
Policy-Driven Middleware for Self-Adaptation of Web
Services Compositions

Abdelkarim Erradi1, Piyush Maheshwari1,2, Vladimir Tosic1,3
1 Shool of Computer Science and Engineering, The University of New South Wales,

Sydney, Australia
2 IBM India Research Lab, New Delhi, India

3 Department of Computer Science, The University of Western Ontario, Canada
aerradi@cse.unsw.edu.au, pimahesh@in.ibm.com, vladat@computer.org

Abstract. We present our policy-based middleware, called Manageable and
Adaptive Service Compositions (MASC), for dynamic self-adaptation of Web
services compositions to various changes. MASC integrates and extends our
earlier middleware called the Web Services Message Bus (wsBus). In particu-
lar, we discuss MASC support for customization of Web services compositions
to address business exceptions and wsBus support for correction (fault man-
agement) of Web services compositions to improve reliability. We have evalu-
ated the former support on a stock trading case study and the latter support on a
supply chain management case study. Our solutions are complementary to the
existing approaches and provide: coordination of fault management between
SOAP messaging and business process orchestration, greater diversity of moni-
toring and control constructs, specification of both technical and business as-
pects used for adaptation decisions, higher level of abstraction easier for use by
non-technical people, and externalization of monitoring and adaptation actions
from definitions of business processes.

Keywords: Web services middleware, Web services composition, policy-based
management and adaptation, Microsoft .NET

1 Introduction and Motivation

Web services compositions (orchestrations and choreographies) are rapidly becoming
a dominant approach for implementing business processes and building open distrib-
uted systems. The widely accepted Web services technologies (the Web Services De-
scription Language – WSDL, SOAP, and the Universal Description, Discovery, and
Integration – UDDI) are not enough for implementing Web services compositions [4].
Several languages for describing Web services compositions have appeared and the
Web Services Business Process Execution Language (WSBPEL or BPEL) is the most
widely accepted among them. A number of additional technologies (often named
‘WS-*’) have been developed to address requirements such as security, reliable mes-
saging and transactional service coordination. However, a number of important issues
are not completely solved. Many of them are related to building more powerful mid-
dleware to support creation, execution, and management of Web services composi-
tions. Such an important research question, discussed in this paper, is how to build

mailto:aerradi@cse.unsw.edu.au
mailto:pimahesh@in.ibm.com
mailto:vladat@computer.org

more powerful middleware to enable autonomous self-adaptation of Web services
compositions to various runtime changes.

In preparation for this research, we had studied different types of adaptations of
Web services composition and decided to classify them based on 3 dimensions, each
orthogonal to the other 2. The first dimension is whether the complete class of com-
positions (e.g., an abstract process in BPEL) is changed or whether only a particular
composition instance is changed. In this paper, we focus on the latter, because the
need for such adaptations is much more frequent. The second dimension is the rela-
tive time when a Web services composition instance is changed. Adaptation is static
when a composition instance is changed before it is started, while it is dynamic when
a running composition instance is changed without being stopped and restarted from
the beginning. In this paper, we focus on dynamic adaptation, because it is much more
challenging. The third dimension describes the reason why the adaptation is done,
which impacts how the adaptation is done. On this dimension, adaptation can be: a)
customization – to add/remove/replace activities specific to the composition instance
(but not to the complete class of compositions); b) correction – to handle faults re-
ported during execution of this composition instance; c) optimization – to improve
extra-functional (usually performance or billing) issues noticed during correct execu-
tion of this instance; or d) prevention – to prevent future faults or extra-functional
issues before they occur. This classification is similar to the classification of software
evolution into adaptive, corrective, perfective, and preventive [17]. In this paper we
focus on customization and correction. While we have some results related to optimi-
zation, they will be discussed only in relationship to using corrective adaptation (i.e.,
fault management) to improve reliability of Web services compositions. A long-term
goal of our research is to study and enable all identified adaptation types.

Special cases ('business exceptions') can occur relatively frequently in business
processes. Such a special case has almost all activities as in a regularly occurring base
business process, but some activities are removed or replaced and/or new activities
are added. An example is when a company has set up a complex business process for
domestic business partners (e.g., within one country), but an unexpected request
comes to set up a version of this business process for some international partners with
additional activities to handle payment in multiple currencies. This special case can be
addressed with customization of the base business process for domestic partners. Such
a customization can be performed in different ways. One way is to add into the de-
scription of the base business process (e.g., in BPEL) appropriate new exceptions,
event handling constructs (e.g., timeouts), compensation activities, and/or message
correlation. While this is a simple and straightforward approach, it has several draw-
backs, which reduce its applicability to advanced scenarios. The most important
drawbacks are that (1) it enables only static and not dynamic customization (i.e.,
change of running process instance), and that (2) it cannot be applied in cases when
the base business process is defined by a standardization body and its description can-
not be changed easily. The latter drawback can be addressed if the base process de-
scription is copied and then manually changed into a description of a new business
process. However, this approach also does not address dynamic customization. In
addition, it significantly reduces maintainability because if a change in the base proc-
ess occurs, descriptions of all customized processes have to be updated manually.
When dynamic customization is needed, it is usually advantageous to externalize de-

scriptions of specifics of individual cases from the description of the base process.
This simplifies development, composition, and management activities (and corre-
sponding software) and fosters reuse. Such separation of concerns is used frequently
in software engineering, e.g., in aspect-oriented programming, and distributed sys-
tems and network management, particularly policy-based management [12].

