
Living with Nondeterminism in Replicated

Middleware Applications

Joseph Slember and Priya Narasimhan

Carnegie Mellon University, Pittsburgh PA 15213, USA
jslember@ece.cmu.edu, priya@cs.cmu.edu

Abstract. Application-level nondeterminism can lead to inconsistent
state that defeats the purpose of replication as a fault-tolerance strat-
egy. We present Midas, a new approach for living with nondeterminism
in distributed, replicated, middleware applications. Midas exploits (i) the
static program analysis of the application’s source code prior to replica
deployment and (ii) the online compensation of replica divergence even
as replicas execute. We identify the sources of nondeterminism within the
application, discriminate between actual and superficial nondeterminism,
and track the propagation of actual nondeterminism. We evaluate our
techniques for the active replication of servers using micro-benchmarks
that contain various sources (multi-threading, system calls and propaga-
tion) of nondeterminism.

1 Motivation

Replication is a common technique used to build fault-tolerant, distributed sys-
tems. The idea behind replication is the creation and distribution of multiple,
identical copies (replicas) of a component across a system so that the failure of a
replica can be masked by the availability of the other replicas. Determinism is a
fundamental property required in order for replication to work. A component is
said to be deterministic if it contains no characteristics that could cause replicas
to become inconsistent with each other. In other words, identical replicas, when
started from the same initial state and supplied the same ordered sequence of
input messages, should reach the same final state and produce the same output.

A simplistic, but effective, strategy is to disallow the use of any nondeter-
ministic functionality within applications that are to be replicated – effectively,
this forbids the use of multithreading, shared memory, local I/O, system calls,
random numbers, timers, etc. This is, in fact, the approach adopted by industrial
standards, such as Fault-Tolerant CORBA [14].

Clearly, this approach is unrealistic for real-world applications that wish to
use all of these nondeterministic functions. Current approaches to handling non-
determinism, covered in Section 8, allow nondeterminism to exist within the
application, but handle it transparently. Transparency has its accompanying
benefits, but does not exploit application-level information that might facilitate
the handling of nondeterminism. In addition, architecture/application program-
mers often need to able to exercise control and “want to worry about replica

configuration, intervene in failure detection or enabling explicit synchronization
between replicas" [21]. With this motivation, we have developed a program-
analysis approach to handling all forms of nondeterminism (including system
calls and multithreading) – this allows us to exploit application-level insight in
handling nondeterminism. Active replication is the predominant replication style
that falls prey to nondeterminism. Therefore, our techniques are focused on how
to handle nondeterminism in architectures using active replication. However, our
techniques are easily applicable to other replication styles as well.

Contributions of this paper: Our previous research [18] showed that program
analysis could assist in handling one specific form of nondeterminism, namely,
system calls, such as gettimeofday. In our enhanced approach, Midas, described
in this paper, we handle all forms of nondeterminism, including multithreading
and contaminated nondeterminism. More specifically, the contributions of this
paper include the following:

– Taxonomy and technique that distinguishes between nondeterminism that
is superficial (looks like a nondeterministic call, but its effects do not lead
to replica divergence) vs. actual (effects do lead to replica divergence) – this
allows us to be discriminating in that we only need to worry about addressing
the actual, and not the superficial, nondeterminism;

– Tracking the propagation (or “contamination”) of nondeterminism through
the application code – this allows us to capture the effects of nondeterministic
execution and variables on otherwise deterministic code;

– Design and empirical evaluation of various application-centric performance-
sensitive techniques that compensate for the nondeterminism that we detect
and track – these techniques range from re-executing the contaminated non-
determinism to transferring the entire application state.

2 Taxonomy of Nondeterminism

Program analysis allows us to identify the true causes in the divergence of repli-
cated state. Application state can be classified into one of three mutually exclu-
sive categories: pure nondeterminism, contaminated nondeterminism, and pure
determinism.

1. Pure nondeterminism: This covers any function that is the originating
source of nondeterminism and that affects the server’s state. Examples include
system calls such as gettimeofday or random, all inputs, and all read calls that
change the server’s state nondeterministically. An example is
for (int j = 0; j < 100; j++) foo[j] = random();

Shared state among threads also falls within this category. However, we treat
shared state in a special way – each access of shared state by a thread is consid-
ered to be a separate source of nondeterminism. For example, consider a single
shared variable between two threads; if each thread accesses this variable four
times, then, there exist eight separate instances of pure nondeterminism. It is
immaterial that these eight instances happen to involve the same variable. This

view of shared state among threads frees us from having to worry about thread
interleaving or the actual point in time when the threads execute.

2. Contaminated nondeterminism: This covers state that has any depen-
dency, direct or indirect, on an instance of pure nondeterminism. Contaminated
state captures the effect of pure nondeterminism when it propagates to the rest
of the application. In other words, the pure nondeterministic state marks the be-
ginning of nondeterministic execution. Anything that the pure nondeterministic
state then touches is contaminated. If there was no pure nondeterminism, then,
there would be no contamination. An example is the contaminated variable bar

that depends on the purely nondeterministic variable foo:
for (int j = 0; j < 100; j++) {

foo[j] = random();

bar[j + 100] = foo[j]; }

3. Pure determinism: This covers state that has no dependency whatsoever
on the identified pure nondeterminism. This category of state will always be con-
sistent across all server replicas. Assuming that the values in bar are initialized
to zero, an example is:
for (int j = 0; j < 100; j++) bar[j] = bar[j] + 10;

4. Superficial nondeterminism: This falls under the category of pure de-
terminism, but might be misclassified if a transparent approach to handling
nondeterminism were used. In this category, a nondeterministic call is executed,
but the end-result does not affect the application’s persistent state and does not
contaminate the rest of the application, either. An example is:
int a = random(); b = 5; return b;

Here, variable a is nondeterministic, but its value does not affect the server’s
state. More realistic examples of superficial nondeterminism are not shown here
due to lack of space. A significant source of superficial nondeterminism arises
in multithreaded applications where threads do not share any variables and do
not modify any persistent application state, or where the shared state is split up
across the threads such that each thread has its own distinct piece of state.

