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Abstract. We describe a method to order messages across groups in
a publish/subscribe system without centralized control or large vector
timestamps. We show that our scheme is practical—little state is re-
quired; that it is scalable—the maximum message load is limited by re-
ceivers; and that it performs well—the paths messages traverse to be
ordered are not made much longer than necessary. Our insight is that
only messages to groups that overlap in membership can be observed to
arrive out of order: sequencing messages to these groups is sufficient to
provide a consistent order, and when publishers subscribe to the groups
to which they send, this message order is a causal order.

1 Introduction

Publish/subscribe (commonly, “pub/sub”) is a useful design approach for large-
scale distributed information dissemination applications. Pub/sub systems sup-
port loosely-coupled asynchronous communication between information produc-
ers and consumers. Producers (publishers) inject messages into the system, which
routes messages to consumers (subscribers) that register interest in certain mes-
sages using subscriptions. In this paper, we present a protocol for providing an
ordered view of messages sent in a pub/sub system. The order we provide is
maintained across groups and users.

System Model Subscribers join groups that represent interests. The pub/sub
system provides an API for nodes to join and leave groups, send messages to
any group, and receive messages. Although it is reasonably easy to order mes-
sages to individual groups—simply elect a node to give each message a sequence
number—ordering messages across groups is more challenging. Our ordering pro-
tocol enforces that the receive operation delivers messages in a consistent order
across groups. More precisely, messages to groups that share subscribers are or-
dered so that the subscribers deliver messages to those shared groups in the
same order.

1.1 Applications of Ordering

In the following applications, a centralized coordinator could order events. How-
ever, a single ordering authority limits feasible system size and introduces a single



point of failure or compromise. We assert that a distributed protocol, such as
the one we present, enables large deployment.

Network games
Consider a multiplayer online game deployed using the publish/subscribe model
[1], in which, for scalability, the virtual (game) world is divided into regions.
Each player subscribes to the groups that represent nearby regions that it can
affect or where events that can affect the player may occur [2, 3]. If multiple
players have overlapping areas of interest, they must see the common events in
the same order to maintain consistency.

Ordered message delivery provides game consistency. Consider three players
that are near enough to each other that every event published by one player will
be received by the other two players. If one player shoots and hits another, all
should see the events in order, else physical rules are violated. Causal ordering
is essential for game correctness. However, unrelated events in distinct regions
need not be ordered.

Stock tickers
Consider an application in which messages correspond to stock market trades.
Consumers at different brokerage firms may be interested in messages that sat-
isfy different filters—by company size, geography, or industry, for example. The
consumers will be members of groups based on their subscriptions, with every
group receiving the same set of messages. An ordering protocol ensures that up-
date operations that change state result in consistent states across the receivers
that apply those updates in the same order.

Messaging
Internet messaging applications loosely follow the publish/subscribe model. For
example, a user may choose to publish whether he is online or offline. Other users
may subscribe to be notified of when a friend comes on-line by adding the user to
their buddy list. A user may also join chat rooms (conferences) to converse with
other users in the same rooms. Although ordering is not critical for “correctness”
in messaging, enforcing that all messages appear in the same, likely causal, order
should make such a system easier to use. For example, responses should always
follow the messages to which they respond.

1.2 Overview of our Ordering Protocol

We distribute the task of ordering messages across sequencing atoms. Sequenc-
ing atoms assign sequence numbers to messages addressed to groups that share
subscribers. Our approach is scalable because sequencing atoms order no more
messages than the most active receiver in the network—sequencing atoms exist
to order the intersections of group memberships, so do not order more messages
than receivers. We separate the task of sequencing across as many sequencing
atoms as possible for flexibility in distributing load, then rely on placing related



atoms on the same or nearby machines (sequencing nodes) to recover perfor-
mance.

The insight that makes this possible is that the only destinations that can
observe ambiguous order are those that subscribe to the same pairs of groups.
Only messages to groups with at least two members in common must be ordered.
By ordering those messages in the sequencing network and allowing unrelated
messages to be ordered by end stations, we remove the requirement of central-
ized sequencing or long vector timestamps. The sequence numbers provided by
sequencing atoms even allow events to be “committed” without ambiguity: re-
ceivers can tell when no prior messages are delayed.

