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II1 IntrodutionPerformane degradation of a Web Servie an signi�antly impat the responsetimes of front-end appliations that use it. Espeially for Web Servies thatprovide dynami ontent to many users (suh as produt information servies),lateny observed by the users is aused not only by the network transmission,but mainly by server overload at the bak-end appliation. O�oading proessingfrom the bak-end appliations is thus essential in providing Web Servies sal-ability. Therefore, ahing is a key enabling tehnology for salable Web Serviedelivery.A Web Servie ahe must handle request and response messages (typiallyformatted using XML); thus the ahe must proess (e.g., parse XML ontent of)a request message to identify the response message to be returned. Therefore, astandard HTTP ahe annot be diretly employed when ahing Web Servies.Furthermore, in order to ahieve loose oupling of remote servies, Web Serviesusually handle messages with oarser granularities than traditional distributedobjet messaging suh as CORBA. This fat makes it more diÆult to mapdata soure updates to the ahed messages. Cahing messages for data-drivenWeb Servies thus requires middleware support for appropriate propagation ofupdates from the soure to the ahe.It is ommonly understood that an XML data/query model an be imple-mented on a relational model to leverage from the proven and highly-optimizedstorage and query apabilities already provided by existing relational databasesystems [15℄. Thus, one approah to ahing Web Servie ould be to apply ex-isting tehnologies that manage data dependeny between web ontent and datain relational databases, suh as Data Update Propagation (DUP)[3℄, view inval-idation [2℄, invalidation based on query templates [4℄, and many other works onview maintenane. However, these relational approahes will be very ineÆientbeause an XML query an involve too many join operations when translatedinto SQL.In this paper, we propose a middleware arhiteture, WReX, that bridgesthe semanti gaps among Web Servie messages, a relational data model, andan XML data model, for ahing Web Servies. To make the proposed mid-dleware solution appliable to various data soures, the WReX represents thesoure data in the ahes as XML views and provides a delarative way to de-�ne Web Servies to aess the data. The WReX arhiteture (Setions 3 and4) aims at resolving the impedane mismath between the ahed data ontentand the underlying database tehnology by applying reent XML-spei� viewmaintenane tehniques transparently in a relational setting.Consequently, the WReX introdued in this paper onsists of two omplemen-tary omponents: (1) Web Servie Content Desription (WSCD) mehanism �llsthe gap between Web Servie messages and XML views of the soure data and (2)XML view maintenane mapped to relational storage �lls the gap between XMLviews and updates to the soure data. This novel middleware arhiteture hasthe following features that distinguish it from the previous works: (1) It providesdelarative desription of Web Servies based on rih and standards-based view



IIIspei�ation language (XQuery/XPath); (2) No knowledge of the soure XMLshema is assumed, instead the soure an be any general well-formed XML data;(3) The solution an be easily deployed on RDBMS, and (4) The size of the aux-iliary data needed for the ahe maintenane does not depend on the souredata size, therefore, the solution is highly salable. Experimental evaluation isonduted to assess the performane bene�ts of the proposed approah. Exper-imental evaluations presented in Setion 5 establish the performane bene�ts ofthe WReX middleware approah.2 Cahe-enabled Servie Middleware ArhitetureFigure 1 illustrates WReX, a Web Servie middleware arhiteture enhanedwith web servie ahing. WReX onsists of a Web Servie Appliation Server,an XML Data Soure, and an Update Manager, whih are implemented on topof a ommon Web omputing platform (e.g., a J2EE appliation server and arelational database server). WReX lets users desribe and deploy Web Serviesthat deliver ontent generated from their own data soures. Given the desriptionof a Web Servie, the middleware manages request/response message ahes.
WS Application (Data Service)

XML Data Source

WS Application Server

RDBMS

Data

Source

update

aux

Update Manager

Management
Components

Content
Processor

Application

Content Logic:

WSDL+WSCD

Application Data:

Any XML

XPath
Cache

Content
Cache

deploy deploy

WS
Client update

SQL

XPath

query
XML-Relational Mapping

Application

Management

Logic

Fig. 1. WReX: Web Servie Cahing ArhitetureA Web Servie appliation is deployed on top of the WS Appliation Serverand the XML Data Soure as an be seen Figure 1. The appliation has threemajor parts: (1) data (data soure to be published), (2) ontent logi (desrip-tion of message ontent to be generated from the data soure) , and (3) man-agement logi (user authentiation, logging, and metering). The ahe-enabledWeb Servie appliation server onsists of the following omponents: (1) Variousmanagement omponents, (2) a message ontent ahe omponent, (3) a on-tent proessor, and (4) an XPath ahe. Management omponents manipulatemessages (e.g., insert data in the header) genereted by the ontent proessor.