The value of this taxonomy, lies in its utility in compensating for nondeter-
minism. Only pure and contaminated nondeterminism need to be addressed for
replica consistency – the other categories (pure determinism and superficial non-
determinism) can be disregarded. Thus, the compensation overhead will depend
on the relative amounts of each category within an application.

3 Objectives

Our aim is to permit programmers to continue to create distributed applications
that are nondeterministic (e.g., containing performance features such as mul-
tithreading) and yet allow these applications to be made fault-tolerant. Midas
is independent of the target application and middleware and could be readily
applied to any distributed, nondeterministic application.

In this paper, we exploit client-server middleware as the vehicle for exploring
the issues underlying nondeterminism. In particular, we target CORBA C++

applications for the application of Midas. MEAD [12], the fault-tolerant mid-
dleware that we use, enables CORBA applications to be made fault-tolerant
in multiple ways, including active, or state-machine, replication [17]. With the
active replication of a server, every server replica receives and processes each re-
quest; every server replica also sends a response to the client, leading to duplicate
responses that need to be filtered. The MEAD infrastructure performs this fil-
tering and delivers only one response to the client, thereby masking the server’s
replication from the client. Clearly, for active replication to work, the server
replicas must receive the same set of messages in the same order, which MEAD
assures because it conveys messages over the underlying totally-ordered group
communication system, Spread [3]. Active replication traditionally requires the
supported application to be deterministic; however, we relax this requirement to
allow MEAD to support the active replication even of applications containing
nondeterministic features.

Midas’ approach involves a synergistic combination of two aspects: compile-
time knowledge with run-time compensation. By exploiting program analysis to
isolate the possible places where nondeterminism can affect the system state or
behavior, we then perform code transformations (that do not violate application
semantics or expected functional behavior) to ensure consistent results across
all of the replicas. We offer the programmer various options to deal with nonde-
terminism. A side-benefit of our analysis lies in its software engineering aspect.
Because our program analysis tracks all live variables and their dependencies
on detected nondeterminism, we can assess to what extent nondeterminism per-
vades the application. This information can be beneficial to the application pro-
grammer in understanding the trade-offs and deciding between various choices
in compensating for nondeterminism.

Assumptions. Midas relies on having complete access to the application’s
source code, along with the ability to modify it prior to deployment. Specifi-
cally, we assume that we are allowed to modify the source code for the client,
the server, and the IDL interfaces of all objects. Both the client and server source
code must be available for analysis, although only the server is replicated. We
also assume that all of the application state can be determined statically – thus,
program analysis techniques that can handle dynamic state (e.g., dynamically
allocated variables whose size is unknown at compile time) are outside the scope
of this paper. Pointer-aliasing analysis is currently outside the scope of the tech-
niques highlighted in this paper; our most recent work does incorporate advanced
compiler techniques to handle dynamic memory and pointers.

For the purpose of this paper, and to describe how we handle application-
level nondeterminism, we assume the deterministic, reproducible behavior of the
operating system and the underlying middleware. While we make this simplifying
assumption in order to demonstrate our approach to handling nondeterminism,
we emphasize that Midas is general enough that we could apply it equally to
the middleware/OS source-code and address their inherent nondeterminism as
well, as describe in [19]. We also require homogeneous platforms, i.e., all of the
replicas of the application must be hosted over identical hardware and operating

Dependency
Output Files

CLIENT

CLIENT SERVER

SERVER

Intermediate
Language

Original
Source
Code

Programmer
Interface

IRC D

D

D

Analyzer
and

Code Modifier

New
Source Code

Original
Source Code

Programmer
Interface

C

C

CC

Cross-File
Nondeterminism

Analyzer (CFNA)Dependency
Output Files

CLIENT

SERVER

Fig. 1. Midas’ program analysis framework for analyzing nondeterminism.

systems; future versions of our approach will be extended to cover heterogeneous
platforms. We assume an independent-failures model across distinct nodes and
replicas, and aim to tolerate crash and communication faults.

4 Program Analysis Framework

To perform program analysis, we needed to convert the C++ CORBA applica-
tion source-code into an intermediate format that is more suitable for program
analysis. We first transformed our target C++ applications into C code using
EDG [1], and then used the SUIF2 [2] compiler to transform the resulting C
code into the intermediate representation. Conversion from C++ to C allows
for easier analysis because it eliminates some complexities (e.g., object-oriented
issues) that C++ introduces. It also allows us to leverage current compiler tools
that expedite the transformation of C code into a workable, efficient intermediate
form (referred to as an annotated parse-tree henceforth).

As shown in Figure 1, Midas’ analyzer makes multiple passes through each
intermediate file, and highlights the sources of nondeterminism in the code. For
instance, a pass that discovers a nondeterministic call will annotate the return
value of that call and then track that variable as potential (contaminated) non-
determinism. For each source file, the analyzer creates a dependency file that
captures the nondeterministic behavior of the source code in that file. We then
modify the original application source-code to insert specific code-snippets for
the tracking and subsequent compensation of nondeterminism.

Enhancements to Analysis Framework. In our current program-analysis
framework, we use SUIF to generate the initial abstract syntax tree (AST). All
of the subsequent application analysis-passes are custom extensions to SUIF
because of our specific needs in analyzing nondeterminism. For instance, our
enhanced Midas framework supports thread analysis, as long as we can statically
determine the entry, exit, and launch of all threads. In addition, we perform a
complete dependency analysis to identify not only pure nondeterminism, but
also the contaminated state that depends on it.

Some information is lost in the conversion from C++ to C, and we traverse
the C++ code to mark up the SUIF-generated AST tree to fill in this infor-

mation. The declaration of variables needs to be updated as scope is defined
differently in C and C++, and this can affect the dependency chain between
variables. For instance, in C++, the conditional block within an if, while,
do-while, or for is considered to be a new scope, unlike in C. Another exam-
ple of lost information relates to exception-handling code in try-catch blocks;
try-catch blocks that form the top-level statements of functions, constructors,
or destructors must be updated because they can affect the propagation of ex-
ceptions. Midas’ current automated generation and insertion of code to handle
our categorized nondeterminism includes:

– Tracking to assign unique identifiers to nondeterminism that is embedded
within specific elements of a non-scalar data structure (e.g., nondeterminism
that affects only one element of an entire array);

– Data structures to hold the variable-size state of the application;
– State-transfer operations (get_state and set_state) to copy state back and

forth from the application into the appropriate data structures for transfer
over the network;

– Execution that re-generates the contaminated state from the pure nondeter-
ministic state, only if the latter has been transferred.