Additionally, various faults can occur relatively often and unexpectedly in distrib-
uted systems. For example, remote computers can be down or unavailable (e.g., due
to denial of service attacks), network links can be congested or broken, or remote ap-
plications can produce unexpected results due to semantic misunderstandings. In Web
services compositions, the diversity of possible faults is particularly high because
implementations of Web services have to be treated as ‘black boxes’, participants in
business-to-business (B2B) interactions usually relinquish no or very little control to
other participants, and SOAP communication mostly uses unmanaged Internet infra-
structure. On the other hand, Web services compositions often implement business-
critical processes whose correct and uninterrupted operation is paramount. Therefore,
to achieve dependable business processes, Web services compositions have to be
made reliable. Reliability can be defined as the continuity of correct service delivery.
This implies zero or, at worst, relatively few failures and rapid recovery time. Reli-
ability of Web services compositions is a complex and challenging task that has to be
addressed at several layers: service provider layer (e.g., service hosting containers),
transport layer, SOAP messaging layer, and business process layer. Some reliability
aspects (e.g., invocation retries) can be solved at different layers with different trade-
offs, but some reliability aspects are best solved only at one particular layer (e.g., in-
fluences of dependencies between activities on the reliability of the whole process can
be determined only at the business process layer). In our approach, events can trigger
cross-layer adaptation that could span both the process layer and the messaging layer.
Among the advantages of the adaptation at the messaging layer is the potential reus-
ability across process instances and process types. In particular, executing faults han-
dling policies at the messaging layer shields faults from the process orchestration.

During the last several years, a number of academic papers (e.g., [13]), industrial
standardization efforts (e.g., WS-ReliableMessaging, WS-Reliability, WS-
Transaction), and industrial products have made contributions to improving reliability
at different layers. However, they have limitations, particularly in the diversity of
events (e.g., QoS degradations that cause faults) that they can monitor and handle,
customizability and diversity of actions (apart from rollback and compensation) that
they can perform in different contexts, specification of technical (e.g., performance,
security) and business benefits/costs of particular actions, and cross-layer integration
of reliability solutions at different layers (e.g., retries considered only at the SOAP
messaging layer could cause business process timeout). One of the recent research
trends to address reliability issues is augmenting Web services middleware with
autonomous behavior capabilities such as self-healing and self-configuring [15]. Our
work belongs to this emerging direction.

Policies can be used for representation of all types of adaptation and monitoring
activities. The term 'policy' is used in different ways in the literature. A general defini-
tion is that a policy is a declarative, high-level description of goals to be achieved and
actions to be taken in different situations. There are different types of policies, but in
this paper we focus on Event-Condition-Action (ECA) rules [9]. Such a rule specifies

a triggering event (e.g., arrival of a message, start of a process instance, runtime fault,
or performance problem), additional conditions to be satisfied (e.g., referring to proc-
ess state or history), and actions to be taken (e.g., change of a process instance) when
the event occurs and the conditions are satisfied. The main advantage of policies over
alternatives (e.g., aspect-oriented programming) is that policies are higher-level ab-
stractions, so humans (e.g., business analysts) can specify them more easily.

In this paper, we present our work on policy-based middleware, called Manageable
and Adaptive Service Compositions (MASC) (http://masc.web.cse.unsw.edu.au), for
dynamic self-adaptation of Web services compositions to various changes. While
some of our previous publications, particularly [6], also discuss some aspects of our
work in this area, this paper complements them by providing both an overall picture
of our research and additional technical details about our recent solutions. MASC is
an evolution of our previous research of middleware for Web services. It integrates
and extends our previous middleware-related projects, the Web Services Message Bus
(wsBus) [5] and AdaptiveBPEL [7]. In addition, we have performed a technology
switch – while our previous projects were built with Java-based technologies, the new
implementation of MASC is based on the novel Microsoft .NET Framework 3.0 tech-
nologies and C#. An important aspect of our work on the MASC middleware is that
we aim to provide policy-based adaptation (particularly optimization and prevention)
based on maximizing business metrics (e.g., profit). This complements current works
on dynamic adaptation of Web services compositions, which mostly focus on maxi-
mizing technical QoS metrics (e.g., throughput), but rarely ([11]) study business met-
rics in detail.

This section provided an introduction to our research and summarized our motiva-
tion. The second section presents MASC middleware solutions for customization of
Web services compositions. We elaborate our .NET-based architecture and imple-
mentation and explain their evaluation on a stock trading case study. The third section
presents our middleware solutions for corrective adaptation of Web services composi-
tions to improve their reliability. We discuss our Java-based architecture and imple-
mentation of wsBus and its evaluation on a supply chain management case study.
wsBus is now a part of the MASC project, so their relationships are discussed in the
third section. The fourth section compares our research with related work, while the
last section summarizes conclusions and outlines our future work.

2 Middleware for Policy-Based Customization

To be able to perform policy-based management, it is necessary to define an appro-
priate machine processeable and precise format for policy specification. We have
been developing a novel XML (Extensible Markup Language) format, called WS-
Policy4MASC. Its goal is to enable specification of policies for monitoring of func-
tional and QoS aspects (such as performance and reliability) and different types of
adaptation for Web services and their compositions, in a way that can be used for
automatic configuration of our MASC middleware presented in this section. Our lan-
guage is an extension of the Web Services Policy Framework (WS-Policy) [16], an
industrial specification standardized by the World Wide Web Consortium (W3C). In

http://masc.web.cse.unsw.edu.au/

WS-Policy, policies are collections of policy alternatives, which are collections of
policy assertions. WS-Policy Attachment defines a generic mechanism to associate a
policy with subjects (e.g., WSDL elements) to which the policy applies. WS-Policy is
a general and extensible framework for specification of policies for Web services and
it has very good properties in this respect. However, it does not contain detailed rules
for specification of policies in particular areas, such as security, QoS monitoring, and
adaptation. Specification of such detailed rules is left for WS-Policy extensions. Un-
fortunately, only extensions for security, reliable messaging, and a few other man-
agement areas that are not the focus of our project have been suggested. Therefore,
we had to develop a new WS-Policy extension for use in our middleware. WS-
Policy4MASC is also compatible with other Web services standards such as WSDL
and BPEL, as well as Microsoft .NET 3.0 technologies. Since our MASC middleware
has ambitious goals in several areas, WS-Policy4MASC offers a number of constructs
for powerful and precise policy specification. Details and examples of the WS-
Policy4MASC expressive power and syntax will be given in a future publication. We
only provide here a short overview of the current support for customization policies.