IV Management omponents handle management tasks suh as user aountingand monitoring with approprite transformation of message ontent. Web serviemessages that ontain management information are muh less reusable even ifatual ontent delivered to the user (e.g., produt information) is reusable. Byseparating management funtions as these omponents, WReX lets the otheromponents fous on managing relationships between message ontent and thesoure data and makes ahe more appliable.The ontent logi spei�es how to generate ontent of a message in responseto a request message from a Web Servie lient. A shortoming of the existingtehnologies is that, the Web Servie de�nition language (WSDL) only de�nesinterfaes (suh as data types) of request/response messages, but does not pro-vide ontent relationship between request and response messages [18℄. To bridgethis gap, we introdue a desription platform, Web Servie Content Desription(WSCD), whih provides a template of a response message that an ontain ref-erenes to data in a request message and queries to the soure data. When theappliation server reeives a request message, it generates a response message byintegrating a message template and ontent fragments retrieved from the datasoure. Cahing is applied to both generated response messages (Content Cahe)and retrieved ontent from the soure (XPath Cahe).This approah is similar to JSP (Java Server Pages) or ESI (Edge Side In-ludes). JSP provides a template of dynami web pages and lets the appliationserver onstrut a page from the template and ontent fragments generated byappliations. Several appliation servers provide ahing funtionality for suhontent fragments in order to redue appliation overload. ESI is a markuplanguage used to de�ne web ontent omponents for dynami assembly anddelivery of web pages at edge servers. The edge server dynamially integratesfragments into a web page and needs to retrieve only non-aheable or expiredfragments from the original servers. Datta et al. [5℄ has extended this approahto enable more exible ontent omposition on the edge server resulting in en-haned aheability and reusability of ontent. In this sense, our approah an beseen as an extension of the JSP/ESI onept from HTML to XML ontext withXML ahe update management. Another related example is the Weave manage-ment system [19℄ that enables the user to reate Web ontent using delarativespei�ation and ahes various intermediary data suh as views of relationaldata, XML page fragments, and HTML pages. Although it supports XML on-tent generation from relational databases, update maintenane between ahedXML ontent and data soure is based on time stamps and spei�ed with event-ondition-ation rules.To enable ahing of XPath queries to the data soure as well as the messageresponses from the Web Servie itself, the Update Manager needs to monitorupdates in the data soure and identify hanges in the ahed results. Here, notethat an XML-aware data soure is ommonly implemented on an XML-awareRDBMS, whih an leverage from the maturity of RDBMS implementations,extensive tuning, proven salability, sophistiated query proessing and queryoptimizers. However, even though the underlying DBMS is relational, tradi-



Vtional view/ahe management solutions for relational data an not be diretlyapplied to an XML data/query model. For example, CahePortal [2℄ automatesahe update management based on a view invalidation tehnique in a relationalmodel. However, when a query involves many join operations, whih is the ase ofXML queries in a relational model, it is very ineÆient due to osts from an ex-tra database snapshot and over invalidation. Therefore, we introdue an updatemanagement middleware omponent whih bene�ts from the relational natureof the bak-end database, while deploying XML-spei� view management teh-niques (i.e., the Update Manager that aesses the data soure through SQLqueries (Figure 1)).2.1 Web Servie Content Desription (WSCD)Given a servie request, the Web Servie generates response messages basedon the servie logi. The interfae between the request and response is usuallyde�ned using WSDL (Web Servie De�nition Language). WSDL, on the otherhand, does not desribe ontent relationships between request and response mes-sages, whih are needed for managing updates. We propose Web Servie ContentDesription (WSCD) language that desribes how a response message is gener-ated for a given operation spei�ed in WSDL. Formally, the WSCD for a servieoperation o onsists of three parts: (V; T; S), where V is the variable assignmentde�nition, T is the template de�nition, and S is the soure referenes.{ The variable assignment de�nition V de�nes how to extrat data from arequest message. Mapping from a request message to variables is given bypairs of name and XPaths: V = f(namei; xpathi)g. Given a request message,whih an be seen as an XML doument, V generates a spei� variable as-signment v = fnamei = valueig. In addition to the generation of a responsemessage, v is used as the identity of the message ahe: the identity onsistsof an operation name and a variable assignment (o; v).{ The template T de�nes the ontent of a response message with referenes tothe variables V . The template an ontain XQuery expressions to dynami-ally insert data derived from the data soure.{ The soure referene S maps URIs of data soure servie endpoints to do-ument URIs referred to by XQuery expressions in T .Figure 2 shows an example of aWSCD desription. Elements <d:Variables>,<d:Template>, <d:ServieEPR> orrespond to (V; T; S), respetively.A variable is de�ned with a part of the request message (i.e. input) of aWSDL operation and an XPath expression that indiates data within the part.Combined with WSDL binding information, it is translated to a full XPathexpression applied to a request message, for example:\/Envelope/Body/GetBookRequest/Category/text()"in ase of the SOAP literal binding. A template spei�es an XML ontent of apart of the response message (i.e., output) of a WSDL operation. It an ontain