Data-Flow Passes. We perform multiple passes over the annotated parse tree.
The first set of passes identifies all of the persistent state within the server code.
Ultimately, this represents the only state that might be affected by nondetermin-
ism and the state that we need to worry about for consistent server replication.
The second set of passes identifies the pure nondeterminism within the appli-
cation; these passes find and mark nondeterministic system calls, inputs, I/O,
etc. Shared state between threads is initially considered as potentially nondeter-
ministic, and another pass is made to discover all accesses to this shared state;
these accesses are then marked as pure nondeterminism. Subsequently, these ac-
cesses are treated as sources of nondeterminism in their own right, and effectively
constitute state. def-use chains (that determine where a specific variable is de-
fined, and where it is used or assigned to another variable) are then calculated
for all marked pure nondeterministic variables – this represents the first phase
of dependency-tracking.

Control-Flow Passes. The next phase involves evaluating all of the possible
execution paths that the server code might take. We determine the order of
variable assignments along a particular control path, and for every discovered
control path, we link together the def-use chains that we determined in the pre-
vious data-flow phase. This allows us to calculate dependencies of every variable
for every possible execution path. Carrying this argument forward, we can now
mark as contaminated nondeterminism all of the state that depends on the pure
nondeterministic state identified in the data-flow phase. This is recursive – as
we mark more contaminated state, we need make further passes to determine if
there are further dependencies on this newly discovered contaminated state. We
perform an exhaustive search of the server source-code to ensure that all such

S2

S2

S1

S1

S3

S3

Reliable
multicast
messages

Pick
one

reply

Pick
one

reply

aaa
aaa
aaa

bbb
bbb
bbb

aaa
aaa
aaa

bbb
bbb
bbb

M
E
A
D

M
E
A
D

M
E
A
D

M
E
A
D

M
E
A
D

M
E
A
D

M
E
A
D

M
E
A
D

Client

Actively Replicated Server

S2

S2

S1

S1

S3

S3

Reliable
multicast
messages

aaa
aaa
aaa

bbb
bbb
bbb

aaa
aaa
aaa

bbb
bbb
bbb

M
E
A
D

M
E
A
D

M
E
A
D

M
E
A
D

M
E
A
D

M
E
A
D

M
E
A
D

M
E
A
D

Request

aaa
aaa
aaa

bbb
bbb
bbb+

+
+

Compensation
occurs before

the current request
is processed

Compensation
occurs before

the current request
is processed

No compensation
needed (server

selected last round)

Extracts piggybacked
nondeterministic

information

Nondeterministic
Information at
each replica

Nondeterministic
Information

encapsulated by
each replica

Nondeterministic
Information

encapsulated by
each replica

aaa
aaa
aaa

bbb
bbb
bbb

aaa
aaa
aaa

bbb
bbb
bbb

SID
S2

chosen replicaS2

chosen replicaS1
chosen replicaS2

SID
S2

SID
S1

S1

S2

S2

S2

S2

S3

S1

S2

S3

Request

Request

Request

Response

Response

Response

Response

Response

Response

Request

Request

Fig. 2. Underlying approach for Midas’ various compensation techniques. The tech-
niques differ in the nature/amount of the information passed back and forth between
the client and the server, and in the actual compensation work done on the server-side.

contaminated state is found. All persistent state that remains unmarked at the
end of the control-flow phase can be considered as pure determinism.

5 Midas’ Compensation Approaches

During our compile-time phases, we insert the compensation and state-transfer
code snippets that will actually execute at runtime within the application. In
this section, we describe how and when these code-snippets accomplish the com-
pensation. For the remainder of the text, we assume that the server is actively
replicated.

In our approach, the client is an integral participant in the compensation
of the server’s nondeterminism. Consider any two consecutive requests from the
client to the replicated server, as shown in Figure 2. Each server replica pig-
gybacks the relevant information(this information is specific to the technique
described below) about its nondeterminism to the client in its response to the

first request. Then, this information, piggybacked onto the second request, is
echoed by the client to all of the server replicas so that they can perform in-
dividual, local compensation actions before they begin to process the second
request. All of the piggybacked nondeterministic information, as well as its asso-
ciated transfer and compensation code, is generated by our compile-time phase,
without burdening the application programmer.

We emphasize here that the server replicas do not need to be in lock-step syn-
chronization in order to do this – each replica proceeds asynchronously to service
its incoming, totally-ordered requests and to return responses. Thus, through
the runtime execution of our inserted compensation snippets, each replica is
rendered logically identical with its peers before it starts to process any new
request from the client; between requests, the server replicas (if each’s internal
state is inspected individually) might, in fact, be divergent in state. However,
this out-of-band divergence does no harm because it does not compromise the
fault-tolerance of the application. If a replica fails or is recovered, it will simply
be rendered consistent with the others at the start of the next new request. In
Section 7, we address how this divergence becomes an issue when multiple clients
are involved, with each controlling some part of the compensation.

All of our performance-sensitive compensation techniques undergo two rounds
of client-server interaction for compensation, as shown in Figure 2. However, they
differ in the amount and nature of compensation work done at the server replica
and the amount/kind of relevant information transferred back and forth between
the client and the server replicas. While all of our techniques are common in ex-
ploiting program analysis, the range of choices allow an application programmer
to make an application-centric, performance-sensitive choice in compensating for
nondeterminism. The techniques described below can be broadly classified as:

– Transfer of state, or the transfer-* techniques:
transfer-ckpt, transfer-diff-ckpt, transfer-contam and
transfer-contam-track;

– Re-execution of code, or the the reexec-* techniques:
reexec-contam and reexec-contam-track.