For causal ordering, senders must subscribe to the groups to which they
send. This requirement is simple and reasonable because receiving sent messages
through the system also serves as an end-to-end reliability check. Our ordering
is not total across all the users in the system: messages to unrelated groups
may be delivered in any (perhaps globally inconsistent) order. Our distributed
approach enables performance optimizations such as placing sequencers close to
senders and receivers and trading message processing load against network load
by combining sequencing atoms on the same node.

Our primary contribution is a method to order messages across groups of sub-
scribers in a publish/subscribe system without centralized control. We present
theoretical analysis to establish the correctness of our method and simulation
results to verify its efficiency. Our broader goal is to develop primitives that
improve the publish/subscribe model, that are scalable because they require no
centralized servers or state, and that are practical by avoiding guarantees that
applications do not need.

This paper is organized as follows. We survey related work in Section 2.
We then describe the goals, assumptions, and procedures of our protocol in
Section 3. We use simulations to measure performance in Section 4. We conclude
in Section 5.

2 Related Work

The problem of ordered message delivery has been widely studied in distributed
systems. Défago et al. [4] present an extensive survey, which we summarize here.
Défago et al. organize algorithms by the assumptions they make on the un-
derlying system (synchrony model, failure model, communication model, oracle
model) and by the objectives they achieve. Here we focus on the ordering mech-
anisms.

Symmetric approaches are decentralized: each sender determines the order
by appending information to all outgoing messages. The appended information
reflects a causal order of messages, which may later be transformed into a total
order using a predetermined function. Receivers use the attached information to
decide whether to deliver or delay a message. Applications can append different
types of information; most use timestamps or sequence numbers [5–9]. Including



this information in each message typically requires nodes to keep a view of the
messages they have received and sent.

In asymmetric protocols, order is built by a sender, destination, or sequencer.
In sender-based protocols [10–12], the sender can multicast a message only when
granted the privilege, i.e., when it holds a token. In sequencer-based approaches,
typically one node is elected as a sequencer and is responsible for ordering mes-
sages [13–15]. More than one sequencer can be present, but only one will be
active or relevant at a time [16, 17].

To preserve consistency among game states, networked multiplayer games
enforce an unambiguous order of events. Typically, a centralized coordinator
resolves all conflicts [18–21]. Although useful in a local area network, as the
network grows, centralized approaches do not scale well and provide a central
point of failure.

Although most work in decentralized ordering algorithms assumes only a
single group, a few consider overlapping groups [14, 22–24]. Our approach is
closest to that of Garcia-Molina et al. [14]. In the taxonomy of this section,
their approach is asymmetric and sequencer-based: they order messages as they
deliver them through a tree of subscriber nodes. A total order of messages results
when messages traverse this tree, assuming, among other typical assumptions for
fault-tolerant behavior, that message delay is bounded. The graph is arranged so
that messages are sequenced by the destination nodes that subscribe to the most
groups, and the task of sequencing messages is overlapped with distribution. We
separate these tasks to sequencing atoms, which may be placed on any nodes in
the network, and to a distribution tree, which may be tailored to perform well
despite distant nodes. Our sequencing atoms sequence only messages for double-
overlaps, in which groups share multiple members in common, not all messages
for a destination. Although we provide only causal ordering, we expect that our
design makes it possible for sequencing atoms to marshal fewer messages and do
less work for each message.

There has been little interest in applying these ordering protocols in dis-
tributed publish/subscribe systems [25–28]. As the network grows, centralized
approaches do not scale because the sequencer becomes a bottleneck and central
point of failure. Furthermore, token-based protocols introduce long delays when
nodes must wait for the token or recover lost tokens. Distributed approaches
based on vector timestamps are more scalable but they incur prohibitive net-
work overhead due to the large timestamps. Our protocol is both scalable and
incurs low overhead. By distributing the task of sequencing across a network
of sequencers, we remove the requirement for a centralized coordinator or large
vector timestamps. Unlike vector timestamp approaches, the additional informa-
tion we append to each message does not depend on the size of the destination
group and is proportional, in the worst case, to the number of groups.