VI<d:WSCD xmlns:d=... operation="GetBook"><d:Variables><d:Let name="ategory" part="body"path="/GetBookRequest/Category/text()"/><d:Let name="maxprie" part="body"path="/GetBookRequest/Max/text()"/><d:Let name="minprie" part="body"path="/GetBookRequest/Min/text()"/></d:Variables><d:Template part="body"><GetBookResponse><d:Query>FOR ... LET... WHERE... RETURN...</d:Query></GetBookResponse></d:Template><d:ServieEPR .../></d:WSCD> Fig. 2. Example of Web Servie Content Desriptionan XQuery spei�ed in <d:Query>. The query may refer to variables de�ned inthe variables part.Note that WSCD is meant to provide a simple spei�ation of message on-tent in a request-response Web Servie operation. If the user wants a full setof programming funtionality to reate Web Servie (suh as event handling), aspeial programming language for Web Servies, suh as XL [8℄, ould be usedinstead of WSCD. In fat, sine XL uses XQuery expressions to aess data,a possible extension of WReX is to support the XL language, in addition toWSCD, for servies with ompliated interations.Our WSCD approah is also related to \delarative web servies" [1℄, usedfor omposing dynami XML douments by importing fragments. For optimizeddata management, a delarative web servie that provides fragments is de�nedas an XQuery on data soures. Although they fous on data repliation issues ina distributed environment, they also state possibility of querying ost redutionthrough an update propagation mehanism, on whih we fous in this paper.2.2 Cahe Management using WSCDTheWSCD desription of Web Servie messages provides a framework to manageWeb Servie ahing. First, the system needs to identify the mathing inomingrequests and ahed response messages. This task is done by extrating valuesfrom an inoming message with XPath expressions in the variable de�nition Vsine the ahe identity is given as a variable assignment (o; v). EÆient �ltering[7℄ an be applied to proess multiple XPath mathing results in a salablemanner. Then we fous on the seond task: to manage update dependeniesbetween ahed messages and the data at the soure.



VIIAs desribed above, the WSCD template ontains a set of XQuery expressionsXQ = fxqig to insert dynami data from the soure into response messages.Sine an XQuery expression xq ontains referenes to the variables V and thesoure S, what the system needs to manage is an XQuery instane (xq; v; S):when the result of an XQuery instane is updated, the message ahe items thatontain this result must be updated or invalidated.An XQuery statement aesses douments (i.e., the soure data) throughXPath expressions. Thus, a set of XPath expressions XP = fxpig is extratedfrom XQueries XQ and is given to the XPath ahe omponent, whih ahesan XPath instane: (xp; v; S). The XPath Cahe reeives an XPath query fromXQuery Proessor and returns the query result from the ahe. If it is not ahed,the XPath Cahe issues an XPath query to the data soure. The data sourereturns the query result and makes available auxiliary data required to maintainXPath ahe (Setion 3).When the Update Manager observes updates in the data soure, it determinesthe impat of the soure update to ahed XPath results. During this proess, theUpdate Manager uses the auxiliary data and update data to identify the aheupdates. It may also aess the soure data if needed. Then it maintains ahedresults in the XPath Cahe a�eted by the update. Consequently, message aheitems that refer to the a�eted XPath instanes are also either invalidated ormaintained. In order to e�etively manage update dependeny between messageahe and the data soure, the WReX uses our XML-spei� view maintenanetehniques desribed next.3 XPath Cahe MaintenaneIn this setion we desribe the data model and the inremental XPath mainte-nane tehnique WReX relies on. Further details of both are presented in [13℄.3.1 Data ModelAs desribed earlier, the underlying logial model of the data soure is XML.Eah XML data soure is represented as an ordered tree in whih every node nis a pair hn:id; n:labeli where n:id is a node identi�er that uniquely identi�es thenode and n:label is a string that desribes the node type and/or value. We useupper-ase letters to represent the node labels. For example, A, B, and C arenode labels. We use numeri subsripts to distinguish di�erent nodes that havethe same label. Thus, Ai and Aj refer to two distint nodes with the same labelA. Figure 3 shows an example doument tree and path expression that will beused as a running example to illustrate the inremental maintenane tehnique.3.2 Update ModelA soure update is a transformation of the soure XML doument. Any souretransformation an be expressed in terms of the two primitive operations of
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(a) XML Data=A==B[Count(==E) � 1 _Count(=D) � 1℄==C[Count(==E) = 0℄==D(b) XPath QueryFig. 3. (a) An Example XML Tree and (b) a path-expression Eaddition and deletion of leaf nodes. Thus, for simpliity, in this setion, wefous on the maintenane operations needed to handle these two types of soureupdates. Formally, we model a soure update U as a pair hU :type;U :pathi whereU :type is the type of the update: Add (add a leaf node) or Delete (delete aleaf node). U :path is the path of all the anestors of the added or deleted nodestarting with the doument root and ending with the added or deleted nodeitself. The added or deleted node itself is referred to as U :node. For example,U = hAdd; (R;X1; A1; B1; Z)i represents the addition of node Z as a hild nodeof node B1 in the XML doument shown in Figure 3(a).3.3 Query ModelPath expressions are the basi building bloks of XML queries and therefore arefundamental to implementing Web Servies in our framework. The ahe ontentis the result of applying path expression-based queries to the soure doument.A path expression E of size N is a sequene of N steps: (s1; s2; � � � sN ). A stepsi is a triple hsi:axis; si:label; si:predi where (i) si:axis is an axis test (hild '/'or desendent '//'); (ii) si:label is a label test; and (iii) si:pred is an optionalprediate test whih an be any omplex ondition examining the labels andthe struture of the nodes in the subtree of the node being tested. Predi(n) issaid to be true if and only if (1) Node n belongs to the soure tree, and (2)si:pred evaluates to true at node n or step si does not have a prediate test. Forexample, Pred3(C1) in the example is true beause C1 satis�es the onditions3:pred sine C1 has no desendants labeled E.