In Figure 3, we depict the decision process that an application/system de-
veloper would undergo in order to decide among the various techniques.

5.1 Full-Checkpoint Transfer (transfer-ckpt)

After processing each request, every replica marshals its entire state (checkpoint)
and passes this state, along with its response, to the client. The client accepts
the first response1, stores the identifier of the corresponding (selected) replica

1 The client always sees only one response from the entire set of replicas because
MEAD delivers the first-received response from the replicated server and suppresses
the other responses. The replica whose response makes it first to the client is called
the selected replicain the processing of the client’s next request. The selected replica
can vary from one request to the next, and is not dictated by the client or the server.

Address
nondeterminism?

Transparent
solution?

Analyzable
application?

Comm
overhead a
constraint?

compute
differential
checkpoint

Comm overhead
still a

constraint?

Comm >
processing
overhead?

Live with
replica divergence

Transparent
approach

Program-analytic
approach to increase
efficiency of
transparent approach

Our techniques that
exploit program analysis
to address nondeterminism

transfer-contam

transfer-ckpt

transfer-diff-ckpt

reexec_contam

2 3

4

5

6

1

YES

YES

YES

YES

YES

NO

NO

NO

NO

NO

NO

Fig. 3. Decision tree for determining appropriate technique for handling

nondeterminism in an application. (1) Yes: Nondeterminism must be dealt with;
No: Either no nondeterminism or can live with potential replica divergence. (2) Yes:
Application code cannot be modified or designer prefers a transparent approach; No:
Application code can be modified. (3) Yes: Pure deterministic code can be highlighted
by program analysis, enabling a more efficient transparent technique that addresses
only actual, and not superficial, nondeterminism; No: Program analysis cannot be
performed on application source code, requiring a transparent approach that unnec-
essarily handles even superficial nondeterminism. (4) Yes: Communication overhead
is an issue and a more efficient technique must be found. Only the state that has
changed needs to be handled; No: Communication overhead is not a constraint and
transfer-ckpt technique can be used. (5) Yes: Communication overhead is still a con-
straint and further analysis is required; No: Communication overhead is within reason
and transfer-diff-ckpt can be used. (6) Yes: Communication overhead is a greater
constraint than processing overhead, and reexec-contam can be used; No: Processing
overhead is a greater constraint than communication overhead and transfer-contam

can be used.

and that replica’s state. On its next request to the server, the client piggybacks
this saved information (including the checkpoint of the selected replica).

Each receiving replica examines this information to see if it was the selected
replica, at the client-side, for the previous request. The selected replica does

not need to compensate and can proceed with processing the current request; a
replica that was not selected by the client in the previous round must apply the
piggybacked checkpoint before proceeding to service the current request. Thus,
these checkpoints are passed back and forth between the client and the server
to ensure replica consistency. Effectively, the compensation is as if a new replica
was started and a fresh checkpoint was transferred to it, except that, in our case,
the checkpoint is funneled through the client in its next request.

5.2 Differential-Checkpoint Transfer (transfer-diff-ckpt)

We instrument the application code in all of the places where the processing of
a request might modify its state. Clearly, not all of these potential state-change
points might actually be executed when the server processes a request. At run-
time, only the actually executed change-points are captured and the associated
state (called a differential checkpoint) transferred to the client. The remainder
of the technique is similar to transfer-ckpt. Compared to transfer-ckpt, we
have increased static code growth due to the additional instrumentation. There
should be a slight increase in runtime server-side latency due to the additional
scaffolding code required to track variables. This technique performs best when
the scaffolding latency is outweighed by the benefit in communication latency
obtained with transferring the differential checkpoint vs. the full checkpoint.

5.3 Transfer Contaminated-Nondeterminism (transfer-contam)

The transfer-ckpt and transfer-diff-ckpt techniques do not discriminate
between actual and superficial nondeterminism. In the transfer-contam tech-
nique, each server replica piggybacks only its actual nondeterministic state (both
pure and contaminated) back to the client.

Based on the output of our data-flow and control-flow analyses, we create a
server-side struct that holds the pure and contaminated nondeterminism within
each replica. Because this struct needs to be marshaled over the standard mid-
dleware protocol, we need to augment the IDL interface specifications of the
server so that this nondeterministic struct contains (and serves as) the return
value of the server’s methods and is also an input parameter to the server’s
methods – this allows us to piggyback the nondeterministic struct onto mes-
sages passed back and forth between the client and the server. The remainder
of the algorithm is similar to the transfer-ckpt technique, except that the
client-side and the server-side extract, copy, and piggyback the nondeterministic
struct instead of a checkpoint.

5.4 Reexecute Contaminated-Nondeterminism (reexec-contam)

We insert prepared portions of code that can be executed to re-generate the con-
taminated nondeterminism, if provided the pure nondeterminism (i.e., the ori-
gin of the contamination) as an input. In reexec-contam, every receiving server

replica extracts the piggybacked nondeterministic struct, as in transfer-contam.
As with all of the other techniques, the selected replica for one request has no
compensation work to do for the next request. On the other hand, each of the
remaining (non-selected) replicas for a request performs compensation, before
processing the next request, by first setting the pure nondeterministic part of
its state to the received nondeterministic struct, and then re-executing the
inserted code-snippets to regenerate the corresponding contaminated nondeter-
minism. At the end of this compensation, each replica is consistent and is ready
to process the current request.

Compared to transfer-contam, the reexec-contam technique should in-
cur lower communication overheads due to the reduced amount of nondeter-
ministic state being piggybacked back and forth; however, the tradeoff is that
runtime latency is increased by the reexecution of the compensation snippets
at the server side. Also, reexec-contam requires more compile-time analysis
and source-code modification to the server-side than transfer-contam. This is
because additional control-flow passes are needed to isolate the code that en-
capsulates the contaminated nondeterministic state. The client-side code is the
same as in transfer-contam.

Obviously, reexecution is justified when the compensation overhead is out-
weighed by the communication overhead of the transfer-* techniques.

