load) among replicas, which results in
the scalability of the approach.

Another important conclusion is the efficacy of collocating application and database
server on the same site which distinguishes our vertical replication approach from pre-
vious solutions. It enables adapting the CPU resources needed by each kind of server
without replica configurations. The operating system takes care of distributing CPU to
the servers according to their needs.

6.4 Profiling Tool Results

We also used a profiling tool, JProfiler, to analyze the differences in response time be-
tween the application server with and without the multi-version cache. It measures both
the replication overhead and the savings obtained by the multi-version cache. Since
the profiling tool introduces a very high overhead, the profiling could only be done
with a single replica and the lowest Ir of 1. The results show the overall number of
seconds spent during the whole experiment on methods with different functionalities
(Table 1). The group communication system (JGroups) and the replication classes in-
troduce a non-negligible overhead as expected. However, it must be noticed that read
only transactions (50% of the load) are not affected by this overhead. The multi-version
cache compensates the replication overhead by improving the caching efficiency and
reducing the database access (rows at the bottom) in a 27.6% and 51.5%, respectively.

6.5 Scalability Analysis

In this section we measure the scalability of the replicated cache, i.e., how much we can
increase the load when increasing the number of replicas. To measure the scalability we
take the response time (RT) threshold of the SPECjAppServer benchmark, 2 seconds,
and observe for each configuration (i.e. number of replicas) the maximum load (Ir) for
which the response time remained below the 2-second threshold. Additionally, in order
to observe the behavior under peak loads, we have also measured the maximum load
for a 5-second threshold.



0

2

4

6

8

10

12

14

16

18

1 2 3 4 5 6 7 8 9 10

+ o. /e1licas

7
a
x
 9

r

Purc=ase /T ?@ 2
Purc=ase /T ?@ 5
7aAage /T ?@ 2
7aAage /T ?@ 5

Fig. 10. Scalability Analisys

Fig. 10 shows the scalability results. For browse transactions we do not show any
graphs since for all tested replica configurations and injected Ir the response time was
well below 2 seconds. For purchase transactions, we can see that for small configu-
rations the sustainable load increases sharply when increasing the number of replicas,
while it only increases slightly when there are already many replicas in the system. This
means, 5 replicas are able to manage a total of 110 clients (Ir = 11), that is, an average
of 110/5=22 clients per replica. 10 replicas manage 150 clients (Ir = 15), that is, an
average of 15 clients per replica. Still, scalability is considerably good considering the
substantial fraction of updates involved in purchase transactions.

For manage transactions the system does not scale as well as for purchase transac-
tions. This is expected since manage transactions have a higher percentage of updates
resulting in a higher replication overhead. For this kind of transactions the system does
not scale beyond 6 replicas for the 2-second threshold. However, if we look at the tol-
erance to peak loads (threshold RT <= 5 secs) having additional replicas is beneficial.
Manage transactions with a threshold RT<=5 scale almost as well as purchase transac-
tions. That is having 10 replicas, the system can still provide reasonable response time
(below 5 seconds) at high loads, while this is not the case for 6 replicas.

7 Related Work

Early work in application server replication looked mainly at CORBA and focused on
fault-tolerance [9]. This work resulted in the FT-CORBA specification [17], where the
application server is replicated and the database is shared (horizontal replication). This
results in solutions providing availability for the application server tier. Replication of
CORBA with transactional consistency has been addressed in [10].

[15] presents a primary-backup approach for the replication of J2EE servers. It pro-
vides session availability, as we do in this paper. However, being primary-backup does
not provide any scalability. [7] is also a primary-backup approach for the replication
of J2EE servers supporting multiple transactional patterns (e.g. several client requests
may be encapsulated within one server transaction or a single client request can initiate
several server transactions). [2] introduces a caching algorithm for J2EE application
servers. Application servers are replicated and share the database (horizontal replica-
tion). Consistency is guaranteed through a certification protocol. At commit time, every



read entity bean is re-read to check whether it was modified. This approach has the
shortcoming of all horizontal approaches since the shared database becomes the bottle-
neck. The certification is heavier than the validation of our replication protocol since it
has to re-read every read entity bean.

On the theoretical side, papers [5, 4] defined formally exactly-once correctness in
multi-tier systems. They study the replication of stateful and stateless application servers
with a shared database. In these proposals, each client request is executed as a single
transaction. For each transaction a “marker” is inserted in a shared database. The new
primary will look for this marker during failover in order to ensure exactly once exe-
cution of each client request. In this case, the database is a single point of failure. [6]
applies this technique in a J2EE environment.

In contrast to aforementioned approaches, our proposed replicated cache provides
both scalability and availability and avoids that the shared database becomes a single
point of failure and a bottleneck.

[18] also explores middle-tier caching. The authors propose a freshness approach
for data consistency in which inconsistency is bounded to miss a maximum number
of update transactions (termed freshness). This consistency is very relaxed and con-
trasts sharply with the strong consistency provided by our approach. The simulation
performed in the paper is evaluated with an ad-hoc benchmark. Our approach provides
a high level of consistency via snapshot isolation and it is a real implementation evalu-
ated with an industrial benchmark.

[19] studies different approaches for providing consistent caching in dynamic web
applications. This approach shares the same strong consistency goal as ourmulti-version
cache. The main difference lies in that our approach also provides scalability.

Clustering (replication) is a facility provided by many commercial J2EE applica-
tion servers. However, current approaches focus on the replication of SFSBs and rely
on a shared database. This is the case of JBoss open source J2EE application server
[20], Oracle9iAS [21], WebLogic clustering [22] and WebSphere 6.0 [23]. The state
of SFSBs is multicast to the rest of the replicas after each method invocation. JBoss
Cache is a replicated transactional cache for entity beans with a shared database [24].
It provides two ways to maintain data consistency: replication and invalidation. With
replication, every entity bean in the cache is replicated to the rest of the replicas at the
end of a transaction. That includes all data read by the transaction, which may be a
huge amount of data. If the invalidation policy is used, only the primary keys of the
entity beans are sent. Then, these entity beans are invalidated in the cache of the rest
of the replicas, which must read the entity beans from the database. Moreover, there
is a two-phase-commit protocol (2PC) in order to commit a transaction resulting in a
very heavy-weight protocol. This approach only provides availability of the application
server tier, and does not provide scalability, unlike our replicated cache.

8 Conclusions

We have presented a replicated multi-version cache that achieves integral replication
of multi-tier systems. The replication protocol takes into account both the application
server and the database encapsulating the replication logic within the application server.



This enables the use of off-the-shelf databases. The replicated multi-version cache
scales even for update workloads, and takes advantage of modern snapshot-isolation
databases such as Oracle and PostgreSQL. The implementation is based on a commer-
cial J2EE application server, JOnAS. A thorough evaluation has been performed using
an industrial benchmark, SPECjAppServer, and the results have demonstrated the good
scalability of the approach.
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