IXGiven an expression E , a doument tree D, and a sequene of ontext nodesC (the set of staring nodes from D), a query, Q = q(E ; C;D) returns a sequeneof nodes R as a result. For example, onsider the query Q = q(E ; C;D) where:D is the doument tree shown in Figure 3(a), C = (X1; X2; X3) are the shadednodes the same �gure, and E is the path expression spei�ed in Figure 3(b).Given this query,1. the �rst step s1 (=A) starts at every node in C and selets all the hildrenwith label A; this results in the �rst intermediate result R1 = (A1; A2; A3).2. s2 (==B[Count(==E) � 1_Count(=D) � 1℄) starts at every node in R1 andselets all the desendants with label B that have at least one desendantlabeled E or at least one hild labeled D; this results in the seond inter-mediate result R2 = (B2; B3; B4; B4; B5; B5). Note that B4 - and also B5 -ours twie in R2 beause it an be derived in two ways from nodes of R1,one from A2 and another one from A3.3. starting at R2, step s3 (=C[Count(==E) = 0℄) selets all the desendants la-beled C that have no desendants labeled E; this results inR3 = (C3; C4; C5; C5; C5).4. �nally, s4 (==D) starts at R3 and selets all the desendants labeled D.Hene, the �nal result of Q is R = R4 = (D3; D3; D4; D4; D4).We di�erentiate between the multiple ourrenes of the same node in a resultby using a numeri supersript. For example, we denote the result R as R =(D13 ; D23; D14; D24; D34).For a node n 2 R, the sub-sequene of the anestors of a node n that mathedthe steps of E , and thus aused n to appear in R is referred to as the resultpath of n and denoted as ResultPath(n). ResultPathi(n), where i � 0, is theith element in ResultPath(n). In the example query above, ResultPath(D13) =(X1; A1; B2; C3; D3) and ResultPath(D13)2 = (X1; A1; B2; C3; D3) is B2.3.4 Inremental Maintenane of Path Expression ResultsA soure update U an a�et the ahed result R by adding or deleting nodesto any of the intermediate results Ri. The primary reason of suh additions anddeletions is hanging the truth values of the expression prediates at the stepsof the expression:If an update hanges a prediate Predi(n) from false(true) to true(false),we say that the update diretly adds (deletes) node n at step i.A diret addition (deletion) at step i an indue other indiret additions (dele-tions) in steps j > i. The �nal result R is a�eted if and only if the e�et propa-gates all the way to step N . For example, if U = (Add; (R;X1; A1; B1; E5)), thenPred2(B1) hanges from false to true. The diret e�et of this is to add B1 toR2. The resulting indiret e�ets are the addition of C1 and C2 to R3 and thenthe addition of D1 and D2 to R4. For eah step, the inremental maintenaneproess �rst disovers all the diret e�ets and then uses these e�ets to disoverthe indiret ones.



XDisovering the Diret E�ets of the Updates. We identify the direte�ets of the updates in two phases: Axis&Label test and the prediatetest.Phase I - Axis&label test: Let us de�ne Æ+i and Æ�i as the sequenes of all nodesthat U diretly adds/deletes at Ri respetively. Let also Æi = Æ+i t Æ�i . The jobof this phase is to identify a sequene �i suh that we an guarantee, withoutany soure queries, that Æi � �i.In [13℄, we showed that every node n in Æi must also belong to U :path.Moreover, for a node n to be diretly added to be in Æi, it must have an anestorin every Rj , j < i. Sine n itself belongs to U :path, then all its anestors alsobelong to U :path. This suggests that U :path has muh of the information neededto identify the nodes of Æi. In fat, applying the axes and labels tests to U :path,ignoring the prediate tests, provides a sequene �i whih is guaranteed tobe a supersequene of Æi. This is beause this proess uses a relaxed seletionondition (it ignores the prediate tests, whih evaluation requires querying thesoure) over the branh U :path whih is guaranteed to inlude all the nodes ofall the Æi's. Computing the �i's from U :path proeeds very similar to omputingthe Ri's from the soure tree D. For example, onsider an update U of addinga node D6 as a hild of D4. In this ase, U :path is the tree branh that startswith the root R and ends with D6. Computing the di�erent �i's as desribedabove results in: �0 = (X2; X3), �1 = (A2; A3), �2 = (B3; B4; ; B4; B5; B5),�3 = (C5; C5; C5), �4 = (D4; D4; D4; D6; D6; D6). Note that the only nodesthat will be diretly added are the three ourrenes of D6 that appear in �4;all the other nodes n in all the omputed �i's will not be added or deletedbeause U did not a�et Predi(n). Note that, beause D6 did not exist beforeU ourred, the value Predi(D6), 8i is false before U . Similarly, if an updatedeletes a node n from the soure tree, the value Predi(n), 8i is false after U .Phase II - Prediate test: This phase identi�es the exat sequene Æi by deter-mining whih nodes in �i had their prediate values hanged due to the update.To detet suh hanges we need to ompare, for every node in Æi, the valuesof Predi(n) before and after U ourred. Let us denote the value of the prediatebefore the update ourred as Predbeforei (n) and the value after the update asPredafteri (n). The value of Predafteri (n) an be easily alulated by querying thesoure. The value of Predbeforei (n), on the other hand, annot be omputed by asoure query beause the update U has already been inorporated at the soure.One again, in [13℄, we showed that we an dedue the value of Predbeforei (n)using the information of the result paths. Spei�ally, we showed that if we de�neRPi(n) to be true if and only if n is the ith element of the result path of somenode in R, then we an take Predbeforei (n) = RPi(n). Therefore, we keep theresult paths' information as auxiliary data with the ahed result R. With that,we ompute Predbeforei (n) without issuing any soure queries. To ompute thesize of this auxiliary data, reall that eah result path is of length N + 1; if Mis the size of the ahed result R, then the size of the auxiliary data is learly