5.5 Incorporating Tracking
(transfer-contam-track, reexec-contam-track)

The complexity of the data structures that constitute application state, along
with the way these structure are accessed or referenced, affects how we track
changes in that application’s state. The nondeterministic structs that we create
for compensation purposes must be flexible and able to hold a dynamic amount
of information, ranging from no state all the way to a full checkpoint. We use
the CORBA sequence type for this purpose because it can hold, and marshal
over the wire, a dynamic amount of information.

If state variables are all scalar types (e.g., int a), then, there is no need for
tracking. However, if data structures are more complex or non-scalar (e.g., int
a[10000]) , then, additional information might be needed to track which of the
member items of the non-scalar structure have changed.

To cover the worst possible case, we identify each piece of state with an ad-
ditional identifier. This identifier can be used to directly reference its associated
piece of state. For example, if int a[500] is a part of the state, then another
shadow array of the same size is created to hold the indexes of array a[]. If
only one value in the array a[] changes at runtime, the shadow array tracks
the change and allows us to know which index in a[] changed. The additional
compile-time work to support tracking is minimal because it involves creating se-
quences of longs to hold all the identification information to reference non-scalar
types.

5.6 Additional Clarification

The above techniques encapsulate all of the nondeterminism that is present
in a distributed application. However, nondeterminism might be introduced if
different replicas of the same server talk to different external servers. In other
words, we assume that a replicates server receives the same messages in the same
order using totally ordered multicast. Therefore, consistency is maintained and
nondeterminism is handled properly in the above techniques.

Midas’ techniques will handle all nondeterminism that is present in an appli-
cation. This, however, can present a problem if the nondeterminism is built into
the application for a specific reason and, therefore, should not be compensated
for. In order to allow for nondeterminism to exist in the application without
being compensated for, it is possible for a programmer to mark parts of code or
variables that Midas would consider deterministic and, therefore, would not han-
dle by its compensation techniques. Additionally, we could allow the programmer
to specify when and/or what replicas responses would be used for the compen-
sation. This would allow for greater control for the application programmer and
for more flexibility in the architecture. However, this is outside the scope of this
paper, even though the implementation would be relatively straight-forward.

The main idea behind using program analysis to handle nondeterminism is
to target only the nondeterminism that actually causes replica divergence. Thus,
it should not result in higher overheads than other transparent approaches, such
as full-state transfer. While it is possible that an application will be strife with
nondeterminism and, therefore, will involve significant overhead on Midas’ part,
this overhead should not exceed that of a basic transparent approach.

6 Experimental Evaluation

Because our techniques are non-transparent, the overheads that we incur should
be directly proportional to the amount of actual nondeterminism that exists
within the application, e.g., if only 5% of the application is actually nondeter-
ministic, our compensation overheads should be incurred only for that portion
of the application. We also note that the runtime overheads and behavior of
MEAD will undoubtedly influence our runtime overheads. Where possible, we
distinguish between MEAD’s performance and our compensation performance.

We conducted our experiments using the Emulab distributed environment
[22], with a homogeneous test-bed of nodes that each run the RedHat 9 Linux,
2.4.18 kernel operating system on a 850MHz processor, 256KB cache, and 512MB
RAM over a 100 Mbps LAN. We use MEAD version 1.5 that uses Spread version
3.17.3 as its group communication protocol. In our experiments, we do not load
the nodes with any other running programs other than MEAD, Spread, our
micro-benchmarks, and the native OS utilities that typically run on each node.
Each replica runs on a separate node.

We evaluate a number of metrics (communication overhead, compensation
overhead, server-side processing time, and round-trip time) under fault-free con-
ditions.

Table 1. Description of the various micro-benchmarks.

Compensation

technique

no_sha

micro-benchmark
sha

micro-benchmark

vanilla

(baseline)
Replicas are nondeterministic
and inconsistent; no compensa-
tion performed

Same as no_sha, except that a
20-byte digest is computed and
stored at each replica at the
end of each request

transfer-ckpt Entire checkpoint piggybacked
on each server’s reply to the
client, compensation according
to Section 5.1

Same as no_sha, with digest
considered part of the check-
point and piggybacked on each
server’s reply

transfer-contam Pure and contaminated nonde-
terminism piggybacked on each
server’s reply to the client,
compensation according to Sec-
tion 5.3

Same as no_sha, with digest
considered part of the contam-
inated nondeterminism

transfer-contam

-track

Same as transfer-contam

above, but with tracking
enabled

Same as transfer-contam

above, but with tracking
enabled

reexec-contam Pure nondeterminism piggy-
backed on each server’s reply
to the client, contaminated
nondeterminism re-generated
through re-execution, compen-
sation according to Section 5.4

Same as no_sha, with digest
needing to be re-computed as
a part of the re-execution

reexec-contam

-track

Same as reexec-contam above,
but with tracking enabled

Same as reexec-contam above,
but with tracking enabled

6.1 Micro-Benchmarks

We have developed two micro-benchmarks to compare our various compensa-
tion techniques. The two micro-benchmarks are identical in many ways. They
both constitute a two-tier application, i.e., with a single client and a single repli-
cated server. Both micro-benchmarks use multi-threading with homogeneous
threads (to simplify experimentation), identical code at each of the server repli-
cas (except for the fact that each replica stores a unique, hard-coded server_id
SID), and identical initial state to start out with. The difference is that the sha

micro-benchmark involves the computation of a 20-byte digest, and therefore,
requires significantly more processing time at the server-side, as compared with
the no_sha micro-benchmark. The two micro-benchmarks are compared in Ta-
ble 1. The sha version is used to give an example of an application that has
increased reexecution time.