3 Ordering Protocol

Our model of an ordered message delivery system consists of three phases:
ingress, where messages move from senders to the sequencing network, sequenc-
ing, where messages traverse sequencing atoms while collecting sequence num-
bers, and distribution where packets leave the sequencing network and are sent to
destination nodes. We focus on sequencing; existing multicast delivery schemes
can support ingress and distribution.

Our goal is to ensure a consistent ordered delivery of messages to members
of the same groups. A group is formed of all subscribers that share a common
subscription. Our key observation is that when messages are sent to groups with
overlapping membership, receivers may make inconsistent decisions about the
order of those messages. We call groups that have two or more subscribers in
common double overlapped, and our approach is to provide a sequence number
space for each double-overlapped set of groups. These sequence numbers remove
the possibility of inconsistent ordering decisions by receivers. By sending mes-
sages through sequencing atoms arranged into a sequencing network, the network
determines the order of related messages in a decentralized way.

The sequencing graph is arranged so that sequencing atoms (also called se-
quencers) instantiated for double-overlapped groups form paths that group mes-
sages can follow. A group may have many sequencing atoms because it may
have many double-overlaps with other groups. The paths of messages addressed
to doubly-overlapped groups intersect at the sequencer associated with the over-
lap, ensuring that these messages are ordered.

Sequencing atoms are virtual. They need not be placed on different hosts; in
fact, placing atoms on the same host may improve performance. A sequencing
node is a machine that hosts sequencing atoms. We assume that the group
membership matrix—which nodes belong to which groups—is globally known;
it can be kept in a distributed data store such as a DHT or it can be provided
by the underlying publish/subscribe system.

3.1 Operation

Each sequencing atom maintains the following state:

– A sequence number for its overlapped groups.
– A group-local sequence number for the groups it acts as ingress node for.
– A forwarding table to direct messages to the next sequencer for each desti-

nation group.
– A reverse-path table listing the previous sequencer in the network for each

group.
– An output retransmission buffer for each subsequent sequencer.
– A buffer to store received messages from previous sequencers.

Upon receiving a new message from outside the sequencing network, a se-
quencer assigns it a group-local sequence number. The message can be forwarded



immediately for distribution if its destination group has no double overlaps. Oth-
erwise, if a group has a double overlap sequenced at this sequencer, the current
sequence number for the overlap is added.

The message is then placed in the output buffer and transmitted to the next
sequencer (if any) in the path for the group. The message can be removed from
the buffer when this sequencer receives an acknowledgment from the next hop.
We assume that there is a FIFO channel between any two sequencers. If the
message is leaving the sequencer network, it will be sent to a delivery tree and
on to group members.

This protocol provides two key properties. First, all members of the same
group see messages in the same order, which is a causal order if the sender is
also part of the group. Causal order expresses the “happens before” relationship
among messages, as defined by Lamport [5]. Second, all destinations can make
an immediate decision of whether to deliver or buffer arriving messages.

3.2 Sequencing Graph: Construction

The sequencing graph must meet two criteria:

C1: A single path must connect sequencers associated with each group.
C2: The undirected sequencing graph must be loop-free.

C1 ensures that each message is sequenced relative to all other groups with
which the destination group shares a double overlap. When leaving the sequenc-
ing network, each message has sufficient information that it can be ordered
relative to the messages to all overlapping groups. C2 prevents messages from
having circular dependencies, e.g., message a before b, b before c, and c before a.
A loop in the sequencing graph could allow an atom to make an ordering decision
inconsistent with the ordering of messages not seen by that sequencing atom, as
we illustrate with an example in the next subsection. The group- and sequencer-
based sequence numbers and ordered inter-sequencer message channels ensure a
consistent order of related messages at destinations.

Operations on a sequencing network include adding, removing, and modifying
groups. They correspond to the operations of adding, removing and changing a
subscription in the publish/subscribe system. When a subscriber node A adds
a new subscription, if there is no other node with the same subscription, a
new group is created with A as its only member. Otherwise, A joins the group
that is associated with the subscription. Similarly, when A removes one of its
subscriptions, it will leave the group associated with the subscription. If A was
the only member of the group, the group is deleted.