An adaptation (including customization) policy in the current version of WS-
Policy4MASC can define events which cause its evaluation, optional conditions on its
relevance (e.g., a policy may be relevant only in particular contexts), a state in which
the adapted system (e.g., a Web services composition) should be before the adapta-
tion, additional conditions on the adapted system (e.g., historical values of QoS met-
rics), a set of actions to be taken if all previous conditions are met, a state in which the
system will be after the adaptation, and change of business value (e.g., monetary
payments) associated with this adaptation. The basic adaptation actions include re-
moval, addition, and replacement. In removal and replacement, an activity or an activ-
ity block in a base business process is deleted. All business processes, including base
processes and variation processes, are defined in appropriate other documents (e.g.,
BPEL files), so they are only referenced in WS-Policy4MASC policies. Thus, an ac-
tivity block is specified using beginning and ending points. In addition and replace-
ment, a new variation process or a single activity is inserted into a particular point in a
base process. If the inserted single activity is a Web services call, the policy can spec-
ify a particular Web service or a set of criteria for dynamically selecting the best Web
service from a directory. Data exchange (i.e., required parameters binding and value
passing) between a base process and a variation process/activity is also described.

2.1 Architecture of MASC Support for Customization and Its Implementation

To enable different types of adaptation of Web services compositions, we have been
developing the MASC middleware. It extends the new Microsoft .NET Framework
3.0 (currently in pre-release - http://www.netfx3.com/), particularly its components
the Windows Communication Foundation (WCF) and the Windows Workflow Foun-
dation (WF). For the MASC solutions presented in this section, the extensions of WF
are more important. WF provides an extensible framework for building processes
(workflows) and embedding them into .NET applications to orchestrate activities of
objects and services. In this respect, a WF process can represent a Web services com-
position (orchestration). WF processes are defined in Microsoft’s Extensible Applica-

http://www.netfx3.com/

Fig. 1. Architecture of MASC support for customization of Web services compositions

tions Markup Language (XAML, but file extension for WF is ‘.xoml’) and not BPEL.
Translation between XAML and BPEL is promised for a future version. The glue
code for connecting activities, such as activity input validation, can be encapsulated
into a ‘code beside’ .NET class. To execute a process, WF has a lightweight WF run-
time engine that can be hosted in any .NET application. The WF runtime engine man-
ages the instantiation and execution of the workflow activities. Additionally, it takes
care of different middleware concerns through an extensible set of WF runtime ser-
vices (e.g., Tracking, Persistence and Transaction support are built-in). Therefore, we
designed and implemented another WF runtime service, named MASCAdaptation-
Service, for policy-based adaptation of Web services compositions implemented as
WF processes. It currently enables static and dynamic customization, while its future
version will provide support for static and dynamic corrective, optimizing, and pre-
ventive adaptation based on maximizing business metrics. The support for dynamic
adaptation means that MASCAdaptationService can use policies to change a running
process instance without any changes to process definition or implementation of ac-
tivities (e.g., composed Web services). The WF runtime engine can be configured to
include MASCAdaptationService and support its operation. MASC is a complex mid-
dleware with many modules (some of which are not yet implemented). For readability
purposes, we will describe in this section only MASC support for customization. The
overall architecture of MASC will be given in another publication.

The conceptual architecture of the MASC support for policy-based customization
is shown in Figure 1. We have implemented its prototype in C#. Monitoring and ad-
aptation policy assertions are stored in a policy repository, which is a collection of
instances of policy classes. The policy classes are generated automatically from the
WS-Policy4MASC schema, using an XML-schema-to-C#-classes generator (in our
case, the XSD tool from .NET). When the MASCAdaptationService starts, our
MASCPolicyParser imports WS-Policy4MASC files, creates instances of correspond-
ing policy classes, and stores these instances in the policy repository. Static customi-
zation is started when the WF runtime raises an event that a process instance is cre-
ated. Dynamic customization is started when the MASCMonitoringService module
raises an event that for a particular process instance it detected (e.g., by introspecting
exchanged SOAP messages and/or measuring QoS metrics such as response time)
adaptation pre-conditions specified in monitoring policies. Such events can also be

Fig. 2. Example Web services interactions in the Stock Trading case study

raised by the MonitoringStore database in situations when adaptation pre-conditions
refer to several different SOAP messages. For both static and dynamic adaptation, the
raised events are handled by MASCPolicyDecisionMaker, which determines adapta-
tion policy assertions to be applied to the process instance and sends an event to
MASCAdaptationService. Policy priorities are used to determine the order of execu-
tion if several policy assertions apply per event. In case of dynamic adaptation,
MASCAdaptationService suspends the running process instance to be adapted. Then,
it asks the WF runtime engine for a description of the process to be adapted and gets
back a transient copy of the process’ object representation. For this copy, MAS-
CAdaptationService performs the changes specified in the policies, using primitives
built into the WF runtime. If data exchange is required between the base process and
the variation processes/activities, our service also takes care of required parameters
binding and value passing between base processes and their variation processes.
When MASCAdaptationService passes the modified copy of the process’ object rep-
resentation back to the WF runtime, the latter applies the changes using built-in algo-
rithms. After this, the execution of the adapted process instance is resumed.

2.2 MASC Evaluation on the Stock Trading Case Study

The MASC support for customization has been evaluated and demonstrated in various

quested by the investor. (In our prototype, this decision is very simple, e.g., buy one

adaptation scenarios using a simplified Stock Trading case study implemented with
C#, .NET 3.0, and MASC. Parts of this case study are shown in Figure 2. The base
Trading Process is initiated when a human investor places an investment or redemp-
tion order with their FundManagerService. The latter, after verifying the order, in-
vokes the FinancialAnalysisService to get a recommendation to enable an informed
investment/redemption decision. The FinancialAnalysisService gets periodic notifica-
tions from the StockNotificationService about the current stock values and real-time
market surveillance, announcements, quotes, and other information. Based on this
information, historical records, and predictive models built into the service (for our
prototype, we used very simple models), the FinancialAnalysisService informs the
FundManagerService about how well certain stocks are performing. The FundMan-
agerService makes a decision which stock to buy/sell for the monetary amount re-

best stock or sell as many poorly performing stocks as needed to get the redeemed
money.) Then, the FundManagerService sends the buying/selling request to the
StockMarketService. The latter performs a simple trade matching between the buy
orders and the sell orders. When a trade match is formed, the StockMarketService
invokes in parallel the StockRegistryService to transfer the stock share ownership and
the PaymentService to transfer funds. Note that, with the exception of the FundMan-
agerService, there can be multiple different services of the same type in the composi-
tion. For example, there can be more than one FinancialAnalysisService, e.g., pro-
vided by different vendors and/or performing different types of financial analyses.