Each micro-benchmark contains an array of 10,000 longs that represents its
state. Pure nondeterminism involves generating a random number and assigning
it to one of the elements in the array. Contaminated state is subsequently created

0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

5
x 10

4

R
ou

nd
−

tr
ip

 T
im

e
(m

ic
ro

se
co

nd
s) contam 10%

contam 20%
contam 30%
contam 40%
contam 50%

transfer
 ckpt

transfer
contam

transfer
contam
 track

reexec
contam

reexec
contam
 track

vanilla

 better for
 20% or less
 contamination

 better for
 30% or more
 contamination

(a) sha benchmark

0

0.5

1

1.5

2

2.5

3

3.5

4

4.5
x 10

4

R
ou

nd
−

tr
ip

 T
im

e
(m

ic
ro

se
co

nd
s) contam 10%

contam 20%
contam 30%
contam 40%
contam 50%

transfer
 ckpt

transfer
contam

transfer
contam
 track

 reexec
contam

reexec
contam
 track

vanilla

best compensation
 techniques

(b) no_sha benchmark

Fig. 4. Compensation approaches with varying amount of contaminated state for 10%
pure deterministic state for the two micro-benchmarks. The cross-over between the
transfer-contam and the reexec-contam is visible for both the tracking and the no-
tracking cases.

by performing arithmetic on the random number and assigning the result to an-
other element in the array. The server state is changed in 15 different ways: vary-
ing the pure nondeterminism to 10%, 30% and 50%. For each value of pure non-
determinism, we vary the amount of contaminated nondeterminism to 10%, 20%,
30%, 40% and 50%. For each of the 15 state combinations, we evaluate each of our
five techniques: transfer-ckpt, transfer-contam, transfer-contam-track,
reexec-contam and reexec-contam-track. Note that we can compare all of
the techniques for a given x% of nondeterminism. However, we cannot fairly
compare a single technique for x% vs. y% of nondeterminism because these rep-
resent two entirely different applications (while the % of nondeterminism varies,
the application is, in fact, functionally different). The vanilla case simply serves
as a baseline for performance comparison. We also vary other parameters, such
as the number of replicas (1–4), amount of multithreading (2–6 threads), and
amount of state (100, 1000 and 10,000 longs).

6.2 Empirical Observations

Varying amount of contamination. Graph 4(b) shows the effect on the
round-trip time of increasing the amount of contaminated nondeterminism within
the no_sha micro-benchmark. The amount of pure nondeterminism for these re-
sults is fixed at 10%, and 3 replicas are used. Because pure nondeterministic state
is handled identically across all of our various techniques, the graph demonstrates
how each technique handles an increase in contaminated state.

The transfer-ckpt technique shows a fairly constant round-trip time re-
gardless of the amount of contaminated state. The processing time increases
slightly across all techniques because additional work is done due to the increased
amount of contaminated state. However, the processing time is relatively small

0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

5
x 10

4

R
ou

nd
-t

rip
 T

im
e

(m
ic

ro
se

co
nd

s)
1 Replica
2 Replica
3 Replica
4 Replica

transfer
 ckpt

transfer
 contam

transfer
 contam
 track

reexec
 contam
 track

reexec
 contam

vanilla

 better than
reexec-contam

 better than
reexec-contam-track

(a) sha benchmark

0

1

2

3

4

5

6

7

8

9

10
x 10

4

R
ou

nd
-t

rip
 T

im
e

(m
ic

ro
se

co
nd

s)

1 Replica
2 Replica
3 Replica
4 Replica

transfer
 ckpt

transfer
contam

transfer
contam
 track

reexec
contam
 track

reexec
contam

vanilla

 better than
 transfer-
 contam

 better than
transfer-contam-track

(b) no_sha benchmark

Fig. 5. (a) transfer-contam-* techniques are better than reexec-contam-* techniques
for increasing number of replicas for the sha micro-benchmark for 10% pure determin-
istic state and 10% contaminated state. (b) reexec-contam-* techniques are better
than transfer-contam-* techniques for increasing number of replicas for the no_sha

micro-benchmark for 50% pure deterministic state and 30% contaminated state.

0

0.5

1

1.5

2

2.5

3

3.5
x 10

4

Percentage of contaminated nondeterminism

R
ou

nd
−

tr
ip

 T
im

e
(m

ic
ro

se
co

nd
s)

transfer−contam
reexec−contam

transfer−contam
 better

reexec−contam
 better

10% 20% 30% 40% 50%

Fig. 6. Cross-over between the transfer-contam and the reexec-contam techniques
for the sha micro-benchmark for 30% pure deterministic state.

compared to the communication overhead of passing the entire state of back and
forth.

The transfer-contam-* techniques show a linear increase in round-trip time
with increased amount of contaminated state. This is because the communication

overhead is proportional to contaminated state. Note that transfer-contam-track
has the higher overheads of the two because more information is being passed by
the replicas. Also, transfer-contam-trackbecomes worse than transfer-ckpt

when more than 50% of the state is nondeterministic.

There is very little change in the round-trip time of the reexec-contam-*

techniques with increased contaminated state because the communication over-
head dominates over re-execution time. Again, reexec-contam-track has the
higher overheads of the two. We observe that the reexec-contam-* techniques
are better than their transfer-contam-* counterparts.

Figure 4(a) shows the effect on the round-trip time of increasing the amount
of contaminated nondeterminism within the sha micro-benchmark. The amount
of pure nondeterminism for these results is fixed at 10%, and 3 replicas are used.
Note that the sha1 algorithm has a significant amount of processing time; this
is readily visible when comparing these results with their no_sha counterparts.

The same trends are seen as in Figure 4(b). The most interesting observation
here is due to the fact that communication overhead does not dominate pro-
cessing time. For instance, with 10% and 20% contamination, transfer-ckpt
appears to have lower overheads. Once contamination reaches 30% or more,
reexec-contam once again displays lower overheads. This is because the in-
creased processing time outweighs the communication overhead for lower amounts
of contaminated state.

Varying degree of replication. In Figures 5(a) and 5(b), the amount of pure
and contaminated nondeterminism is constant, but the number of replicas is var-
ied. Figure 5(a) shows the sha micro-benchmark for 10% pure nondeterminism
and 10% contaminated nondeterminism. Figure 5(b) shows the no_sha micro-
benchmark for 50% pure nondeterminism and 30% contaminated nondetermin-
ism. Note that, for every additional replica, the communication load increases
because all of the replicas send their nondeterministic state, along with their
responses, to the client.