We describe only addition and removal of groups; changing the graph when
group membership changes can be accomplished by adding a group with the new
membership and removing the old one. Figure 1 illustrates these operations.

Adding the first group G0 is trivial: an ingress-only sequencer is created—this
sequencer orders all messages sent to the group. When the second group, G1 is
added, if the memberships of G0 and G1 overlap with at least two nodes (are
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(b) G3 is added: Q0 and Q2 are associated to its overlaps; messsages to G3 are 
redirected through Q1 to avoid a loop in the sequencing graph
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Q1
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(a) Sequencing network for G0, G1 and G2

(c) G4 is added: messages to G4 traverse Q2 due to the overlap with G2 and G3

(d) G0 is removed: sequencer Q1 is no longer needed

Fig. 1. Adding and removing groups for a set of four nodes, A, B, C and D.



doubly-overlapped), a new sequencer, Q0, must represent G0 ∩ G1. All messages
for both groups must transit this sequencer, and the G0-specific sequencer may
be replaced or removed. This sequencer is relevant for all nodes in G0 ∩ G1; the
rest need only use the group-local sequence number.

Adding each new group starts with the same basic procedure: a new sequenc-
ing atom is instantiated for any new double overlap. The new sequencing atoms
must then be connected to the graph to form a path for the new group so that
C1 is satisfied. Unlike C1, C2 is difficult to maintain using only local informa-
tion. We use a global picture of the sequencing graph and subscription matrix
state to find a new sequencer arrangement that satisfies C1 and C2.

Removing a group may eliminate the overlaps that justify a sequencer’s exis-
tence. Sequencers associated with a group can be removed lazily: adding ignored
sequence numbers to a message does not hurt correctness, only efficiency. To
remove a group, a termination message is sent to that group, signifying the end
of the sequence space for that group, much like a TCP FIN. Each sequencer
can inspect this termination message to determine if there is no longer overlap
between the nodes this sequencer operates for. If the overlap is gone, the se-
quencer may retire by informing its parent to forward messages to its child for
each sequenced group.

3.3 Sequencing Graph: Analysis

We present next an analysis of our protocol. We first describe how conditions
C1 and C2 affect the sequencing graph and then we prove the unambiguity of
the message delivery order across each group.

Let G be a group of subscribers that has double overlaps with other groups
in the system. Each double overlap is associated with a sequencing atom and,
according to C1, all the sequencers for the group form a single path in the se-
quencing graph. Since the graph is loop free and there are FIFO channels between
each pair of sequencers, any order of arrival of two messages at a sequencing atom
will be maintained by all the other sequencing atoms traversed by the messages
afterward. We denote the sequence number assigned by sequencing atom Q to a
message m addressed to group G by Q(m) and the group-local sequence number
with G(m). The path of sequencing atoms traversed by a message m is sp(m).

Definition 1. Let G be a group with |G| ≥ 2, let A,B ∈ G and MA,B be the
set of messages received by both A and B. We define a relation ≤A,B on the set
MA,B such that ∀m1, m2 ∈MA,B, m1 ≤A,B m2 if and only if Q(m1) ≤ Q(m2)
when sp(m1) and sp(m2) have a common sequencer Q, or G(m1) ≤ G(m2)
otherwise.

Theorem 1. ∀G,∀A,B ∈ G,A 6= B, ≤A,B is a total order.

Proof. ≤A,B is a total order if it is reflexive, transitive, antisymmetric and total.
For simplicity we refer to MA,B and ≤A,B simply as M and ≤M.

Reflexivity: ∀m ∈M, m ≤M m.
The property is obviously true.