To evaluate MASC’s static and dynamic adaptation capabilities, we have con-
ducted several experiments to customize the base business process for national stock
tra

3 Middleware for Policy-Based Corrective Adaptation

AP messaging
layer by specifying and enforcing monitoring policies to help in fault detection and

ding, described above, to support international stock trading. WS-Policy4MASC
was used for policy description. Among the conducted experiments was dynamic ad-
dition of a CurrencyConversion Web service (CC1, CC2…CCn) to convert stock prices
of foreign stocks to a local currency. Also, depending on the country of foreign stock,
a PESTAnalysis Web service (PS1, PS2…PSn) was added to assess the non-financial
aspects (political, economic, social and technology) that influence the trade. Addi-
tionally, monitoring policies were used to define constraints over the trade transaction
amount and/or the customer's profile (e.g., personal investor vs. corporate investor) to
dynamically add a CreditRating Web service (CR1, CR2…CRn) before processing the
trade. In terms of removing activities, we have experimented with dynamic removal
of the invocation of MarketComplianceService when the trade amount is less than a
particular threshold. The conducted experiments were successful and demonstrated
feasibility and usefulness of the MASC approach in adding dynamic customization
capabilities to existing Web services compositions, guided by declarative policies
specified in WS-Policy4MASC. MASC has provided a solution for policy-based
static and dynamic customization without any changes to either the process definition
or the constituent services implementations. All that is needed is a WS-Policy4MASC
document describing monitoring and adaptation policies to be enforced. When a WS-
Policy4MASC document changes, these changes are automatically enforced the next
time adaptation is needed with no need to restart any software component. The above
scenarios will be further extended to evaluate MASC and WS-Policy4MASC support
for corrective, optimizing, and preventive optimization, once they are completed.

Our work addresses reliability at the business process layer and the SO

corrective adaptation policies to guide fault correction. It is complementary to the
existing approaches and provides: (1) coordination of fault handling across these two
layers, (2) greater diversity of monitoring and control constructs, (3) specification of
both technical and business aspects that can be used for adaptation decisions, (4)
higher level of abstraction easier for use by non-technical people, and (5) externaliza-
tion of monitoring and adaptation actions from definitions of business processes.

Our main past project in the area of reliability of Web services compositions was
the wsBus middleware built using Java-based technologies and an early version of our
W

 in
the

3.1 Architecture of wsBus and Its Implementation

mphasis on the modules that
facilitate the enactment of adaptation policies. As shown in Figure 3, adaptation poli-

es and
ex

S-Policy extensions in this area (the name ‘WS-Policy4MASC’ was not used at that
time). As mentioned in the introductory section, our focus has recently shifted to-
wards the more general MASC middleware built upon .NET technologies. WS-
Policy4MASC grammar was also updated. We have been working on integrating
wsBus solutions with other parts of MASC, including .NET and C# reimplementation
and support for the new WS-Policy4MASC grammar. However, since our results are
still more complete for the Java-based implementation of wsBus, we will describe it
in this paper and leave discussion of recent improvement for another publication.

Policies that can be enforced by the Java-based version of wsBus are specified in a
WS-Policy extension described and illustrated in [6]. The main types of actions

se policies are: invocation retries, Web services substitution, concurrent invocation
of multiple equivalent services, skipping of activities, and relatively simple dynamic
changes of process instances (e.g., add/remove/skip an activity, change sequence of
activities, delay/suspend/resume/terminate process). Only the latter is at the business
process layer, while the others are at the SOAP messaging layer. In this way, they
complement the policies described in the previous section, which are all at the busi-
ness process layer.

This section presents the architecture of wsBus with e

cies supported by wsBus work via injecting runtime inspectors and custom Message
Processing Modules into a messaging pipeline at different message processing stages
such as before sending a request and after receiving a response. These custom mod-
ules can be applied at different scopes such as the whole service, a particular endpoint
or a particular service operation. For example, the Invocation Retry Handler places
the messages that fail to be delivered in a retry queue and the queue reader tries rede-
livery using the pattern specified by the used recovery policy. Messages for which
processing repeatedly fails are placed in a ‘dead letter’ queue after exhausting the
maximum number of allowed retries and no further delivery will be attempted.

wsBus key architectural abstraction is the concept of a Virtual End Point (VEP). A
VEP allows virtualization by grouping a set of functionally equivalent servic

poses an abstract WSDL for accessing the configured services (e.g., Web search
service exposing Google, Yahoo and MSN search as one virtual service). The
grouped services might have different QoS properties. The VEP acts as a recovery
block and various runtime policies can be associating with it.

Fig. 3. wsBus Architecture

wsBus can be deployed either as a gateway to a Process Orchestration Engine or it

can act as a transparent HTTP Proxy. In the first case the Process Orchestration En-
gine should be configured to explicitly direct service calls to the virtual endpoints
configured in wsBus and the later routes request messages to the real services. The
VEP takes care of the dynamic Find, Select, Bind and Invoke on behalf of the BPEL
engine, using the configured selection and binding policies. The VEP does ‘on the fly’
selection of service provider or intermediary based on a selection criteria specified in
the policy attached to the VEP, such as message content and context (e.g., requester
profile), or the service provider’s capabilities or QoS of prior interactions. The VEP
then manages the automatic enforcement of adaptation policies (e.g., retry and substi-
tute policies) by inspecting messages going into and out of the composed services and
interposing additional Message Processing Modules along the message pipeline. To
decide the relevant Message Processing Modules applicable to a given message, the
VEP uses simple rules expressed as a regular expression or XPath query against the
header or the payload of the message. Additionally, the VEP provides middleware
services to service compositions such as QoS measurement and monitoring, conversa-
tion management and fault management. Our fault management approach is based on
two models: (1) the capturing model uses assertion-based monitoring to detect faults
and to notify the relevant middleware component, and (2) the handling model uses
adaptation policies represents to resolve faults. For example, a policy might stipulate
that for particular type of faults, the VEP should retry to the original service and if the
fault persists then it should select an equivalent backup service.
The enactment of adaptation policies is managed by the following key components:

1) QoS Measurement Service is responsible for management data collection and
analysis either through direct computation of QoS metrics (e.g., collecting statistical
metrics about the performance) or via periodic probing for management information
from other management intermediaries (e.g., third QoS measurement entity). The key
QoS metrics measured by this component are: (a) Reliability (calculated as a ratio of
successful invocations over the number of total invocations in given period of time);
(b) Response Time (the time interval between when a service is requested and when it
is delivered; (c) Availability: the percentage of time that a service is available during

some time interval. Because the lack of space, the QoS measurement algorithms are
not presented is this paper.

2) Monitoring service continuously monitors interactions with the participating

services to verify that the configured monitoring policies are being satisfied and to
detect any condition changes such as faults. The monitoring policies specify the de-
sired behavior of the system in terms of (a) pre-conditions and post-conditions that
express constraints over exchanged messages (b) thresholds over QoS guarantees (e.g.
service response time) as stipulated in pre-established Service Level Agreements
(SLAs). The monitoring policies can be attached to Monitoring Points at various lev-
els of granularity such as a Service Endpoint or a Service Operation. For example, the
monitoring policies could specify that exchanged messages between participant ser-
vices must be validated to ensure conformance to the service contract expected by the
service composition. The Monitoring Service also supports events-based monitoring
to detect fault events and recognize their type. Various techniques are used to achieve
this. First, the Monitoring Service listens to fault messages returned by invoked ser-
vices as specified in their WSDL interface. Faults can also be identified based on
management events coming from internal or external management systems, such as
hardware or network failure faults. Also, the Web services Invoker component can
use timers to raise timeout faults when the service does not respond within the set
timeout interval.

The monitoring policy uses XPath to reference variables defined in the header or
the body of the WSDL contract of constituent services (e.g., the CustomerID of Pur-
chaseOrder message). During the evaluation of the monitoring assertions, the Moni-
toring Service might reference data from external sources to obtain data not available
in the exchange messages. The source of such external data as specified as Web ser-
vice calls in the monitoring assertions, such as calling a QoS measurement service or
querying the log of prior interactions to get some historical data.

When an undesirable condition is detected, then the Monitoring service uses ECA
rules to assign a meaningful fault type to the violation event, such as Service Unavail-
able Fault, SLA Violation Fault, Service Failure Fault and Timeout Fault. The fault is
then passed to the Adaptation Manager along with all the data required for recovery
(i.e., ProcessInstanceID of the process instance to be adapted, and a Context Collec-
tion that contains relevant data that could be needed during the adaptation.)

3) Adaptation Manager decides and coordinates the execution of appropriate adap-

tation action(s) to restore the system to an acceptable state using adaptation policies
configured at the VEP. Currently our adaptation policies use a rule-based approach to
specify the necessary adaptations per fault type. Such a rule-based approach is more
flexible as it can handle wider variety of faults whether coming from the infrastruc-
ture or from the partner services. Also the process specification is kept simple and
uncluttered through the separation of the process logic and fault handling policies.
The adaptation action could be simple or composite. It could be specified to be en-
acted either at the SOAP messaging layer (such as retry a service call) or at the proc-
ess orchestration layer (such as skip a process activity or add/remove activity) or
sometimes at both layers. For example, before retrying invocation of a faulty service,
the adaptation policy might stipulate that MASCAdaptationService should first sus-

pend the calling process instance (until the execution of the adaptation actions is
completed) or increase its timeout interval to avoid the calling process timing out. To
be able to decide the process instance to be adapted, MASCAdaptationService trans-
parently adds the ProcessInstanceID of the calling process to outgoing SOAP mes-
sages (using the RelatesTo Message Addressing Header). When multiple adaptation
policies are specified per fault type, policy priorities are used to determine the order
of execution of the adaptation actions. For example, a policy could stipulate that the
VEP should first attempt n retries before failover to a known backup service. The
policy decision manager passes an object representation of the adaptation actions to
the relevant policy enforcement point(s) to execute the adaptation policy.

4) Web services Selection service manages the dynamic mapping of abstract Web

services defined in the composition to concrete Web services. This allows shielding
the orchestration engine from changes to available services. Hence, adding, modifying
and selecting among available services could be done without the need to complicate
the process with the routing logic for deciding which concrete services to use. The
selection of services among the equivalent services registered with a VEP is done
using various selection policies. A VEP can be configured to choose between regis-
tered services in round-robin fashion, or to select the best performing service (based
on the QoS metrics gathered from prior interactions or from other management enti-
ties), or to ‘broadcast’ the request message to multiple targets service providers con-
currently and consider the first one that respond, all pending invocations are then
aborted and their responses are ignored. The concurrent invocation of equivalent ser-
vices is accomplished by making a copy of the message and modifying its route, then
invoking multiple target services using concurrent invocation threads. This strategy is
more suitable for data lookup services and freely available services such as Web
search.

5) Message Inspectors/Processing Modules implements common handlers for en-

forcing typical adaptation policies. These handlers can be configured as a pipeline to
manipulate and pre/post-process both request and response messages as instructed by
adaptation policies. Among the handlers provided by this component is a Message
Logger to log the messages as they pass through the messaging layer. This is useful
for debugging problems, meter usage for subsequent billing to users, or trace busi-
ness-level events, such as transaction over a certain amount. It can also be used for
data inspection, or for service management.

6) Message Adaptation Service is a Message Processing Module that handles data

transformation and enrichment to resolve incompatibilities between services regis-
tered with a particular VEP (i.e., structural, value and encoding mismatches). Various
transformation patterns are supported, such as transform a message payload from the
one schema to another; attach additional data from external sources, such as Web ser-
vices calls or from database queries; split/merge messages; buffer multiple messages
and aggregate them into a single one before sending them to the destination service.
These transformation modules can be composed into a pipeline to transform and relay
messages.