In Figure 5(a), all of the techniques. except for transfer-ckpt, demonstrate
a minimal increase in round-trip time with increased number of replicas. This is
because, apart from transfer-ckpt, which sends the entire state over, the other
techniques only deal with 10% pure and 10% contaminated nondeterminism. Be-
cause the communication overhead is relatively lower due to the small amount of
nondeterministic state, reexec-contam performs worse than transfer-contam

technique, except in the 4-replica case where the communication overhead over-
comes the re-execution time. Thus, the number of replicas, along with the amount
of transferred state, can dictate which technique is appropriate for a given ap-
plication.

Figure 5(b) demonstrates lower processing time with higher communication
overhead. As in the previous case, the tracking counterpart of a technique adds
more overhead than its corresponding no-tracking version. Here, reexec-contam
is always better regardless of the number of replicas. In fact, with an increased

number of replicas, the relative performance of the reexec-contam technique
becomes markedly better.

Trade-offs. Figure 6 shows the round-trip time for the sha micro-benchmark
with the amount of pure nondeterminism fixed at 30% for 3 replicas, and with
the amount of contaminated state varying from 10-50%. We focus only on the
performance of the reexec-contam and the transfer-contam techniques. The
reexec-contam technique shows relatively no change as contaminated state in-
creases because of the overwhelming communication overhead and the low pro-
cessing time. The transfer-contam technique demonstrates a linear increase in
overhead with respect to the amount of contaminated state. This graph clearly
shows the cross-over between the two techniques, demonstrating that no tech-
nique works for all cases to provide the best performance. Many factors, including
the number of replicas, the amount of contaminated state, the communication
overhead, the processing overhead, etc., need to be weighed in deciding which
technique is appropriate. Figures 5(a) and 5(b)also support our insights about
the trade-offs between re-execution vs. the transfer of contaminated state, based
on the relative amount of communication overhead and processing time.

Code growth. Code growth is inevitable in our technique. The transfer-ckpt
technique will typically have the least code growth because it is perform sim-
ple checkpointing. The transfer-contam technique is next in code growth;
transfer-contam-trackwill have even larger code growth. The reexec-contam
will likely have the largest code growth of the all of techniques, because of the
inserted compensation snippets. However, we note that reexec-contamwill have
smaller code growth if the amount of contaminated state as large and the re-
execution snippets are small. Thus, while code growth matters and should be
considered, using it as a metric for comparison might be subjective since it de-
pends on the application’s functionality.

7 Future Work

We note that our current implementations of the transfer-* and reexec-*

techniques leave much room for optimization, but efficiency considerations form
a part of our ongoing investigation. Multi-tier applications and nested end-to-end
requests introduce increased complexity in handling nondeterminism, especially
with actively replicated tiers. The propagation of nondeterministic state is no
longer contained at the client or at any one tier. We need to handle any nonde-
terministic state or execution that propagates to other tiers. This is especially
evident when a failure occurs during an end-to-end request, resulting in some of
the replicas at every tier becoming inconsistent. Multiple clients can also compli-
cate the techniques described in this paper because each client is an active par-
ticipant in the back-and-forth compensation of nondeterminism, and we would
then require coordination across clients or some alternative way of ensuring con-
sistency across multiple clients. Both multi-tier and multi-client fault-tolerant
architectures are part of our ongoing research on the scalable compensation of
nondeterminism, but remain outside the scope of this paper.

8 Related Work

Gaifman [10] targets nondeterminism that arises in concurrent programs due to
environmental interaction. This technique involves backup replicas lagging be-
hind the primary to ensure consistency. The technique is transparent to the user,
but the application is actually modified by transformations that handle mul-
tithreading. The Multithreaded Deterministic Scheduling Algorithm [11] aims
to handle multithreading transparently by providing for internal and external
queues that together enforce consistency. The external queue contains a sequence
of ordered messages received via multicast, while each internal queue focuses on
thread dispatching, with an internal queue for each process that spawns threads.
Basile [5] addresses multithreading using a preemptive deterministic scheduler
for active replication. The approach uses mutexes between threads and the ex-
ecution is split into several rounds. Because the mutexes are known at each
round, a deterministic schedule can be created. This approach does not require
any communication between replicas.

Delta-4 XPA’s semi-active replication [4] addresses nondeterminism through
a hybrid replication style that employs primary-backup replication for all nonde-
terministic operations and active replication for all other operations. In SCEP-
TRE 2 [6], nondeterminism arises from preemptive scheduling. Semi-active repli-
cation is used, with deterministic behavior enforced through the transmission of
messages from a coordination entity to backup replicas for every nondeterminis-
tic decision of the primary’s. Similarly, Wolf’s piecewise deterministic approach
[23] handle nondeterminism by having a primary replica that actually executes
all nondeterministic events, with the results being propagated to the backups at
an observable, deterministic event.

The fault-tolerant real-time MARS system requires deterministic behavior
[16] in highly responsive automotive applications that are nondeterministic due
to time-triggered event activation and preemptive scheduling. Determinism is
enforced using a combination of timed messages and a communication protocol
for agreement on external events.

X-Ability [9] is based predominantly on the execution history resulting from
previous invocation. The approach is not necessarily transparent to the program-
mer because the proposed correctness criterion must be followed for consistency.
The advantage is that it is independent of the replication style. Slye et al. [20]
track and record the nondeterminism due to asynchronous events and multi-
threading. The nondeterministic executions are recorded so that they can be
replayed to restore replica consistency in the event of rollback.

The Transparent Fault Tolerance (TFT) system [7] enforces deterministic
computation on replicas at the level of the operating system interface. The ob-
ject code of the application binaries is edited to insert code that redirects all
nondeterministic system calls to a software layer that returns identical results at
all replicas. Hypervisor-based fault tolerance [8] involves a virtual machine that
ensures that all nondeterministic data is consistent across replicas. A simulator
executes all environmental instructions, and then requires system-wide lock-step
synchronization on this execution.

TCP tapping [15] captures and forwards nondeterministic execution infor-
mation from a primary to other replicas. The backup replicas gain information
from the primary after it has done the work. The approach is transparent, but
involves setting up routing tables to snoop on the client-to-server TCP stream,
with the aim of extracting the primary’s nondeterministic output. Zagorodnov
et al. [24] target nondeterminism that is inherent to service protocols used by
network servers. The solution involves the interception of I/O streams of replicas,
and the appropriate handling of input and output streams.