Transitivity: ∀m1,m2,m3 ∈ M such that m1 ≤M m2 and m2 ≤M m3 then
m1 ≤M m3.
Case I: If all three messages are addressed to the same group, and traverse a
sequencing atom Q then m1 ≤M m2 ⇒ Q(m1) ≤ Q(m2) and m2 ≤M m3 ⇒
Q(m2) ≤ Q(m3). Therefore Q(m1) ≤ Q(m3) and consequently m1 ≤M m3. If
the messages do not traverse a sequencing atom, transitivity is proved similarly
using the group-local sequence numbers.
Case II: If two of the groups are identical and different from the third, there
can be only one double overlap between them. All messages are sequenced by
the sequencer associated with the overlap and the proof is identical to the first
subcase of Case I.
Case III: We now consider the case when messages are addressed to three dif-
ferent groups and travel on sequencing paths sp(m1), sp(m2) and sp(m3). Since
a group may have different double overlaps with each of the other two groups,
the sequencing paths pairwise intersect. Therefore the paths of m1 and m2 must
have a common sequencing atom, Q1, which establishes the order between the
messages. The same applies for m2 and m3 (both sequenced by Q2) and for
m1 and m3 (sequenced by Q3). If the paths have more than one common se-
quencing atom, we pick the one closest to the sender as the most significant one.
Because the sequencing graph is loop-free, it is imperative that Q1 ⊂ sp(m3),
Q2 ⊂ sp(m1) or Q3 ⊂ sp(m2). We assume that Q1 ⊂ sp(m3)—for the other two
cases the reasoning is similar. Then, message m3 transits Q1 (although it does not
receive a sequence number from it). From the hypothesis, we have m1 ≤M m2

and m2 ≤M m3, therefore Q1(m1) ≤ Q1(m2) and Q2(m2) ≤ Q2(m3). Because
m2 arrives before m3 at Q2 and because the order of arrival of two messages at
all sequencing atoms on a path must be consistent, m2 arrives before m3 at Q1.
m1 arrives before m2 at Q1 and, using the transitivity of the “arrives before”
relation, it results that m1 arrives before m3 at Q1. The consistent arrival order
on sp(m3) maintains this property at Q3, which will assign a lower sequence
number to m1. Since Q3(m1) ≤ Q3(m3) then m1 ≤M m3.

Antisymmetry: ∀m1,m2 ∈M, if m1 ≤M m2 and m2 ≤M m1 then m1 = m2.
If m1 and m2 travel through a sequencer Q then they will be assigned sequence
numbers Q(m1) and Q(m2). If m1 ≤M m2 and m2 ≤M m1 then Q(m1) ≤ Q(m2)
and Q(m2) ≤ Q(m1) and the total ordering of the natural numbers implies that
Q(m1) = Q(m2). A sequencing atom does not assign the same sequence number
to two different messages therefore m1 = m2. If m1 and m2 do not traverse any
sequencer they will be ordered based on the group local sequence number and
the reasoning is the same.

Totality: ∀m1,m2 ∈M, either m1 ≤M m2 or m2 ≤M m1.
Any two messages received by both A and B can either be addressed to a single
group or to two different groups. If their destination is a single group, the group
local sequence number will be used to establish a total order between them.
On the other hand, if they go to two different groups, they have to traverse
the sequencing atom instantiated by the overlap (A,B). The assigned sequence
numbers are used to determine the order. ut
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Fig. 2. Example of circular dependency among messages m1, m2 and m3 and how it
can be avoided; groups G0={A,B,D}, G1={A,B,C} and G2={B,C,D} are served by the
sequencers Q0, Q1 and Q2. Each sequencer assigns a sequence number to each message
that traverses it. (a) node B receives all three messages but cannot unambiguously
decide on their order; (b) message m1 is redirected through Q1 and the ambiguity is
eliminated

Any destination node can make an instant and deterministic decision of
whether to deliver an arriving message to the application or to buffer it. The
order of delivery is consistent over all members of the same group, but it does
not reflect causal relationships between messages. This is because the sender
and the receivers are completely decoupled and the ordering is enforced by the
sequencing graph. We achieve causal ordering only when the sender is part of
the group to which the message is sent. This happens because only then the
sender can be aware of any a priori causal relationship between messages and
can propagate it across the sequencing graph.

As mentioned in Section 3.2, a sequencing graph must meet two criteria
to unambiguously order messages. The first condition, C1, is easy to justify:
multiple paths create nondeterminism which may produce ambiguous sequence
numbers for messages. We illustrate the need for the second condition through
the following example.

