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Abstract. XML message filtering systems are used for sifting through
real-time messages to support business data mining and reporting. An
XML message filtering system needs to (a) process registered filter pred-
icates on multiple distributed real-time streams and (b) match and val-
idate the filter results with local data to identify the relevant data that
can be used for higher-level processing. Although efficient real-time fil-
tering schemes exists, the matching phase of the operation where filter
results have to be matched against local data to select those matches that
are relevant to the particular task remains to be expensive as it requires
expensive join operations. In this paper, we present an efficient middle-
ware (FMware) for filtering and matching XML messages against locally
available data. The proposed operator relies on a novel cluster-domain
matching scheme to reduce the cost of the process. We analytically study
the cost of the proposed middleware and experimentally show that it
adaptively reduces the number of local data accesses and provides large
savings in matching time with respect to cluster-unaware matching.
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1 Introduction

XML message brokers provide filtering, tracking, and routing services to en-
able processing and delivery of the message traffic within an enterprise. These
tools (e.g. JMS [1] and IBM’s MQSeries [2, 3]) listen to (possibly multiple) XML
data streams within an enterprise (or across enterprises) and identify message
data fitting the registered user profiles or filter queries. These messages are then
passed to appropriate business intelligence modules for further processing. Thus,
efficient middleware support for filtering and publish/subscribe services is crit-
ical for effective use of system resources, reducing the messaging delays, and
simplifying the design of enterprise business intelligence systems.

In this paper, we first note that such basic XML document processing tasks
can be off-loaded to a middleware. In fact, there is an increasing number of XML
message process off-loading technologies. Yet, most of these technologies provide
either low-level XML parsing acceleration support [4], (usually proxy-based)
publish/subscribe solutions (e.g. SemCast [5], CoDD [6], NiagaraCQ [7]), mes-
sage validation through XML-gateways and XML-firewalls (e.g. DataPower [8]
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and Sarvega [9]), or purely network-level intelligent message routing solutions [10,
11] which do not go beyond interpreting the request and reply message headers.

Existing work in publish/subscribe middleware focuses on the problem of
routing of data and the filter queries in a way to ensure that right filter results
reach the correct users in the shortest amount of time with minimal resources.
For instance, CoDD [6] uses subscription queries to create a hierarchical tree
structure which disseminates subsets of a data stream to consumers through
loosely-coupled peer nodes. On the other hand, in an enterprise business intel-
ligence context, it is not common that there are thousand of widely distributed
subscribers for filter results. Therefore, routing and dissemination are less criti-
cal in this domain then efficiency in filtering and matching: since large volumes
of data arrives continuously, it is essential that the filtering rate matches the
data arrival rate to prevent the loss of valuable information. Therefore, the col-
lection of query patterns need to be indexed in-memory to enable real-time fil-
tering of the data. The state of the art in XML filtering schemes include YFilter
[12], AFilter [13], TurboXPath [14], and XSQ [15]. Although, thanks to these
in-memory based filtering techniques (relying on state machines, push down au-
tomata, or transducers), the filtering step itself can generally be performed in
real-time (on the order of 100K filter statements), a major remaining challenge
in business context is the impedance mismatch between the in-memory filtering
schemes and the locally relevant data in secondary storage.

1.1 Challenge: Impedance Mismatch Between In-Memory Filtering
Schemes and Locally Relevant Data In Secondary Storage

Consider an enterprise with multiple sales offices and multiple suppliers. Let
us assume that the product shipment office of this enterprise needs to iden-
tify for each sale, (a) the productid of the sold item, (b) number of units sold,
and the (c) appropriate warehouse for product shipment. Let us also assume
that this enterprise is relying on XML messaging for communicating between
the various offices and branches. Without getting into the details of the cor-
responding schema, let us further assume that the XML message filtering sys-
tem can listen to the sales messages (with a registered filter statement of the
form “//productid//unit of sales”) to extract 〈productid, unit of sales〉 infor-
mation for shipment. However, let us further consider the case where the sales
messages arriving from the local sales offices do not contain the warehouseid
information for the products. This is expected in this case, as warehouseid is rel-
evant only to the product shipment office and “//productid//warehouseid”
will only be available locally (possibly at a secondary storage).

Therefore, although in-memory message filtering (such as YFilter [12]) can be
used for extracting “productid//unit of sales” from incoming sales messages,
an efficient middleware is needed for matching these against locally stored data
to identify 〈productid, unit of sales, warehouseid〉 matches (Figure 1).

1.2 Contributions of this Paper

With the goal of supporting time critical filtering, tracking, and routing services
for enterprises, in this paper we present a novel FMware middleware for ef-
ficient XML message stream filtering and matching against locally stored data
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(Figure 2 and Section 2). In particular, we focus on the post-processing phase re-
quired for validation of the message filter results against XML data in secondary
storage and we develop an index-driven CMatch (clustered-matching) operator
for efficient implementation of the FMware middleware.

To reduce the cost of message filtering, in-memory schemes (such as YFilter
and AFilter) rely on structural similarities of the filter statements. When the
matching phase requires access to data in the secondary storage, however, ex-
ploiting structural similarities is not straight-forward. Existing index-structures
(such as [16]), that are used in XML DBMS context, rely on prefix clustering
through an ancestor-descendant interval labeling (Section 3). CMatch operator,
on the other hand, relies on a multi-interval scheme to exploit other structural
clustering opportunities to adaptively reduce accesses to the secondary storage
(Sections 3 and 3.7). In Section 4, we experimentally show that cluster domain
processing not only reduces the matching cost, but knowledge about cluster-
ing power of the data can be exploited by FMware to choose the appropriate
available index for matching.