3.2 wsBus Evaluation on the WS-I Supply Chain Management Case Study

We conducted a series of benchmarking tests to assess effectiveness (i.e., impact on
reliability) and efficiency (i.e., impact on performance) of wsBus in enhancing reli-
ability of Web services interactions. Our secondary aim for these tests was to discover
areas of the platform that need further improvement. We used an extended Java-based
implementation of WS-I (Web Services Interoperability) Supply Chain Management
(SCM) application [17]. The SCM scenarios, as shown in Figure 4, are designed as
Web services based interactions that simulate business activity of an online supplier
of electronic goods. First a Web client calls the Retailer service's getCatalog opera-
tion. When the user submits the order, the Web client calls the Retailer service's sub-
mitOrder operation. To fulfill orders, the Retailer Web service manages stock levels
in three warehouses (WA, WB, and WC). If Warehouse A cannot fulfill an order, the
Retailer checks Warehouse B; if Warehouse B cannot, the Retailer checks Warehouse
C. When an item in a Warehouse stock falls below a certain threshold, the Warehouse
must restock the item from the Manufacturer's inventory (MA, MB, and MC). Each
use case includes a logging call to a Logging Service to monitor activities of the ser-
vices. A customer can track orders by using the getEvents operation of the Logging
Facility Web service. During the SCM process enactment, participating Web services
can log events by calling the logEvent operation of the Logging Facility Web service.
Optionally, there is a Configuration Web service that lists all implementations regis-
tered in the UDDI registry for each of the Web Services in the sample application.

Our experimental setup consisted of 2 run-time configurations: 1) wsBus was not
used and all invocations were direct (point-to-point) between the Web services, and 2)
wsBus was placed at the client side and acted as an intermediary (broker, mediator).
Both configurations used identical application logic implemented in Java. We simu-
lated multiple concurrent Web service clients, each of which invoked deployed ser-
vices multiple times. We used Apache's JMeter 2.1.1, a load generator toolset, to gen-
erate the workload and to measure the observed performance. We deployed the SCM
backend Web services (Retailers, Warehouses, and Manufacturers) at a P4 2.8GHz,
1GB RAM server running Windows 2003, Tomcat 5.5 and Axis 2. JMeter stress tool
(acting as the client) and wsBus were deployed at a Windows XP laptop with P4
2.8GHz and 500MB RAM. The machines were connected by a 100MB LAN.

Fig. 4. WS-I Supply Chain Management (SCM) application process (adapted from [17])

To estimate the impact on reliability and robustness of the wsBus solution in re-
sponse to QoS changes and service failures, we wrote test code that occasionally (at
random times) injected exception events in the tested system. For service failures, we
randomly picked some of available services and made them unavailable for a random
amount of time. For service QoS degradations, test code occasionally picked some
service instances and changed their QoS values (e.g., introduced delays). We have
defined monitoring policies and corrective adaptation policies for the experiments
using wsBus. Monitoring policies configured messaging pipeline inspectors to inter-
cept faults (e.g., fault message returned from the service provider, timeout fault mes-
sage returned from the Web services invoker, QoS degradation event raised by the
QoS constraints evaluator). When a fault was detected, the wsBus VEP used correc-
tive adaptation policies to decide the adaptation actions. For timeout faults, these
policies configured the VEP for the Retailers to first retry the invocation of the faulty
services three times with a delay between retry cycles of two seconds. After exhaust-
ing the maximum number of allowed retries, the policies configured the VEP to route
the request message to a different Retailer based on the response time gathered from
prior interactions. (In other experiments, we have defined policies that configured
concurrent invocation of the four Retailer services and considered the results coming
from the first responding service.) For the Logging service we have configured a skip
policy since the functionality provided by the Logging service is not business critical.

Table 1. Reliability and availability of direct interactions vs. channeling through wsBus

 Reliability Availability
Only Retailer A used by
the client

105 failures per
1000 requests 0.952

Only Retailer B used by
the client

81 failures per
1000 requests 0.992

Only Retailer C used by
the client

17 failures per
1000 requests 0.998

Direct Web services in-
vocations without wsBus
mediation

Only Retailer D used by
the client

91 failures per
1000 requests 0.983

Web services invocations
with wsBus mediation

All 4 Retailer services
exposed as 1 wsBus VEP

6 failures per
1000 requests

0.998

Fig. 5. Round trip time (RTT) for direct interactions vs. channeling through wsBus

In a representative experiment, we compared reliability and availability of the get-
Catalog operation in cases when a client directly calls one of the Retailer Web ser-
vices (which have occasional random faults) and cases when the client calls Retailer
Web services (with the same occasional random faults) through 1 VEP of the client-
side wsBus. Reliability was measured as a number of failures seen by the client per
1000 requests. Availability was calculated as mean time between failures divided with
the sum of mean time between failures and mean time to recover. The test results in
Table 1 show that reliability and availability in cases when wsBus was used improved
compared to cases when only direct interaction with individual Retailers was used.
This is a simple experiment that enabled us to perform quantitative comparisons.
Qualitative comparisons are more straightforward – when there are complex failures,
wsBus adds useful corrective adaptation. How much useful and appropriate the adap-
tation is in particular circumstances, depends solely on the policies and their priorities
– if a human defines an inappropriate policy, wsBus will try to enforce it.

To estimate the impact of introducing wsBus on performance of Web services
compositions, we used the implemented SCM Web services composition to measure
and examine 2 key performance metrics: round trip time and throughput. Round Trip
Time (RTT) is defined as the period from the time a service consumer sends a request
to the time when it successfully receives full reply from its service provider. It in-
cludes execution time of the service implementation, time consumed by the support-
ing provider-side software (e.g., application server, Web server, database server),
queue waiting time (if any) inside wsBus, and network delays. Throughput is defined
as the average number of successful requests processed in a sampling period.