Consider four nodes A, B, C, D and three groups with the following mem-
berships: G0={A,B,D}, G1={A,B,C}, G2={B,C,D}. Figure 2(a) shows the result-
ing sequencing network—without C2—with the sequencers labeled Q0, Q1, Q2.
Now, assume that messages m0,m1,m2 are sent to groups G0, G1, G2. Without
C2, these messages will gain inconsistent sequence numbers, shown in the table
in Figure 2(a), by the following process. Messages m0 and m1 both traverse se-
quencer Q0 and receive a sequencer number. If m0 reaches Q0 first, it is tagged
with sequence number 1 and m1 tagged 2. Next, they continue on the path to-
wards the destination group, m0 sent to Q1 and m1 to Q2. Meanwhile message
m2 is sent to G2 and reaches sequencer Q1 before message m0. Thus, at Q1, m2



is tagged with 1 and m0 with 2. So far, message m0 passed through both Q0
and Q1, being assigned sequence numbers 1 and 2. Because these were the only
two sequencers through which it had to pass, m0 can now be delivered to the
members of G0, nodes A, B and D. Message m2, on the other hand is forwarded
to Q2. If the connection between sequencers Q1 and Q2 is very slow compared
to the one between Q0 and Q2, m2 reaches Q2 after m1 does. Then, at Q2, m1

receives sequence number 1 and m2 sequence number 2. We show in the table
from Figure 2(a) the sequence numbers of each of the three messages after they
exit the sequencing network. Because each is the first and only message sent to
its group, all have group sequence number 1. As the table shows, the three mes-
sages have a circular dependency. B cannot deliver m0 because it waits for m1,
which cannot be delivered because of m2, while m2 depends upon the successful
delivery of m0.

We eliminate the circular dependency in Figure 2(b) by redirecting message
m1 through sequencer Q1 to make the sequencing graph loop free, condition C2.

3.4 Placing the Sequencing Atoms

Randomly scattering sequencing atoms throughout the network would lead to
poor performance: because messages must traverse the path of sequencing atoms
for the group, many needless network hops would result. We have developed a
two-step heuristic for co-locating sequencing atoms on the same machines. The
heuristic is based on the relationship between the double overlaps associated
to the sequencing atoms. In the first step, we place on the same machine any
sequencing atoms whose corresponding overlaps have a subset relationship be-
tween them. For example, let there be two sequencing atoms, Q1 and Q2, such
that Q1 is associated to an overlap containing nodes A, B and C and Q2 corre-
sponds to an overlap formed by A and B. Since {A,B} ⊂ {A,B,C}, Q1 and Q2 are
co-located on the same node. In the second step of the heuristic, we also co-locate
overlaps that do not have subset relationships between them but share at least a
common node as follows. For each overlap, we choose at random one of its nodes,
find all other overlaps that contain the chosen node and place the corresponding
sequencing atoms on the same machine. We impose the restriction that each se-
quencing atom be co-located only once. This arrangement of sequencing atoms
on the same sequencing node preserves our scalability goal—that no sequencing
machine sees more messages than the most loaded receiver—without needlessly
distributing related sequencing atoms throughout the network.

The selection of the machine on which to place a related set of sequencing
atoms is also important. Ideally, we want to minimize the extra delay that a
message experiences when it traverses the sequencing path. We abstract a related
set of sequencing atoms by a sequencing node and we seek to find an optimal
mapping between sequencing nodes and physical machines. We propose a simple
heuristic that is run on behalf of each group as follows:

– if no sequencing node associated to the group has been assigned to a physical
node yet, assign one at random



– if there are sequencing nodes already assigned to machines, then pick the
closest unassigned sequencing node on their sequencing paths and assign it
to neighboring machines.

The heuristic tries to put neighboring sequencing nodes on a sequencing path on
close machines in the publish/subscribe infrastructure. This placement makes
messages traverse relatively few extra hops to be ordered and helps us show that
acceptable performance is feasible.

4 Results

In this section, we present simulation results to validate the performance of our
ordering scheme. We only focus on the properties of the protocol when group
membership is static or does not change very often.