2 Overview of the FMware Middleware

Traditional XML filtering systems are concerned with finding instances of a
given set of patterns in a continuous stream of data trees (or XML messages).
More specifically, if {x1, x2, ...} denotes a stream of XML messages, where xi

is ith XML message in the stream, and {q1, . . . , qm} is a set of filter predicates
(described in an XML query language, such as XPath [17] or XQuery [18]) then
an XML filtering system identifies (in real-time) 〈xi, qj , PTij〉 triplets, such that
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the message xi satisfies the filter query qj . The set PTij includes each instance
of the query (referred to as path-tuples in [12]) in the message.

In order to enable (a) filtering of XML messages against registered queries
and (b) matching filter results against locally stored data, FMware middleware
needs to interface available filtering engines with data available in secondary
storage. For example, consider the XPath filter statement A[//B]//C. Let us
assume that the XML messages contain enough information to match the A//B
pattern, however the A//C should be verified using local data. Thus, the filter
statement can be split into two parts:

filterStmt = A[//B] and matchStmt = resMsg.A//C,

where resMsg denotes the results for the filter statement filterStmt. Thus, the
stream of filtering results will need to be further matched against the locally
stored data for evaluating the resMsg.A//C relationship.

Definition 1 (Filtering and Matching with Local Data). Let

– the filter&match statement can be split into two sub-filter statements: filterStmt
for filtering on XML message stream and matchStmt for local data,

– resMsg denotes the stream of message filtering results, where each result,
rmsgi, is a tuple (as in [12]) of nodes satisfying conditions specified in
filterStmt,

– resLoc denotes the set of tuples, where each result, rlocj ∈ resLoc, satisfies
conditions specified in matchStmt, and

– Θ is a structural condition between node nodem in rmsg tuples and noden

in rloc tuples.

The filtered and matched result, R, consists of a stream of pairs, 〈rmsgi, rlocj〉,
where nodei,m ∈ rmsgi and nodej,n ∈ rlocj satisfy the condition Θ (Figure 3).

Broadly speaking, there are two different ways to perform the filtering and
matching with local data task:
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– Alternative I (Periodic matches): (a) filterStmt is evaluated on the
XML message stream to identify a batch resMsg Batch of matches. (b)
matchStmt is evaluated on the local data to identify local candidates resLoc Batch.
(c) resMsg Batch and resLoc Batch is joined.

– Alternative II (Streaming matches): Each filter result rmsgi is matched
against the local data using an efficient index structure to locate the local
matches.

The disadvantages of the first alternative is that (a) it is blocking and (b) it
requires explicit materialization of all candidate matches in advance. The second
alternative requires neither blocking nor explicit materialization; however, it is
essential that the matching is performed efficiently.

2.1 Alternatives for Streaming Matching Implementations

Structural relationships within XML data constitute significant information that
has to be used in querying, indexing, and retrieval. Various structural join al-
gorithms are devised for speeding up the processing of queries which involve
ancestor/descendant type of structural relationships.

Structural join algorithms can be classified into two: holistic and binary.
Holistic join operators take the entire query and match it against the data as
a whole. Since in a streaming environment data itself is distributed and avail-
able in pieces, such holistic approaches, which are shown to work well for sta-
tic XML data, are not applicable. Many existing (binary or holistic) structural
join operators, including TwigStack, PathStack [19], iTwigJoin [20], Stack-Tree-
Desc/Anc [21], EE/EA-Join [22], and TSGeneric [23], are specially designed vari-
ants of the standard sort-merge join algorithm: they require that the ancestor
and descendant lists be available in a structurally sorted order before the join
operation can be performed (Figure 4). Consequently, these sort-merge based
schemes face the problems common in traditional sort-merge-joins: (a) they risk
being blocking (for sorting the inputs) or (b) they constrain query plans to only
those that can provide appropriately sorted inputs. Unfortunately, when the fil-
ter results for validation arrive from multiple message queues (with potentially
different message structures and arrival orders) it is not possible to assume that
the data for the corresponding join operation will be structurally sorted in a
desirable manner. Thus, once again, they are not applicable in a filtering and
matching environment.
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A natural alternative to sort-merge join based schemes, more suitable for
filtering with unpredictable arrival patterns, is to rely on structural index joins,
where the data nodes (not necessarily structurally sorted) are checked against
a pre-existing index structure which can return required ancestor or descendant
nodes in the data. Index-joins can be performed on unsorted streaming input
data as long as appropriate index structures are available on the local data.
There are a variety of existing index structures, such as B+-trees, XR-trees [16],
XB-trees [19], and R-trees [24, 25] that can be used for indexing local data for
efficient evaluation of structural conditions for identifying matching local data.
The cost of this operation, per filtering result, rMsgi in the stream resMsg
is bound by the cost of the index access, which depends on the specific index
structure used; but, generally, it is at least logarithmic in the local database size
(depth of the index structure). When the arrival rate of the filtering results is
high, on the other hand, the performance of existing index structures may not
be sufficient (we experimentally evaluate this in Section 4). Therefore, for such
operators to be useful in a real-time data filtering and matching middleware,
they need to be implemented efficiently. In the next section, we propose a novel
clustered matching approach addressing the needs of the FMware middleware.