Figure 5 shows round trip time for getCatalogue and submitOrder requests with
varying request sizes. Each data point represents the average latency value over three
independent runs of up to 2000 requests each and performed measures at different
load levels. The delay between requests is set to zero to increase the load on the
server. These data show that channeling of SOAP through wsBus is slower (usually
about 10%, which is not drastic) than direct SOAP-over-HTTP, due to the overheads
introduces by the added QoS features in wsBus. Our analysis of the main reasons of
delays introduced by wsBus points to the high number of threads created to serve the
requests. When a message arrives at the Listener component, a thread is created to

serve the request, and this does not scale well with high number of requests. This will
be avoided in our new .NET reimplementation of wsBus. Another important source of
wsBus delays is the need to import, parse, and process policies. In our .NET reimple-
mentation of wsBus we will minimize this overhead by working with object represen-
tation of policies, which is updated only when policies change.

4 Related Work

While Web services based business processes are gaining wider adoption, tools and
middleware frameworks in this space do not yet provide adequate support for model-
ing and enacting dynamic process adaptations. Several ongoing academic and indus-
trial efforts recognize the need to extend Web services composition middleware with
mechanisms to provide dynamic adaptation. However, our work has unique character-
istics. We adopt a policy-based approach that builds on the established policy-based
management principles [12], while decoupling between sensors that monitor and de-
tect adaptation triggers and effectors that react to and handle such triggers. Our mid-
dleware performs different types of adaptation and contains solutions at different Web
services middleware layers. Also, our technological base is different (extensions of
WS-Policy and Microsoft. NET 3.0 have not been previously studied in detail), which
leads to different architectural solutions. Furthermore, the ultimate goal of our re-
search in this area is business-driven adaptation of Web services compositions, while
related works aim at improvement of technical metrics. We briefly discuss next how
our work differs from and complements the main recently published works.

Probably the closest related work is the service monitoring approach presented in
[1]. The authors proposed the Web Service Constraint Language (WS-CoL) for speci-
fying client-side monitoring policies, particularly those related to security. At de-
ployment time, WS-CoL constraints attached to a process are translated into BPEL
invoke activities that call the Monitoring Manager, the component in charge of run-
time evaluation of monitoring policies to detect anomalous conditions. This approach
is similar to ours in that monitoring policies are specified externally rather than being
embedded into the process specification. The proposed approach achieves the desired
reusability and separation of concerns. However, it only provides support for monitor-
ing and focuses mainly on security. On the other hand, our approach is more focused
on adaptation (rather than just monitoring) to customize the process to cater for spe-
cial cases or to handle faults and address anomalous situations.

Another related work is [3], which suggested an aspect-oriented extension to BPEL
to enable dynamic weaving of aspects into Web services compositions. In their work,
a process runs inside a process container that provides middleware services to BPEL
processes. However, we believe that some of the QoS aspects that they tried to ad-
dress, e.g. security and state persistence, can be addressed more naturally via intercep-
tion at lower-layer messaging middleware rather than augmenting a BPEL engine
with the ability to call low-level middleware services. We argue that a process should
focus solely on the control flow and message routing between composed services. On
the other hand, enforcement of adaptation policies in our approach can be either dele-
gated to the underlying SOAP messaging middleware that mediates the Web services

interactions or enacted by the process orchestration engine via dynamic adaptation of
Web services composition instances. This operation at the SOAP messaging layer can
shield the process orchestration layer from the need to provide fault management.

In [8], the authors presented RobustBPEL as an approach to improve reliability of
BPEL processes via automatic generation of exceptions handling BPEL constructs, as
well as generation of a Web services proxy for each participating service to discover
and bind to equivalent Web services that can substitute a faulty service. However, the
proposed approach does not consider potential dependencies between Web service
operations. Our approach is more general and controls adaptation using policies that
can be checked for consistency.

Significant progress (e.g., see [14]) has been achieved in the field of dynamic com-
position of Web services by leveraging artificial intelligence planning and semantic
Web services to obtain new Web service compositions when the measured QoS vio-
lates a Service Level Agreement (SLA). However, such approaches incur consider-
able overhead and their practical applicability to business problems is still to be
proven. We argue that our approach is more practical and lightweight.

Our MASC middleware can also be seen as a complement to Web services man-
agement (WSM) systems, such as the Web Service Offerings Infrastructure (WSOI)
[16]. These systems provided mechanisms for measuring, evaluating, and managing
Web services to ensure that QoS objectives are met. The central concept in such sys-
tems is often an XML-based contract that formally specifies QoS assurances (e.g.,
about response time, throughput, availability, and reliability). However, most of the
proposed approaches focus on monitoring and/or QoS-based selection of individual
Web services. Our work aims to go beyond the past approaches towards self-adaptive
and more agile business processes implemented as Web services compositions.

The work in [2] proposed a general extension of the service oriented architecture
to support autonomic behavior of Web services, but the proposed architecture does
not address the requirements of adaptive business process execution.

5 Conclusions and Future Work

Dynamic adaptation of Web services compositions is an important step towards agile
business processes that need to continually adapt to keep fulfilling the functional and
QoS requirements of their dynamic business environment. In this paper, we presented
MASC – a policy-based middleware for monitoring and adaptation of Web services
compositions. The underlying design principle of our approach is the separation of
concerns between the process definition and the monitoring and control, considerably
simplifying Web services composition development and management. The benefits of
the work presented in this paper are of twofold:
(1) A novel language, WS-Policy4MASC, is used to declaratively specify monitoring
policies for detection of adaptation needs (e.g., special cases and faults) and adapta-
tion policies that guide process reconfiguration (e.g., fault correction). The externali-
zation and explicit definition of such policies helps in keeping the Web services com-
position simple and uncluttered. Further, these policies can evolve independently,
while allowing potential reuse.

(2) The new MASC middleware architecture has been designed and implemented to
autonomously make and coordinate enforcement of runtime adaptation decisions
across both the business process orchestration layer and the SOAP messaging layer.
Currently, MASC supports both static and dynamic customization of Web services
composition instances, as well as corrective adaptation at the messaging layer.