XIInremental Maintenane (Expression E, Update U)1- �0 = C \ U:pathR+ = R� =() //Empty sequenesi = 1 // loop variable2- WHILE (i � N AND �i�1 is not empty)2-1 j = iWHILE (sj has no prediate test AND j < N) j++2-2 �j = q((si; si+1; � � � ; sj):axis&label; �i�1;U:path)2-3 Let Tj = (njn 2 �j ^ Predafterj (n) = true)2-4 Æ+j = (njn 2 Tj ^RPj(n) = false)2-5 R+ = R+ t q((sj+1 ; sj+2; � � � ; jN ); Æ+j ;D)2-6 R� = R� t (njn 2 R ^ResultPathj (n) 2 (�j � Tj))2-7 �j = Tj � Æ+j2-8 i = j + 13- R = RtR+R = R�R�Fig. 4. Inremental View Maintenane Algorithm for XML Path ExpressionsO(M �N). Thus the auxiliary data size is bounded by the expression size andthe result size and it does not depend on the soure data size.Disovering the Indiret E�ets of the Updates To disover the indirete�ets from the diret ones, we need to handle two ases:1. Indiret additions due to diret additions: when a node n is diretly addedto Ri then, in order to retrieve the indiret additions at R, the maintenanealgorithm issues a soure query with ontext as n and with the steps sequene(si+1; si+2; � � � ; sN ). This query is denoted as q((si+1; si+2; � � � ; sN ); (n);D).2. Indiret deletions due to diret deletions: when a node n is diretly deletedfrom Ri, then all the nodes r 2 R that ame to R due to n belonging toRi must also be deleted from R. These are the nodes r 2 R whih haveResultPathi(r) = n. Thus, using the auxiliary data desribed above, we andisover the indiret deletions without issuing any soure queries.The Full Algorithm. Figure 4, shows an algorithm based on the ideas pre-sented above. Step 1 initializes some algorithm variables. R+ and R� are thesequenes of nodes to be added and deleted, respetively, in R. The loop in step2 omputes the di�erent �0s. Step 2-1 assigns the value of j suh that the rangei : j spans all the expression steps starting at i that do not have prediate tests.For this range, no prediate tests are needed beause all the prediates are knownto be true, by de�nition, before and after U . Thus, there are no diret e�etsin this range. Therefore, the algorithm ombines all the axis&label tests of thisrange in one step, namely, step 2-2. Step 2-3 identi�es Tj as the sequene of thenodes of �j that have Predafterj (n) = true. Step 2-4 then disovers the diretadditions at Rj . These diret additions are then used by step 2-5 to disoverthe indiret e�ets on R. Step 2-6 disovers all the ultimate deletions at R, it



XIIimpliitly disovers the diret deletions and uses them to disover the indiretones. Step 2-7 exludes from �j the nodes that will not have e�ets on lateriterations, this is formally proved in [13℄. Step 2-8 inrements the loop variableto start after j in the next step. Finally, step 3 updates R using R+ and R�.Note that the algorithm does not di�erentiate between soure addition anddeletion updates, the only ase that needs to make suh distintion is whenU :node itself belong to �N , this ase is impliitly taken are of in the omputa-tion of Predi(n) before and after UIn addition to the result R, the auxiliary data also need to be maintained.This is not shown here for simpliity.In the following setion, we show how this algorithm is implemented whenthe soure XML doument is stored in an RDBMS and hene, queried by SQLqueries.4 Implementation over RDBMSAlthough there have been several e�orts to build native XML database sys-tems [10, 11℄, a ommon onsensus is to use RDBMS tehnology to leveragefrom the proven and highly-optimized storage and query apabilities alreadyprovided by existing relational database systems [15℄.Therefore, in this setion, we show how the inremental XPath maintenanealgorithm desribed in Setion 3 an be implemented when RDBMS tehnologyis used for the storage of the XML soure data, the auxiliary data, and theahed results. This requires an update management middleware whih bridgesthe gap between the XML logial data model at one side, and the relationaldatabase implementation at the other side.First, we will desribe the XML-to-RDBMS and XPath-to-SQL mappingshemes the middleware uses (Setion 4.1). Then we will desribe how to employthis relational framework for inremental view maintenane of XPath queries tosupport eÆient Web Servie ahing (Setion 4.2).4.1 Storing and Querying XML over RDBMSXML Data to Relational Data Mapping Given the mismath between theXML data model (whih has a nested struture) and the relational data model(whih is at), several tehniques have been proposed for storing and query-ing XML douments using relational database systems [6, 9, 16, 15℄. These ap-proahes typially work as follows. The �rst step is relational shema generation,where relational tables are reated for the purpose of storing XML douments.The next step is XML doument shredding, where XML douments are storedby shredding them into rows of the tables that were reated in the �rst step. The�nal step is XML query proessing (XPath queries in our ase), where XPathqueries over the stored XML douments are onverted into SQL queries over thereated tables.