3 Cluster Support for Efficient Indexed Matching

To implement structural matching (or join) operations efficiently, most index
structures, such as B+-trees, XR-trees [16], XB-trees [19], and R-trees [24, 25],
assume an ancestor/descendant (AD) labeling scheme [22, 27] which assigns in-
tervals to nodes such that descendant nodes have intervals that are contained
within the intervals of the ancestor nodes. The AD interval of an XML node
ni clusters all descendants of ni based on their common prefixes up to ni (Fig-
ure 5(a)). Therefore, the ancestor/descendant relationship can be checked using
containment or enclosure (= containment−1) predicate on intervals. This renders
interval-based AD labeling very common in implementation of structural joins.

3.1 Clustering Power and Precision

Since there is a one-to-one correspondence between the data nodes and the
intervals, given an XML document, the number of interval labels assigned to
it by an AD-based schemes is the same as the number of nodes in the data
(Figure 5(a)). In contrast, in order to reduce the number of intervals that need



to be considered, structure-encoded-sequence (SES) [28, 29, 26] based approaches
try to further cluster structurally related nodes. They achieve this by using
labeling schemes (such as Prufer sequences [29]) that can capture more than
the ancestor/descendant relationships1. For example, Figure 5(b) shows ViST
style [26] SES-labeling: each node nodei is assigned a sequence seqj and an SES
interval nodei.ses = (sj , ej). Once again, resulting intervals are either disjoint or
contained within each other. However, as shown in Figure 5(b), some nodes with
the same label are clustered under the same SES-label. For instance, the SES
label [2, 7] in Figure 5(b) clusters two nodes in the original data (Figure 5(a)),
both with tag D. Note that these two nodes tagged2 D are also on similar paths
on both trees. In other words, each structure-encoded interval clusters multiple
data nodes. Based on this example, we can state that SES labels have higher
cluster power than the AD labels.

Definition 2. Clustering Power of an SES-label (cps(ses, l, d)). The clus-
tering power, cps(ses, l, d), of an SES-label, ses, in a given data source, d, for
the labeling scheme l is the number of nodes with this SES label. �

Since clustering applies to nodes with the same tags, given a data collection and
a labeling scheme, we can also define the clustering power of a given tag:

Definition 3. Clustering Power of a Tag (cpt(τ, l, d)). The clustering power,
cpt(τ, l, d), of tag τ in a given data source, d, for the labeling scheme l is the
average clustering power of the all SES labels corresponding to those nodes with
tag τ . �

Clearly using SES-labels of the nodes, as opposed to their AD-labels during
matching can reduce the number of index checks that have to be performed.
Furthermore, knowledge about the clustering powers of SES-labels and individ-
ual tags can enable the optimizer to decide whether a cluster-enabled scheme is
likely to be effective (by reducing the number of inputs to consider) for a given
matching condition. Thus we can benefit from the inherent clustering power of
the SES-labels to reduce the number of times the existing index is accessed.
However, this reduction in the number of index accesses do not come for free.

Unfortunately, SES-labels are not as precise as AD-labels in capturing struc-
tural relationships. In particular, unlike AD-labels, where ancestor(nodei, nodej) ↔
contains(nodei.ad, nodej .ad), SES-labels satisfy only one direction of the impli-
cation: ancestor(nodei, nodej) → contains(nodei.ses, nodej .ses). Thus, a query
of the form “find all nodes with SES-labels contained within the SES label of a
given node,” might return more nodes than the descendants of the given node.
Thus, although SES-labels can be used for clustering to reduce the number of

1 There are a number of SES-labeling schemes. For instance, PRIX [29] uses Prüfer se-
quences, while [28] and other covering index based schemes consider path sequences.
Details of SES-labeling processes have been omitted. Please refer to [28, 29, 26] for
more details on SES-labeling schemes.

2 A tag is the element name, attribute name, or the value associated with the XML
node.
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disk accesses, to eliminate false retrievals that may result from the use of clus-
tering, the filter-and-match operation would need a cleaning phase, based on the
(unclustered) AD-labels (Figure 6(a)).

3.2 CMatch Operator for Multi-Labeled Matching and Cleaning

To enable both efficient and correct operation, FMware middleware relies on a
multi-labeling scheme which uses SES-labels for clustering and AD-labels to
prevent false retrievals. A Multi-Interval (MI) label combines the AD and SES
interval labels. Formally, the MI-label of nodei with AD-label nodei.ad and SES-
label nodei.ses is nodei.mi = (nodei.ad, nodei.ses). FMware assigns MI-labels
to each data node in the (global) XML data through exchange of structural
information between distributed FMware entities.

Figure 6 provides an overview of the CMatch operator with which the FMware
middleware implements clustered index matching in the SES domain followed
by an AD-domain cleaning phase: the faulty candidate nodes produced by the
SES-based index scan are eliminated: to reduce the number of accesses to the in-
dex, inputs are clustered based on their SES labels and the index is accessed only
once for each SES label. Since SES-based index access is not enough by itself
to ensure correctness of the results, a symmetric, non-blocking CClean operator
is used for cleaning the results from false hits.

Figure 6 shows the detailed implementation of the CMatch operator. The two
complementary halves (cluster-domain index access and cluster-enabled clean-
ing) of the CMatch operator are described next.