The paper reports the progress on MASC middleware design and implementation
and highlights how our previous work on the wsBus and adaptation strategies fits into
the overall MASC architecture. To demonstrate feasibility and evaluate effectiveness
of our adaptation techniques at the SOAP messaging layer, wsBus was deployed in a
supply chain management Web services composition. The preliminary measurements
confirmed improved availability and reliability at an acceptable increase in latency.
Also, feasibility of our process-level static and dynamic customization was assessed
using scenarios from the stock trading domain.

Our ongoing work is on providing support for other types of adaptation, i.e., cor-
rective adaptation at the business process orchestration layer to handle process-level
faults, optimizing adaptation to improve extra-functional properties, and preventive
adaptation to avoid future faults and/or QoS degradations before they occur. We are
also extending our middleware to enable making and enacting adaptation decisions
(e.g., optimal configuration of running Web services compositions) based on not only
event-condition-action rules, but also more abstract utility/goal policies describing
how to determine business benefits/costs and maximize business value by performing
adaptations. These ambitious extensions aim to position MASC as a middleware for
autonomic business-driven management of Web services compositions.

Acknowledgments. This work is a part of the research project “Building Policy-
Driven Middleware for QoS-Aware and Adaptive Web Services Composition” spon-
sored by the Australian Research Council (ARC) and Microsoft Australia. We also
thank A/Prof. Boualem Benattallah for insightful discussions and his comments.

References

1. Baresi, L., Guinea, S., Plebani, P.: WS-Policy for Service Monitoring. Proc. of the 6th Inter-
national Workshop on Technologies for E-Services (TES 2005, Trondheim, Norway), Lec-
ture Notes in Computer Science (LNCS), Vol. 3811. Springer (2005) 72-83

2. Birman, K., Van Renesse, R., Vogels, W.: Adding High Availability and Autonomic behav-
ior to Web Services. Proc. of the 26th International Conference on Software Engineering
(ICSE 2004, Edinburgh, Scotland, UK). IEEE-CS (2004) 17-26

3. Charfi, A., Mezini, M.: An Aspect-Based Process Container for BPEL. Proc. of the First
Workshop on Aspect-Oriented Middleware Development (AOMD 2005, Grenoble, France).
ACM (2005) #4

4. Curbera, F., Leymann, F., Storey, T., Ferguson, D., Weerawarana, S.: Web Services Plat-
form Architecture: SOAP, WSDL, WS-Policy, WS-Addressing, WS-BPEL, WS-
ReliableMessaging and More. Prentice Hall (2005)

5. Erradi, A., Maheshwari, P.: A Broker-Based Approach for Improving Web Services Reli-
ability. Proc. of the IEEE International Conference on Web Services 2005 (ICWS'05, Or-
lando, Florida, USA). IEEE -CS (2005) 355 - 362

6. Erradi, A., Maheshwari, P., Tosic, V.: Recovery Policies for Enhancing Web Services Reli-
ability. Proc. of the IEEE International Conference on Web Services 2006 (ICWS'06, Chi-
cago, Illinois, USA). IEEE-CS (2006)

7. Erradi, A., Maheshwari, P.: AdaptiveBPEL: Policy-Driven Middleware for Flexible Web
Services Composition. In Proc. of the EDOC 2005 Middleware for Web Services Workshop
(MWS'05, Enschede, The Netherlands). IEEE-CS (2005) 5-12

8. Ezenwoye, O. Sadjadi, S.M.: Enabling Robustness in Existing BPEL Processes. Proc. of the
8th International Conference on Enterprise Information Systems (ICEIS-06, Paphos, Cy-
prus). INSTICC (2006)

9. Geppert, A., Tombros, D., Dittrich, K.: Defining the Semantics of Reactive Components in
Event-Driven Workflow Execution with Event Histories. Information Systems, Vol. 23, No.
3/4. Elsevier (1998) 235-252.

10. Mens, T., Buckley, J., Zenger, M., Rashid, A.: Towards a Taxonomy of Software Evolu-
tion. Proc. of the Workshop on Unanticipated Software Evolution (Warsaw, Poland). (2005)

11. Salle, M., Bartolini, C.: Management by Contract. Proc. of the IFIP/IEEE International
Symposium on Network Operations and Management (NOMS'04, Seoul, South Korea).
IEEE (2004) 787-800

12. Sloman, M.: Policy-Driven Management for Distributed Systems. Journal of Network and
Systems Management, Vol. 2, No. 4. Kluwer (1994) 333-360

13. Tai, S., Mikalsen, T., Wohlstadter, E., Desai, N., Rouvellou, I.: Transaction Policies for
Service-Oriented Computing. Data & Knowledge Engineering, Vol. 51, No. 1. Elsevier
(2004) 59-79

14. Verma, K., Doshi, P., Gomadam, K., Miller, J., Sheth, A.: Optimal Adaptation in Web
Processes with Coordination Constraints. Proc. of the IEEE International Conference on
Web Services 2006 (ICWS'06, Chicago, Illinois, USA). IEEE-CS (2006)

15. Verma, K., Sheth, A.P.: Autonomic Web Processes. Proc. of the Third International Con-
ference Service-Oriented Computing (ICSOC'05, Amsterdam, The Netherlands), Lecture
Notes in Computer Science (LNCS), Vol. 3826. Springer (2005) 1-11

16. Tosic, V., Lutfiyya, H., Tang Y.: Extending Web Service Offerings Infrastructure (WSOI)
for Management of Mobile/Embedded XML Web Services. Proc. of the 8th IEEE Interna-
tional Conference on E-Commerce Technology and The 3rd IEEE International Conference
on Enterprise Computing, E-Commerce, and E-Services (CEC/EEE'06, San Francisco, Cali-
fornia, USA). IEEE-CS (2006) 87-95

17. The Web Services Interoperability Organization (WS-I): Supply Chain Management Sam-
ple Application Architecture. Web resource (version Dec. 9, 2003; accessed Sept. 1, 2006).
On-line at: http://www.ws-i.org/SampleApplications/SupplyChainManagement/2003-
12/SCMArchitecture1.01.pdf (2003)