XIIIid label type value parent1 Manusripts element NULL 01.1 Category attribute Fition 11.3 Book element NULL 11.3.1 ISBN attribute 1-555860-438-3 1.31.3.3 Title element NULL 1.31.3.3.1 NULL value A Story 1.3.31.3.5 Author element NULL 1.31.3.5.1 Country attribute USA 1.3.51.3.5.3 NULL value John Doe 1.3.51.5 Monograph element NULL 11.5.1 ISBN attribute 1-888570-843-5 1.51.5.3 Title element NULL 1.51.5.3.1 NULL value Another Story 1.5.31.5.5 Author element NULL 1.51.5.5.1 Country attribute Canada 1.5.51.5.5.3 NULL value Tom Alter 1.5.5Fig. 5. SrTBL: The XML Doument TableOne simple approah of shredding is to store eah node in the XML tree as atuple in a relational table, whih maintains all the neessary information, suh asthe node label, and node type. Node identi�ers are used to apture and representthe struture of the XML soure in the relational database. In order to eÆientlymaintain path-expression views over XML douments, two essential propertiesmust be provided by node identi�ers: First, element(s) updated in the soureXML doument should be easily identi�ed. Seondly, strutural (parent, hild,desendent, sibling) relationships among the elements of the XML doumentshould be easily determined using the node identi�ers. These are ritial foreÆient query proessing and also in failitating e�etive view maintenane inthe presene of updates.Several approahes are proposed to assign node identi�ers to the nodes inXML doument. We apply one suh approah alled, the ORDPATH [12℄ sheme(also used in the upoming version of Mirosoft SQL Server). ORDPATH iden-ti�ers an be assigned to the nodes of an XML tree without requiring a shema.ORDPATHs are oneptually similar to the Dewey Order introdued in [17℄.The resulting identi�ers have the property that anestor relationships betweenthe nodes is aptured by the pre�x relationship between the orresponding nodeidenti�ers: anestor(ni; nj)$ prefix(ni:nid; nj :nid):Consider the following sample XML doument:<Manusripts Category="Fition"><Book ISBN="1-555860-438-3"><Title>A Story</Title><Author Country="USA">John Doe</Author></Book><Monograph ISBN="1-888570-843-5"><Title>Another Story</Title><Author Country="Canada">Tom Alter</Author></Monograph></Manusripts>Figure 5 shows the table SrTBL in whih an XML doument is stored in anRDBMS



XIV{ id: The ORDPATH identi�er originally proposed is implemented as a bitstring, and an RDBMS is supposed to implement primitive funtions forstrutural relationships and query plans optimized for ORDPATHs. In ourprototype, we have implemented an ORDPATH id as a harater string, asshown in Figure 5, for experimental purpose without implementing primitivefuntions in RDBMSs. The primitive anestor(ni:id; nj :id) is implementedas a string pre�x mathing: \ni:id LIKE nj :id || '%'". Note that the nodeid olumn aptures the order of the XML doument, thus this XML ordersemantis are not lost when the doument is stored in an unordered relationalsystem.{ parent: To identify a parent-hild relationship e�etively in our experimentalprototype, we additionally store the parent node id in the table. The primi-tive parent(ni:id; nj :id) is in fat implemented as \ni.id = nj.parent".{ label, type, value: A node type is spei�ed in type , whih is either anelement, attribute, or value. An element node has its tag name in label.An attribute node has its name and value in label and value respetively.A value node has its value in value. Although our view maintenane algo-rithm is presented on a simpli�ed doument model (i.e., hn:id; n:labeli), itan be easily mapped in this node model.With this table shema in plae, XPath queries an be proessed by translatingthem into SQL queries against a table of this shema, as illustrated next.4.2 XML Doument Update ManagementFor eah ahed XPath expression, the system stores the following data requiredfor inremental maintenane (Setion 3): (1) CntxtTBL: a table of the nodesthat omprise the query ontext, (2) Query Statement: an SQL representation ofthe original XPath expression, (3) Individual query step: an SQL representationof eah step in the inremental maintenane algorithm, and (4) AuxTBL: theauxiliary data (i.e. the result paths), whose shema is AuxTBL(id0, id1, id2, � � �,idN) (where N is the number of steps in the ahed expression, eah row in thistable stores a result path of the result, and the nodes in the last olumn idNomprise R).In the maintenane proess, the whole auxiliary data (i.e., AuxTBL) needs tobe maintained, not only the �nal result R whih is stored in the last olumn ofthat table. We have implemented that simply by projeting more olumns in theSELECT lauses of the following SQL statements. With that, the rows resultingfrom these SQL statements represent partial path expressions. Therefore, we usejoin operations to onatenate these partial result paths to form full result pathsto maintain AuxTBL. For simpliity, we do not show the onatenation querieshere.In addition to these tables, we maintain an update table (UpdtTBL) thatstores the soure update being proessed. As mentioned before, eah update Uis represented by U :path whih is a branh of the soure tree. Thus, we use thesame shema as for the SrTBL.