3.3 Cluster-domain Index Access (Steps 1,2)

As shown in Step 1 of Figure 6(b), the CMatch operator first identifies unique
SES-labels observed in the input stream of filtering results. These unique labels
are then used for accessing an index structure to fetch the matching nodes. (Step
2 of Figure 6(b)). The details of these steps are as follows:

(Step 1. SES-clustering of Filter Results) The stream of inputs, resMsg,
is passed through a newSES label identifier, which identifies unique SES labels
in the input nodes and pushes each unique SES label encountered in the stream
into a queue, uniqueSESqueue. In our implementation, this process of unique
SES identification is piggy-backed on the SES-hashing process used for cleaning,
discussed later in Section 3.4.

(Step 2. SES-clustered Access to the Local Database) Using an exist-
ing SES index, the unique SES labels in the uniqueSESqueue are compared
against the matching condition Θ (more specifically Θses) to identify candidate
matches. The individual Θses matching operations are performed by the SES
index-access threads that are available in a thread pool. For each sesnew in
the uniqueSESqueue, the SES index is accessed only once (i.e., the search key,
seskey , is equal to sesnew). The index returns a stream, C(seskey), of candidates,
where

C(seskey) = {〈seskey, rlocj〉| (Θses(seskey, nodej,n.ses) = true) ∧ (nodej,n ∈ rlocj)}.

Given a search key, seskey, each candidate in this stream is a multi-interval
label of the matching nodes. Each candidate is also marked with the search
key, seskey; this is used in the second phase of the algorithm for the AD-based
cleaning operation which will clean false hits.

Note that multiple SES-index scan threads pipe their results into a single
stream, C. Therefore, this stream contains results for different SES labels (po-
tentially interleaved due to simultaneously outputting index scan threads).

3.4 AD-based Cleaning (Step3)

The AD-based cleaning operator (Step 3 of Figure 6(b)) matches the candidates
(C) returned by SES index lookup with the original results in the message filter
stream (resMsg) based on their SES labels used for index accesses and performs
AD-based cleaning on Θ (more specifically Θad) to remove faulty candidates.
Thus, the result in the output stream, R, consists of pairs, 〈rmsgi, rlocj〉, where
nodei,m ∈ rmsgi and nodej,n ∈ rlocj satisfy the condition Θad:

R = {〈rmsgi, rlocj〉 | (rmsgi ∈ resMsg) ∧ (〈seskey , rlocj〉 ∈ C) ∧
(ni,m.ses = seskey) ∧ /*match for SES-clustering*/
(Θad(nodei,m.ad, nodej,n.ad) = true)} /*AD-based cleaning*/

Therefore, simultaneously with the SES-based index access by the CMatch op-
erator, the original stream of filter results (resMsg) are passed to a symmetric,
non-blocking operator for AD-based cleaning (Step 3 of Figure 6(b)).
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Before the AD-conditions can be checked for cleaning, however, resMsg and
C have to be matched based on the SES search key, seskey , used for accessing
SES clustered index. Unfortunately, neither of the streams is sorted or clustered
on these SES values. In resMsg, results with the same SES values may be far
apart from each other depending on how resMsg has been computed prior to
being passed to this operator. Similarly, since multiple SES-index access threads
(each performing a separate index access with a different search key, seskey) are
writing onto the same stream C, the candidates are not likely to be clustered on
the seskey values to be used for cluster-based matching.

Overview of the CClean Operator The key for efficient cleaning, therefore, is
symmetric non-blocking matching of tuples ni,m ∈ resMsg and 〈seskey , rlocj〉 ∈
C, based on the condition, (ni,m.ses = seskey). Figure 7 shows the overview
of the cluster-enabled cleaning operator, CClean. The two left and right input
streams (LStr = resMsg and RStr = C) to the operator are streams of multi-
interval labels. Each candidate element in RStr is also annotated with the SES-
based search key, seskey , used for fetching this candidate from the index.

Since correct candidates must satisfy both Θad(nodei,m.ad, nodej,n.ad) =
true) and ni,m.ses = seskey, inputs to the cleaning operator are clustered, using
hash tables, based on their SES-labels: (a) for the nodes in LStr, the correspond-
ing SES labels and (b) for the candidates in RStr, the search key (seskey) used
for fetching the candidate from the index are used for hashing. For those node
pairs which satisfy the SES equality, the AD condition will be checked for clean-
ing. In a sense, SES labels are used for clustering the input nodes (and their AD
labels), thereby reducing the number of nodes that need to be compared based
on their AD-values.



Most importantly, to prevent the clustering phase itself from becoming a
bottleneck, the CClean operator achieves both SES-based clustering and the AD-
based joins simultaneously. To facilitate this, the operator keeps an in-memory
hash structure for each of its input streams. Inputs are inserted into these
hash structures based on their SES-labels:

– Each hash bucket contains inputs that have the same hash(ses) value. Note
that since multiple SES labels may have the same hash value, a bucket may
contain input nodes with different SES labels.

– Partitions in buckets cluster nodes with the same SES.
– To achieve the non-blocking behavior, each stream queries the other one

without waiting for all the data with the same SES label being available.

To prevent duplicate results, timestamps are associated with the inputs being
inserted into hash tables.