9 Conclusions

We present Midas, a new approach, for living with nondeterminism in dis-
tributed, replicated applications by exploiting static program analysis on the
application’s source code, along with the runtime compensation of nondetermin-
ism. We identify the sources of nondeterminism within the application, discrim-
inate between actual and superficial nondeterminism, and track the propaga-
tion/contamination of nondeterminism within the application.

We describe two different techniques, one that involves the reexecution of
contaminated nondeterministic code and another that involves the transfer of
checkpoints or nondeterministic state. We can support even the active repli-
cation of nondeterministic applications in this manner. Our empirical evalua-
tion involves various performance-sensitive techniques for distributed middle-
ware micro-benchmarks that contain various sources (multi-threading, system
calls and contamination) of nondeterminism.

Acknowledgements

We gratefully acknowledge the feedback that we received on early drafts of this
paper from John Wilkes, Dan Siewiorek and Greg Ganger. This work has been
partially supported by the NSF CAREER grant CCR-0238381.

References

1. http://www.edg.com/.
2. G. Aigner, A. Diwan, D. L. Heine, M. S. Lam, D. L. Moore, B. R. Murphy, and

C. Sapuntzakis. The Basic SUIF Programming Guide.
3. Y. Amir, C. Danilov, and J. Stanton. A low latency, loss tolerant architecture and

protocol for wide area group communication. In The International Conference on

Dependable Systems and Networks, pages 327–336, New York, NY, June 2000.
4. P. Barrett, P. Bond, A. Hilborne, L. Rodrigues, D. Seaton, N. Speirs, and P. Veris-

simo. The Delta-4 extra performance architecture (XPA). In Fault-Tolerant Com-

puting Symposium, pages 481–488, Newcastle, UK, June 1990.
5. C. Basile, Z. Kalbarczyk, and R. Iyer. A preemptive deterministic scheduling algo-

rithm for multithreaded replicas. In The International Conference on Dependable

Systems and Networks, pages 149–158, San Francisco, CA, June 2003.
6. S. Bestaoui. One solution for the nondeterminism problem in the SCEPTRE 2

fault tolerance technique. In Euromicro Workshop on Real-Time Systems, pages
352–358, Odense, Denmark, June 1995.

7. T. C. Bressoud. TFT: A software system for application-transparent fault toler-
ance. In Fault-Tolerant Computing Symposium, pages 128–137, Munich, Germany,
June 1998.

8. T. C. Bressoud and F. B. Schneider. Hypervisor-based fault-tolerance. ACM

Transactions on Computer Systems, 14(1), pages 90–107, Feb. 1996.
9. S. Frolund and R. Guerraoui. X-ability: A theory of replication. In Principles of

Distributed Computing, pages 229–237, Portland, OR, 2000.
10. H. Gaifman, M. J. Maher, and E. Shapiro. Replay, recovery, replication, and

snapshots of nondeterministic concurrent programs. In Principles of Distributed

Computing, pages 241–255, Montreal, Canada, Aug. 1991.
11. R. Jimenez-Peris, M. Patino-Martinez, and S. Arevalo. Deterministic scheduling

for transactional multithreaded replicas. In Symposium on Reliable Distributed

Systems, pages 164–173, Nurnberg, Germany, October 2000.
12. P. Narasimhan, T. A. Dumitraş, S. M. Pertet, C. F. Reverte, J. G. Slember, and

D. Srivastava. MEAD: Support for real-time fault-tolerant CORBA. Concurrency

and Computation: Practice and Experience, 17(12):1527–1545, 2005.
13. P. Narasimhan, L. E. Moser, and P. M. Melliar-Smith. Enforcing determinism for

the consistent replication of multithreaded CORBA applications. In Symposium

on Reliable Distributed Systems, pages 263–273, Lausanne, Switzerland, Oct. 1999.
14. Object Management Group. Fault Tolerant CORBA. OMG Technical Committee

Document formal/2001-09-29, September 2001.
15. M. Orgiyan and C. Fetzer. Tapping TCP streams. In IEEE International Sym-

posium on Network Computing and Applications, pages 278–289, Cambridge, MA,
Oct. 2001.

16. S. Poledna. Replica Determinism in Fault-Tolerant Real-Time Systems. PhD thesis,
Technical University of Vienna, Vienna, Austria, Apr. 1994.

17. F. B. Schneider. Implementing fault-tolerant services using the state machine
approach: A tutorial. ACM Computing Surveys, 22(4):299–319, 1990.

18. J. G. Slember and P. Narasimhan. Exploiting program analysis to identify and
sanitize nondeterminism in fault-tolerant, replicated systems. In Symposium on

Reliable Distributed Systems, pages 251–263, Florianopolis, Brazil, Oct. 2004.
19. J. G. Slember and P. Narasimhan. Nondeterminism in ORBs: The perception

and the reality. In Workshop on High Availability of Distributed Systems, Krakow,
Poland, September, 2006.

20. J. H. Slye and E. N. Elnozahy. Supporting nondeterministic execution in fault-
tolerant systems. In Fault-Tolerant Computing Symposium, pages 250–259, Sendai,
Japan, June 1996.

21. W. Vogels, R. van Renesse, and K. Birman. Six misconceptions about reliable
distributed computing. In ACM Special Interest Group on Operating Systems,

European Workshop, Sintra, Portugal, Sept. 1998.
22. B. White, J. Lepreau, L. Stoller, R. Ricci, S. Guruprasad, M. Newbold, M. Hibler,

C. Barb, and A. Joglekar. An integrated experimental environment for distributed
systems and networks. In Symposium on Operating Systems Design and Imple-

mentation, pages 255–270, Boston, MA, December 2002.
23. T. Wolf. Replication of Non-Deterministic Objects. PhD thesis, Ecole Polytech-

nique Federale de Lausanne, Switzerland, Nov. 1988.
24. D. Zagorodnov and K. Marzullo. Managing self-inflicted nondeterminism. In Hot-

Dep, International Conference on Dependable Systems and Networks, pages 323-
328, Yokohama, Japan, June 2005.