4.1 Experimental Setup

We developed a packet-level discrete event simulator to evaluate the sequencing
protocol. We simulated using a 10,000 node topology generated by GT-ITM [29].
The simulator models the propagation delay between routers, but not packet
losses or queuing delays.

We attach hosts to the topology by grouping them into similar size clus-
ters, then distributing each cluster uniformly at random through the topology.
Nodes in the same cluster are placed close to each other. We choose this map-
ping because it is consistent with online communities, in which users tend to
cluster around the lowest-latency server. We do not place any constraints on the
publish/subscribe system that uses the ordering scheme. Messages travel from
publishers to subscribers on the shortest path and any router in the topology
can serve as a forwarding node. This is acceptable because our experiments are
concerned only with the characteristics of the ordering layer. We are interested
in measuring the penalty in performance that our primitive introduces with re-
spect to the underlying layer. The mapping between the sequencing graph and
the underlying infrastructure is done using the heuristic described in Section 3.4.
Better heuristics may give better results—our intent in this section is to show
that acceptable performance is possible.

We vary the number of end-hosts between 32 to 128, and each host can
subscribe to zero or more groups. We vary the number of groups from 8 to 32.
We rank the groups based on their size and we generate the size of each group
using a Zipf distribution with exponent 1. The sizes are proportional to the
function r−1/Hn,1, where r is the rank of the group, n is the number of hosts
and Hn,1 is the generalized harmonic number of order n of 1. We choose the
Zipf distribution because it is known to characterize the popularity of online
communities [30, 31]
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Fig. 4. Ratio between sequencing and
unicast delay for each sender-destination
pair versus the actual unicast delay, for
128 subscribers and 64 groups

4.2 Latency Stretch

We evaluate the extra delay messages encounter when traversing the sequencing
network compared to taking the shortest unicast path. We measure the latency
stretch: the ratio between the time taken for a message to traverse the network
using the sequencers and the time taken using the direct unicast path. Similar
metrics have been described by Chu et al. [32] (RDP) and Castro et al. [28]
(RAD). RAD is defined per group and RDP per sender-destination pair; we
believe latency stretch better represents the performance of our protocol because
it captures the delay penalty of an individual node, when the node requires
unambiguous delivery. To measure the latency stretch, each node sends a message
to each of the groups it is part of, first using the sequencer network and then
directly. We average the results and index them by destination nodes. We leave
group membership fixed during the experiment.

Figure 3 presents the cumulative distribution of the latency stretch com-
puted for 128 nodes subscribing to 8, 16, 32, and 64 groups. When there are
fewer groups, the sequencing network is smaller and traversing it takes less time.
For example, when we used 8 groups, latency stretch did not exceed 2.5. As
the number of groups increases, so do the number of overlaps and the number
of sequencing nodes that must be traversed. The growth is sub-linear: for 64
groups, the maximum latency stretch observed is less than 8. We quantify next
how the increase in delay incurred by ordering is distributed with respect to the
actual latency between the publisher and its subscribers. For this we compute
the Relative Delay Penalty (RDP [32])—the ratio between the sequencing and
unicast delay for each sender-destination pair—and plot it against the corre-
sponding unicast delay between the sender and the destination. Figure 4 shows
the results for 128 subscribers arranged in 64 groups. The highest values for
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RDP correspond to the pairs in which the sender and the destination are very
close to each other.

Increased delivery time in exchange for guaranteed order among messages is
an inherent tradeoff of our approach. Delaying message delivery may be accept-
able for Internet messaging or stock ticker applications, but generally it affects
negatively the performance of network games. However, this section presents
worst case results because we overestimate the performance of unicast: shortest
unicast paths are rarely followed. To obtain faster delivery, the mapping of the
sequencing graph should take into account the requirements of the applications
that need ordering as well as the characteristics of the pub/sub infrastructure.

4.3 Sequencing Nodes

We next consider how adding groups affects the number of sequencing nodes
and the stress on each node. We might worry that the number of sequencing
nodes and the number of groups associated with each of them would increase
exponentially as we add more groups; such a protocol would be impractical.
To simplify presentation, we consider only the sequencing nodes that host non-
ingress-only sequencers: each group has at most one ingress-only sequencer, so
the ingress-only sequencers may grow at most linearly with the number of groups.