Since the in-memory space allocated to each CMatch operator is limited,
in addition to the in-memory hash tables, the operator also maintains disk-
based AD index structures to manage overflow buckets. Note that these
index structures are used for identifying descendants or ancestors, depending on
which input stream they are indexing. Candidate index structures include XR-
trees [16] and R-trees [24, 25]. When a new SES label is hashed into a bucket
with no empty partition, a victim partition is selected based on the fullest least-
recently-used principle: the fullest partition that has not been used for the largest
duration of time is selected to be the victim to be pushed onto the disk. In
addition, if a partition becomes full and there is a new AD label to be inserted
to that partition, it is pushed to disk (the physical partitions have a fixed size).

We are now ready to describe the functioning of the cluster-enabled hash-
based cleaning operator, CClean, depicted in Figure 7 in detail.

CClean Algorithm Figure 7 demonstrates the implementation and the op-
eration of the symmetric, non-blocking CClean operator. The operator is non-
blocking in that input streams are queued and processed as they are received.
It is also symmetric in that the operator consumes and processes both its input
streams, LStr and RStr, simultaneously. The inputs to the operator are two
streams, LStr and RStr, of multi-interval labeled nodes (LStr = resMsg and
RStr = C).
(Step 1.) Data from both input streams are queued for insertion into the corre-
sponding hash tables based on the corresponding SES labels as described above.
A time-stamp that specifies the insertion time, called insertion time-stamp, is
associated with each element in the hash table. These insertion time-stamps are
used to prevent duplicate results. The insertion process is carried out by threads
that are available in the corresponding insertion-thread pools.

(Case 1) If there is already a partition in the corresponding hash table with
the SES label and the partition is not full, then the input is time-stamped and
inserted into the partition. If the partition is already full, the partition is pushed
to the disk, along with the new (time-stamped) input. The preempted partition
is made available as a free partition.



(Case 2) If there is no partition in the corresponding hash bucket with the
SES label of the input, then an empty partition is allocated. If there is also no
empty partition, then a victim partition is pushed to the disk (into the disk-
based index structures) and the partition is allocated for this SES. The input is
time-stamped and inserted into the partition.
(Step 2.) Hashed or indexed inputs on both sides are pushed into the respective
query queues to initiate AD-join queries on the other stream. These queries are
executed by the query threads that are available in the query-thread pools. Each
query thread initiates a query on the other stream:

1. If the corresponding SES partition is found on the in memory hash table of
the other stream, the thread first performs an in-memory AD-join based on
the AD condition, Θad.

2. The thread, then, consults an SES bitmap which specifies whether the cor-
responding SES partition is in the disk or not:

(a) if the SES partition is found on the disk, the appropriate AD range query
is performed on the index structure corresponding to the given SES label.

(b) if the partition is not on the disk either, the AD-join is not performed
as there are no matches.

In order to prevent duplicate results, only those pairs of inputs, lin and rin,
whose insertion time-stamps satisfy the following condition are included in the
output stream:

1. if the input, for which the query is initiated, is from the LStr stream, then
tslin > tsrin, where ts denotes the insertion time-stamp.

2. if the input, for which the query is initiated, is from the RStr stream, then
tsrin ≥ tslin.

For each pair of matching lin and rin, the concatenated multi-interval list
〈lin, rin〉 is inserted into the output. �

Dynamic Hash Bucket Allocation In CClean, nodes are hashed into the
buckets based on SES-labels. All nodes having the same SES label are mapped
into the same partition of the same bucket. If the variation in the clustering
power of individual SES-labels in the data is extremely high (Section 3.1), it is
possible that some buckets will be extremely full whereas others are relatively
empty. Thus, instead of allocating fixed size buckets, CClean allocates memory
to the hash buckets dynamically and goes to the disk only after all memory
allocated for the cleaning task has been consumed. In our implementation, we
are allocating memory dynamically to each bucket on per-need basis. Note that
random hashing of the SES-labels ensures that the utilization of the in-memory
pages is not low due to SES-labels with very low clustering powers.

Complexity of the CClean Operator If during CClean, data is found in the
in-memory hash tables, the cost of search is negligible. Otherwise, a search has
to be done in the corresponding overflow structure. In the following discussion of



the complexity of the CClean operator, for simplicity, we will consider the worst
case where all insertions and searches go to disk.

Let I = |resMsg| be the number of input elements, Suniq be the set of
unique SES labels in resMsg, and C = |C| be the number of candidates returned
by index accesses. Let also r ∈ resMsg and c ∈ C be two input nodes. Ignoring
in-memory hash tables, nodes r and c will both require disk access and initiate
searches in the opposite structure.

Insertion cost: The insertion cost of input r ∈ resMsg is determined by the
number of nodes in resMsg, with the SES label sr = r.ses, that are already
received and indexed. In particular, if we denote the number of nodes in resMsg
with SES label sr, I(sr), the worst case insertion cost of r is O(log(I(sr))). Thus,
the total insertion cost for elements in resMsg can be computed as

O
(
∑

s∈Suniq I(s) × log(I(s))
)

.

The insertion cost of the candidate c ∈ C with the corresponding SES search
key kc is, on the other hand, determined by the number of candidate nodes
with the same SES key, kc, already received in C. If the number of nodes in C
with SES-based search key kc is C(kc), then the worst case insertion cost of c is
O(log(C(kc))). Since search keys are unique SES labels in resMsg, the total inser-

tion cost for elements in C can be computed as O
(
∑

s∈Suniq C(s) × log(C(s))
)

.