XVThe View Maintenane Proess We illustrate the view maintenane proesswith the folowing expression as an example:=site=person[LIKE(�id; "person%")℄=nameTo onstrut the SQL query representing this expression, the hierarhial rela-tionships between the nodes an be represented by either nested SQL queriesor as self-join operations on the soure table, SrTBL, shown in Figure 5. Weadopted the seond option in our solution beause it allows the query optimizerto generate more eÆient query plans. Thus, the expression is transformed intothe following SQL query by the middleware:SELECT A.id, B.id, C.id, E.idFROM CntxTBL A, SrTBL B, SrTBL C, SrTBL D, SrTBL EWHERE parent(B.id)=A.id AND parent(C.id)=B.id AND parent(D.id)=C.idAND parent(E.id)=C.idAND B.type = 'element' AND A.label = 'site'AND C.type = 'element' AND B.label = 'person'AND D.type = 'attribute' AND D.label = 'id' AND LIKE(D.value,'person%')AND E.type = 'element' AND E.label = 'name'In this query, the �nal result is the set of nodes in the last projetion E.id,the other projetions A.id, B.id and C.id represent the result path informationwhih is used as auxiliary data for the maintenane proess.The algorithm in Figure 4 starts by initializing�0 in step 1 by an intersetionoperation:CREATE TABLE �0(id0) AS(SELECT id FROM CntxtTBL INTERSECTION SELECT id FROM UpdtTBL)Then, in the �rst iteration of the loop, step 2-1 assigns to j the value 2beause s1 has no prediate test. Then, step 2-2 omputes �2 by the followingSQL statement:CREATE TABLE �2(id0, id1, id2) ASSELECT A.id, B.id C.id FROM �0 A, UpdtTBL B, UpdtTBL CWHERE parent(B.id)=A.id AND parent(C.id)=B.idAND B.type = 'element' AND B.label = 'site'AND C.type = 'element' AND C.label = 'person'The projetion of A.id and B.id here are to get partial result paths.In step 2-3, T2 is omputed by:CREATE TABLE T2 AS SELECT A.id FROM �2 A, SrTBL BWHERE parent(B.id)=A.idAND B.type = 'attribute' AND C.label = 'id'AND LIKE(B.value,'person%')Then step 2-4 omputes the diret additions at R2 as follows:CREATE TABLE Æ+2 ASSELECT T.id FROM T2 TWHERE NOT EXISTS (SELECT * FROM AuxTBL WHERE id2 = T.id)



XVIStep 2-5 then uses Æ+2 to disover the ultimate additions at R, the SQL queryused to disover these additions is:SELECT A.id, B.id FROM Æ+2 A, SrTBL BWHERE parent(B.id)=A.idAND B.type = 'element' AND B.label = 'name'(A.id, B.id) in this query result is a partial result path starting at R2 untilR3.Then step 2-6 omputes the ultimate deletions at R as follows:SELECT DISTINCT A.id3 FROM AuxTBL AWHERE A.id2 INSELECT id2 FROM �2 DIFFERENCE SELECT id FROM T2step 2-7 simply redues �2 by a DIFFERENCE operator.In the seond (also, last) iteration of the loop, we have i = j = 3. In step2-2, �3 is omputed from the redued �2. Sine this iteration is proessingthe last expression step, then if U :node belongs to �3 then the omputationof Pred3(U :node) takes into aount U :type. This is omputed as follows: IfU :type = Add, then Predbefore3 (U :node) = false beause U :node did not existin the soure before U :node. If U :type = Del, then Predafter3 (U :node) = falsebeause U :node does not exist in the soure after U :node. These two ases areimpliitly taken are of in the algorithm without testing U :type in the ompu-tation of Pred3(U :node) before and after U . Finally, all the ultimate additionsand deletions in AuxTBL are determined by joining the partial result pathsdisovered by the SQL queries shown above.5 Experimental EvaluationIn this setion, we experimentally show that the proposed sheme provides a largeperformane impat, while inurring a small storage and proessing overhead.For this purpose, we used the XMARK benhmark [14℄ to generate a data setof 325,236 nodes. Experiments are done using an Orale 9i database on a PCwith Linux 8.0, Pentium 4 1800 MHz CPU with 1 GB memory. We evaluatedthe ahing performane by using the following XPath queries:{ XP1: /site/people/person[like(�id,"person%")℄/name/text(){ XP2: /site/losed autions/losed aution[prie>40℄/prie/text(){ XP3: /site//item[ontains(desription,"gold")/name/text(){ XP4: /site/losed autions/losed aution/annotation/desription/parlist/listitem/parlist/listitem/text/emph/ketword/text()Overhead of Auxiliary Data Table 1 shows the overhead of auxiliary data(i.e., AuxTBL) in terms of storage requirements and exeution time. In additionto ahed XPath results (denoted as olumns R-VAL and R-ID), the system