Figure 5 shows the average number of sequencing nodes created as we vary the
number of groups. We vary the number of groups formed by 128 subscriber nodes
from 1 to 64, and run the experiment 100 times. The error bars range from 10th
to 90th percentile. As the number of groups increases, there are more overlaps
and thus more sequencing nodes. After 30 groups, the number of sequencing
nodes grows more gradually because many of the new overlaps have common
members with existing overlaps, and so can be mapped to existing sequencing
nodes.



We define the stress of a sequencing node as the ratio between the number of
groups for which it has to forward messages and the total number of groups. A
sequencer with a stress value of 1 forwards messages to all groups. In Figure 6, we
present the average, 90th percentile and maximum values of stress as the number
of groups increases. We observe the same behavior as in Figure 5. Initially, as we
add more groups, we also add more sequencing nodes and the stress decreases and
stabilizes around the value 0.2. After 30 groups, when the number of sequencing
nodes increases more slowly, the stress slightly increases because there are more
groups to be sequenced by the same number of sequencing nodes. The heuristic
we used to map sequencing atoms to sequencing nodes makes sure that all the
groups associated to a sequencing node share at least a member. As such, the
load of this member is an upper bound for the load on any sequencing node that
lies on the path to it.

4.4 Sequencing Atoms on a Path

Although the number of sequencing nodes remains small, the number of over-
laps, and thus sequencing atoms, grows large. The size of the graph in atoms
is less important, however, than the number of atoms each message must tra-
verse, which represents how many sequence numbers a message must collect.
Our approach is most attractive when the path length through the sequencing
network is smaller than the number of nodes; that is, when the message over-
head of sequence numbers provided by the sequencing network is less than that
of system-wide vector timestamps. We compute the ratio between the number of
sequencing atoms on a path and the total number of nodes, for different group
sizes, and present it as a cumulative distribution in Figure 7. In the worst case,
the number of sequencing atoms in the path of a message is less than half of the
total number of nodes that participate. The path length through the sequencing
network is bounded by the total number of groups, since a group can have an
overlap with at most each of the other groups. As a result, our sequencer-based
approach is attractive whenever the number of nodes exceeds the number of
groups.

4.5 Varied Occupancy

Although we use a Zipf distribution to generate group sizes because we believe
it models likely usage, we also wanted to explore worst-case usage scenarios.
We define the expected occupancy as a measure of the density of the group
membership. The value of the expected occupancy can be interpreted as the
probability that a node is member of a group: an occupancy of 0 means that all
groups are empty, while an occupancy of 1 means that every node subscribes to
every group. Using 128 nodes and 32 groups, we vary the expected occupancy
between 0 and 1 to see if the sequencing network approach is more efficient at
some group densities.
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Figure 8 illustrates how the expected occupancy of groups affects the average
number of double overlaps and sequencing nodes. As the expected occupancy in-
creases, the number of double overlaps and necessary sequencing nodes increase
until approximately 0.2 occupancy. Beyond this, increasing group densities cre-
ates double overlaps that have common members with existing overlaps, and the
number of sequencing nodes gradually decreases. When the group densities are
very high (above 0.9), the overlaps include the entire population and the number
of sequencing nodes drops to one.

5 Conclusion

Our primary contribution is a method for ordering messages in a pub/sub system
without centralized control and without vector timestamps. We showed that it
is practical and scalable, because little local and global state is maintained,
because sequencing atoms can be placed to achieve good performance relative to
a centralized sequencer, and because sequencing nodes order no more messages
than destinations receive. Our insight is that only messages to groups with two
or more common members must be ordered, and this provides a causal ordering
when senders also subscribe.

This approach forms a new primitive for publish/subscribe systems. To in-
vestigate its applicability, we plan to apply the idea to the realistic workloads
of these and other systems and measure when group membership is (or can be)
geographically-correlated. We also intend to more completely understand the
dynamic behavior of our algorithm. When changes in the group membership are
infrequent or along existing patterns, we expect very little churn in the sequenc-
ing graph. However, we want to determine whether sequencing networks perform
well even when incrementally updated as groups and nodes join and leave very
often.
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