Thus, in the worst case, the insertion costs

O
(
∑

s∈Suniq I(s) × log(I(s)) + C(s) × log(C(s))
)

.

Search cost: Ignoring the in-memory hash tables, the overall worst case search
cost (in terms of disk accesses) is

O
(
∑

s∈Suniq I(s) × log(C(s)) + C(s) × log(I(s))
)

.

Total cost: Based on these, we can compute the total CClean cost as

O
(

2×
∑

s∈Suniq (I(s) + C(s)) ×max{log(C(s)), log(I(s))}
)

.

If an SES label in resMsg clusters a large number of nodes or returns a large
number of candidates, this label is likely to impose high cleaning cost. Never-
theless, index structures that maintain these intermediary nodes are likely to be
smaller (and more efficient) than a large AD-index.

3.5 Complexity of the CMatch Operator

Since the clustering effect of the SES-labels reduces the number of requests that
are sent to the SES index structure, higher clustering rates of SES-labels in the
input stream would help the performance of the CMatch.

Cluster-domain index scan cost: Since the SES-domain index structure is
accessed only once for each unique SES-label in the input, using the same nota-
tion as before, the access cost to the index structure could be written as

O
(
∑

s∈Suniq SES index access cost
)

.



AD-based cleaning cost: In Section 3.4, we computed the CClean operator
used for AD-cleaning process as

O
(

2×
∑

s∈Suniq (I(s) + C(s))max{log(C(s)), log(I(s))}
)

.

Here, I(s) = I × rps(s, l, d), where rps denotes the relative clustering power
of SES labels (in the data collection d and using labeling scheme l), as defined
in Section 3.1. C(s) = match(κ, s) is the number of matches contained in the
SES-interval s.

Total cost: We can compute the worst case overall cost (in terms of disk ac-
cesses) of the CMatch as the sum of the cluster-domain scan and AD-based clean-
ing costs given above. Since the two streams to CClean are processed in parallel,
allocating independent resources to them would reduce the overall cleaning time.
Similarly, since CClean is pipelined and non-blocking, cluster-domain index scan
and AD-based cleaning phases can be performed in parallel. Thus, mostly, the
observed execution time is only the maximum of the two phases, not their sum.

3.6 CMatch versus AD-only Matching

If the index scan was performed in the AD-domain rather than in the SES-
domain, the total access cost to the existing AD index structure would be

O
(
∑

s∈Suniq I(s) ×AD index access cost
)

.

Since, for AD-only match, there is no need for cleaning, this is also the total cost
of the AD-only match operation. One major advantage of CMatch (versus AD-
only match) is that for a given SES label, s, the index structure is accessed only
once for CMatch, whereas the index is accessed I(s) times for AD-only matches
(see equations above) Furthermore, since SES indexes are more compact than
AD indexes, it is likely that searches on the existing SES index structures will
be faster than searches on the AD index structures.

However, the CMatch operator has an AD-based cleaning overhead that has
to be accounted for. Computation of the size of in-memory space needed to
hold incoming inputs and candidates is trivial using the statistics described
above. However, when the in-memory space is not large enough, CClean operator
needs to use disk-based structures. Comparing the worst case CClean cost and
the AD-only match cost, we see that cluster-domain scan followed by cleaning
is worthwhile as long as the accesses to clustered intermediary structures are
cheaper than scans on the large AD index structure.

3.7 Per-Query and Per-SES Adaptation in FMware

Given a matching statement with two query tags, based on the cost models and
statistics presented above, we can estimate whether CMatch or AD-only match
will cost less. One can also choose between different SES-labeling schemes based
on the clustering rates they provide. We refer to this as per-query adaptation.
Note that, it is also possible to consider each node in the input stream individu-
ally based on CMatch or AD-only match on a per-input basis (Figure 8). Further-
more, if the expected number of candidates is large, cluster-domain processing
provides further opportunities. In the next section, we show that the FMware
middleware benefits from both alternatives, based on available statistics.
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Fig. 8. Per-input choice between CMatch and AD-only index match in FMware

4 Experimental Evaluation

In this section, we experimentally evaluate the effectiveness of cluster-domain
matching, by comparing performances of CMatch and AD-only match. In par-
ticular, we show that the CMatch exploits available (per matching) task memory
significantly better than an AD-only match, especially when the clustering pow-
ers of the nodes are high. We also show that the relative performances of CMatch
and AD-only index join follow the cost patterns discussed earlier in the paper,
thus it is possible to choose between CMatch and AD-only match, case-by-case,
based on easy to collect statistics.

4.1 Setup

The operators presented here have been implemented in Java and ran on Redhat
7.2 Linux workstations, with 1.8 GHz Pentium IV processor. For the AD- and
SES- index structures, we used B-tree implementation of BerkeleyDB [30]. The
overflow data in CClean is indexed on disk.