XVIIR-VAL R-ID AUX SOV FQ FQA EOV(byte) (byte) (byte) (mse) (mse)XP1 36538 30103 85199 1.28 532 551 1.04XP2 2366 8312 24267 2.27 802 876 1.09XP3 3080 2327 6096 1.13 3933 4019 1.02XP4 964 752 5525 3.22 3520 3556 1.01Table 1. Overhead in Auxiliary Data Maintenane: R-VAL: Result Set Value Stor-age, R-ID: Result Set Node ID Storage, AUX: Auxililary Data Storage, SOV: StorageOverhead (=AUX/(R-VAL+R-ID)), FQ: Full Soure Query Exeution Time, FQA:Full Soure Query with Aux. Data Exeution Time, EOV: Exeution Time Overhead(=FQA/FQ).needs to store result paths as auxiliary data(AUX). As an be seen in the AUXolumn, the storage overhead does not depend on the data size, but dependson the number of steps in the XPath query and the ahed data size. Then,to observe the query proessing in WReX, we ompared the original full queryexeution time with the exeution time of the modi�ed query that also retrievesresult paths to be used as auxiliary data. As shown in the Table 1, the overheadis less than 10% in eah ase.Performane Impat of Cahe-enabled Middleware To observe the ben-e�t of WReX in reduing the exeution time observed by the users, we haveompared the exeution time requirements for inremental ahe update andfull reomputation on the following ahed queries:{ XP5: /site/people/person[like(�id,"person2%")℄/name/text(){ XP6: /site/people[person[like(�id,"person1%")℄℄/person[like(�id,"person2%")℄/name/text()For eah query, 100 soure updates were randomly generated. The results ofthe time omparison for all the updates are shown in Figures 6(a) and 6(b). Inshort, full queries take 10 to 20 times longer to exeute on average. The �gureslearly establish the advantage of the proposed inremental view maintenanemiddleware.Finally, onsider Figure 7, whih shows the ahing impat analysis for queryXP4, whih has 13 steps, but no prediate. Sine there are no prediates in XP4,no queries to the soure need to be issued for prediate heking. Therefore, thetime needed for inremental maintenane is rather onstant, whereas the needfor aessing soures for prediate tests had introdued a higher variability to theinremental maintenane time for queries XP5 and XP6 in Figures 6(a) and 6(b).Nevertheless, sine prediate evaluation is only a part of the overall proessingneeded for reevaluation of queries XP5 and XP6, inremental maintenane wasonsistently heaper even when soures are aessed for prediate heking.
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Process Cycle Time Comparison

(Five steps, one predicate, 325236 nodes in source document, 662 nodes in answer document)
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Process Cycle Time Comparison

(Five steps, two predicates, 325236 node in source document, 662 nodes in answer documentroc
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Process Cycle Time Comparison

(13 steps, no predicate, 325236 nodes source document, 25 nodes in answer document) 
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Fig. 7. Inremental View Maintenane versus Full Re-Computation (Query XP4)6 ConlusionIn this paper, we have proposed WReX, a Web Servie middleware arhite-ture that enables ahe management by bridging the gap between Web Serviemessage ahing and updates in the soure data. Our solution onsists of twoomponents: (1) Web Servie Content Desription (WSCD) that �lls the gapbetween Web Servie messages and XML views of the soure data; and (2) XML-spei� view maintenane that �lls the gap between XML views and updates inthe soure data. Cahe-enabled Web Servies are easily desribed and deployedon a ommon platform with proven RDBMS tehnology. Through experimentalevaluation, we have demonstrated the performane bene�ts of our inrementalview maintenane. Future work inludes more e�etive maintenane of multipleXPath views and multiple updates, extension of our approah to other XML-to-RDBMS mapping shemes (suh as shema-aware mappings), and more detailedstudies on the entire middleware performane.Referenes1. S. Abiteboul, A. Bonifati, G. Cobena, I. Manolesu, and T. Milo. Dynami XMLdouments with distribution and repliation. In SIGMOD Conferene, pages 527{538, 2003.2. K. S. Candan, D. Agrawal, W. Li, O. Po, and W. Hsiung. View invalidation fordynami ontent ahing in multitiered arhitetures. In The 28th Very Large DataBases Conferene, 2002.3. J. Challenger, P. Dantzig, and A. Iyengar. A salable system for onsistentlyahing dynami web data. In In Proeedings of IEEE INFOCOM'99, 1999.4. C. Y. Choi and Q. Luo. Template-based runtime invalidation for database-generated web ontents. In APWeb 2004, 2004.5. A. Datta, K. Dutta, H. M. Thomas, D. E. Vandermeer, and K. Ramamritham.Proxy-based aeleration of dynamially generated ontent on the world wide web:
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