We compared the AD-based index match and the CMatch operators under
varying conditions. Both AD-only match and CMatch operator implementations
are non-blocking and pipelined for fair comparison. Note that AD-only match
does not need a cleaning phase. Table 1 provides a diverse set of matching con-
ditions, selected for inclusion here as they illustrate the behavior of the CMatch
under various matching characteristics. The table reports the following parame-
ters:

– AD:SES, denotes the number of unique SES and AD labels in the inputs,
– Cl Pow, denotes the clustering power of the SES labels in the input stream,
– Cand, is the number of candidates generated by cluster-domain index scan,
– Buffer, denotes the buffer allocated for each operator (more specifically, BT

is buffers for B-tree, HT is hash table size, and OT is buffers for overflow-
index trees),

– #BScan, denotes the number of accesses to existing (AD or SES) indexes,
– #Omiss is the number of misses from the overflow-index tree buffers
– Exper.Tot. is the execution time for the entire experiment
– Per Msg. Avg. is the average time (per message) required for matching. This

is what we would like to have as small as possible.



AD:SES(Cl Pow) AD:SES Matching Buffer(MB) Performance Indicators Time(ms.)
InStream LocalDB Operator Total (BT+HT+OT) #BScan Cand #Omiss Exper.Tot. Per Msg. Avg.

• No Clustering: AD-only matching is expected to perform better
MQ1 1:1 5821:5280 ADMatch 1.11MB (1.11+0+0) 1 n/a n/a 498 498ms

(1) CMatch (1+0.1+0.01) 1 5821 ∼22K ∼87K ∼87K ms = 87s
ADMatch 2.1MB (2.1+0+0) 1 n/a n/a 455 455ms
CMatch (1+ 1+ 0.1) 1 5821 8 941 941ms

• Very Low Clustering Power: AD-only or CMatch
MQ2 5821:5280 1:1 ADMatch 1.11MB (1.11+0+0) 5821 n/a n/a 558 0.096ms

(1.1) CMatch (1+0.1+0.01) 5280 1 ∼22K ∼86K 14.77ms
ADMatch 2.1MB (2.1+0+0) 5821 n/a n/a 554 0.095ms
CMatch (1+ 1+ 0.1) 5280 1 8 490 0.085ms

• High Clustering Power: CMatch is expected to perform better
MQ3 222:1 2:1 ADMatch 1.011MB (1.011+0+0) 222 n/a n/a 182 0.82ms

(222) CMatch (1+0.01+0.001) 1 2 411 443 1.99ms
ADMatch 1.11MB (1.11+0+0) 222 n/a n/a 220 0.99ms
CMatch (1+0.1+0.01) 1 2 8 65 0.29ms

MQ4 12897:1 4:2 ADMatch 2.1MB (2.1+0+0) 12897 n/a n/a ∼ 6K 0.465ms
(12897) CMatch (1+1+0.1) 1 4 ∼17K ∼172K 13.33ms

ADMatch 3.2MB (3.2+0+0) 12897 n/a n/a ∼ 6K 0.465ms
CMatch (1+2+0.2) 1 4 8 722 0.056ms

• High Clustering Power: CMatch is expected to perform better
MQ5 463:224 5821:5280 ADMatch 1.011MB (1.011+0+0) 463 n/a n/a ∼30K 64.8ms

(2.07) CMatch (1+0.01+0.001) 224 2 ∼1K ∼1K 2.16ms
ADMatch 1.11MB (1.11+0+0) 463 n/a n/a ∼ 30K 64.8ms
CMatch (1+0.1+0.01) 224 2 8 115 0.25ms

MQ6 12897:1 5821:5280 ADMatch 1.11MB (1.11+0+0) 12897 n/a n/a ∼900K 69.78ms
(12897) CMatch (1+0.1+0.01) 1 5790 ∼82K ∼506K 39.23ms

ADMatch 2.1MB (2.1+0+0) 12897 n/a n/a ∼900K 69.78ms
CMatch (1+ 1+ 0.1) 1 5790 ∼17K ∼190K 14.73ms

Table 1. MQ1-MQ6 are the various matching queries used for comparing CMatch
and AD-only match. CMatch can exploit available memory significantly better than
AD-only index match, especially when the clustering powers are high.

In these experiments, we report results based on ViST-style SES-labels [26] and
traditional Dietz style AD-labels [27]. As the local as well as streaming data, we
used fragments of the DBLP XML data from [31].

Buffers are allocated (and varied) in such a way that AD-based matching
and CMatch operators get to use the same amount of memory:

buf AD Btree
︸ ︷︷ ︸

AD only index match

=

1MB
︷ ︸︸ ︷

buf SES Btree+mem Hash Table +

0.1×mem Hash Tables
︷ ︸︸ ︷

buf overflow index
︸ ︷︷ ︸

CMatch

Since the index structures for SES-labels tend to be smaller than the index-
structures for AD-labels, to evaluate the worst case behavior for the CMatch
operator, we significantly constrain the available buffer (1-3MB per CMatch op-
erator). This also reflects the situation observed in practice, where there are
multiple filter-and-match operations to be processed in FMware middleware
and where the available buffer has to be shared among CMatch operations.

Finally, in the setup we used, the cost of each page miss was around 10ms
and the access and processing cost for hits in the buffers was around 0.01ms.



4.2 Experiment Results

Table 1 compares CMatch against AD-only matching for queries with different
characteristics, including degrees of clustering of the involved tags and degree of
expected candidates that need to be cleaned. Table 1 also presents results under
constrained and non-constrained buffer availabilities for each query.

(MQ1) In this case, the input nodes in the filtered message stream have no
clustering power. Since SES-based clustering is not applicable, as expected, AD-
only match is relatively faster (though both alternatives are costly and realtime
filtering and matching may not be applicable).

(MQ2,MQ3,MQ4) In these cases, the input stream of filtered nodes have some
clustering power. On the other hand, for all three cases, the number of matching
nodes in the local databases (and thus the candidates returned by the index
accesses) are low.

In all three cases, the costs of the CMatch operator depends on whether the
hash table is large enough for the required cleaning operation: If the hash table
used during the cleaning phase is large enough to balance the expected number of
hash misses with the savings from the access to the large B-tree index structures,
then even a very low 1.1 clustering power can lead to savings. Note that in
all three cases, the amount of hash-space allocated was less than the amount
of buffer allocated for the AD-based index structures; in other words, when
the clustering power is non-negligible CMatch uses the available memory more
effectively than AD-only matching. Furthermore, the degree of saving increases
predictably with the clustering power of the filtered nodes.

(MQ5) In this case, the clustering power of the nodes in the input stream is
non-negligible (∼2) and the number of relevant nodes in the local index structure
is relatively high. However, the number of candidates returned by SES scan for
cleaning is relatively low.

The clustering power (∼2) of the input stream ensures that the number of
index scans for CMatch is only half of those of AD-only match. Thus leads to
significant savings even with a relatively small hash table.

(MQ6) In this case, the clustering power of the nodes in the input stream,
the relevant number of nodes in the local database, as well as the number of
matching candidates that are returned by the SES-scan are all high.

Due to its clustering power, CMatch provides significant savings, even when it
has to rely on disk-resident trees in the cleaning phase. Note that since the index
structures (used for efficient access to the overflow buckets) are significantly
smaller than the B-trees used for AD-only matches, CMatch is able to provide
better results even when the number of overflow-index access is significantly
larger than the number of AD-index accesses.

Summary and Discussions: The experiment results show that

– cluster-domain processing helps the performance of FMware by significantly
reducing the total number of disk accesses to the local index structure; and



– CMatch exploits available memory very effectively. In the experiments, in-
creasing the buffer available for the AD index did not help reduce the cost
of AD-only index match, yet when the same amount of increase is provided
to the CMatch, we observed significant reductions in cost.

5 Related Work

In addition to the discussions in the Introduction, here we provide an overview
of the work in adaptive query processing and index supported XML processing.

5.1 Adaptive Query Processing with Relational Data
In the relational domain, continuous query processing with unpredictable data
arrival characteristics has been studied from various angles. Telegraph [32], for
instance, is a dataflow engine which recognizes that cost of the operators, their
selectivities, and the rates at which tuples arrive from the input vary during the
processing of queries. Thus it routes data through operators adaptively, based
on arrival characteristics. Aurora [33, 34] focuses on QoS- and memory-aware
operator scheduling and load shedding for coping with transient spikes in data.

Other works, which focus on adaptive query processing for continuous queries
include [35–37]. Especially in the distributed relational query processing con-
text, it has been long recognized that variations in the data arrival rates ne-
cessitate special join operator implementations. In particular, XJOIN [38] and
HM-Join [39] are two non-blocking join operators suitable for deployment in sys-
tems where data with, high variable arrival rate, from remote sources have to be
joined. The algorithms rely on symmetric non-blocking hash-joins.

5.2 Index- and Multi-Index Support for XML Processing
Structural join schemes sometimes exploit on-the-fly-created index structures
(such as B+ trees or its augmented variations [19, 40, 16], R trees [24, 25]) to
skip unpromising ancestor (descendant) elements. DataGuides [28], IndexFab-
ric [41], T-Index [42], BLAS [43], FB-Index [44], XJoinIndex [45], APEX [46],
and other covering indices [47], on the other hand, use pre-computed indexes.
A DataGuide [28] is a structural summary of the database, and provides an ef-
ficient mechanism to enumerate matching nodes when a tag path starting from
the root is given as input. T-Index is also tailored to identify nodes matching a
given path template, but paths are not limited to those starting from the root.
IndexFabric indexes trees in a hierarchy of Patricia tries, reducing the number
of disk accesses needed to find paths satisfying a path expression[41]. APEX[46]
is similar to DataGuides and T-Indexes, but it only maintains frequent paths.

[20] notes that a combination of XML indexing methods can be useful for
improving stream-based processing of structural queries, since different schemes
are better for different classes of XML twig patterns. Similarly, in (XDG) [28],
node labels are indexed by a term index T-Index, which gives the sequence of all
nodes with the same label in the XDG. A second index, called P-Index, which
is a path index, is used to determine the instances of a certain rooted tag path
and also to identify the addresses of the physical data locations in an efficient
way. ViST [26] also uses two index structures, namely S-Index (for SES-based
labels) and D-Index (for ancestor-descendent labels). BLAS [43] uses a similar
observation to develop a bi-labeling system for reducing the number of joins.



6 Conclusion

XML message filtering systems may need to match results with local data to
identify those relevant for higher-level processing. We presented a FMware mid-
dleware for performing filtering in the presence of locally stored data which need
to be matched against filter results. The CMatch operator, underlying FMware,
obtains its efficiency from the clustering effect of the structure-encoded labels,
which significantly reduces the number of secondary storage accesses required
for accessing the locally stored data. The operator also has a highly efficient,
non-blocking cleaning phase to remove any spurious results that may have been
created due to the imprecise clustering of structure-encoded labels. We exper-
imentally showed that this approach provides significant savings in filter result
validation time by reducing the total number of disk accesses to the local data.
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