
Adaptive Load Diffusion for Stream Joins

Xiaohui Gu, Philip S. Yu

IBM T. J. Watson Research Center
Hawthorne, NY 10532

{xiaohui, psyu}@ us.ibm.com

Abstract. Data stream processing has become increasingly important
as many emerging applications call for sophisticated realtime processing
over data streams, such as stock trading surveillance, network traffic
monitoring, and sensor data analysis. Stream joins are among the most
important stream processing operations, which can be used to detect
linkages and correlations between different data streams. One major
challenge in processing stream joins is to handle continuous, high-volume,
and time-varying data streams under resource constraints. In this paper,
we present a novel load diffusion system to enable scalable execution of
resource-intensive stream joins using an ensemble of server hosts. The
load diffusion is achieved by a simple correlation-aware stream partition
algorithm. Different from previous work, the load diffusion system can
(1) achieve fine-grained load sharing in the distributed stream processing
system; and (2) produce exact query answers without missing any join
results or generate duplicate join results. Our experimental results show
that the load diffusion scheme can greatly improve the system through-
put and achieve more balanced load distribution.

1 Introduction

Many emerging applications call for sophisticated realtime processing over data
streams, such as stock trading surveillance, network traffic monitoring, and
sensor data analysis. In these applications, data streams from external sources
flow into a stream processing system (e.g., [5, 11, 12]) where they are processed
by different continuous query processing elements called operators. One of the
most important continuous query operators is sliding-window join between two
streams S1 and S2, called stream join. The output of the stream join contains
every pair of tuples (i.e., data records) (s1, s2), s1 ∈ S1, s2 ∈ S2 that satisfy a join
predicate. To handle infinite streams, each stream is associated with a sliding
window to limit the scope of stream joins. Indeed, for many applications, we only
need to correlate each newly arrived tuple with recently arrived tuples on the
other stream. The stream join can be used to detect linkages and correlations
between different data streams, which has many interesting applications. For
example, let us consider two data streams consisting of phone call records and
stock trading records, respectively. A sliding-window join between the suspicious
phone calls and anomalous trade records over the common attribute “trade
identifier” can be used to generate insider trading alerts. Other application

examples of stream joins include (1) correlate similar images between two news
video for hot topic detection; and (2) associate measurements (e.g., temperature,
chemical concentration) from different sensors for environment monitoring and
problem diagnosis.

In many cases, stream applications require immediate on-line results, which
implies that query processing should use in-memory processing as much as
possible. However, given high stream rates and large window sizes, even a single
sliding-window join operator can have large memory requirement [7]. Moreover,
some query processing such as video analysis can also be CPU-intensive. Thus,
a single server may not have enough resources to produce accurate join results
while keeping up with high input rates. There are two basic solutions to address
the challenge: shedding some workload by providing approximate query results
[8, 7], or offloading part of workload to other servers. Our research studies the
latter approach, focusing on providing load diffusion scheme to efficiently execute
stream joins using a cluster of servers connected by high-speed networks.

Distributed stream processing has recently received much research attention.
In [10], Shah et al. studied intra-operator load distribution for processing a single
windowed aggregation operator on multiple servers. However, their solution was
not based on the sliding-window stream join model. In [9], Xing et al. proposed
a dynamic load distribution framework that can provide coarse-grained load
balancing at inter-operator level. However, the inter-operator load distribution
alone is not sufficient since it does not allow a single operator to collectively use
resources on multiple servers. In [4], we propose an optimal component compo-
sition scheme for distributed stream processing systems that can achieve both
QoS support and load balancing. In [2], Balazinska et al. proposed a contract-
based load management framework that can migrate workload among different
stream processing sites based on pre-defined contracts. Different from the above
work, this work focuses on supporting fine-grained load distribution, called load
diffusion for sliding-window stream joins. For producing exact join results, the
load diffusion system preserves a correlation constraint that correlated tuples
must be sent to the same server.

In this paper, we present a novel load diffusion middleware system to dynam-
ically distribute stream join workload among a cluster of servers. Our principle
goal is to provide scalable stream joins by efficiently utilizing all available re-
sources in the server cluster. To achieve the goal, we propose a simple correlation-
aware stream partition algorithm called single stream partition (SSP). The SSP
algorithm dynamically spreads the tuples of one stream called the master stream
among all hosts for load diffusion, and replicates the other stream called the slave
stream for preserving the correlation constraint. To adapt to dynamic stream
environments, the SSP algorithm can adaptively switch the master stream and
the slave stream according to the stream rate changes. We formally prove the
correctness of the SSP algorithm and analyze its properties. The adaptation
strategy is then derived based on the formal analysis.

We implement the load diffusion scheme as a middleware proxy service. The
load diffusion proxy virtualizes a cluster of stream processing servers into a

(b) Distributed stream join architecture

S1

S1 [W
1
], W

1
 = 4

P2

P1

time

tuple S1 S1 S1 S1 S1 S1 S1 S1 S1

1 2 3 4 5 6 7 8 9

S2

S2 [W
2
], W

2
 = 2

S2 S2 S2 S2 S2 S2 S2 S2 S2

1 1 2 2 3 3 4 4 5
time

tuple

expired

(a) Sliding-window joins

Stream processing server

cluster

Minicomputer

Load

diffusion

proxy

Server Server Server

Server
Server Server

J
1,1

J
3,1

J
3,3

J
1,2

v
1

v
2

v
3

v
5

v
6

J
3,2

S1

S
2

S
1,1

S
1,2

S
2,1

S
2,2

v
4

Fig. 1. The load diffusion system model.

unified stream processing service. Analogous to previous middleware systems
(e.g., [1]), the load diffusion middleware aims at providing a managed and trans-
parent stream processing service, which hides complicated system management
details from upper-level application developers. The major operation performed
by the load diffusion proxy is to route tuples to proper servers according to
the load diffusion algorithm and the load conditions of different servers. We
have implemented the proposed load diffusion algorithms and conduct extensive
experiments on a distributed stream processing simulation testbed. The exper-
imental results show that the load diffusion scheme can greatly improve the
system throughput and achieve more balanced load distribution compared to
previous approaches.

The rest of the paper is organized as follows. Section 2 introduces the system
model. Section 3 presents the correlation-aware stream partition algorithms.
Section 4 presents an experimental evaluation. Finally, the paper concludes in
Section 5.

2 System Model

2.1 Stream Processing Model

We now briefly describe the basic model of sliding-window stream joins illus-
trated by Figure 1 (a). A data stream, denoted by Si, consists of a sequence of
tuples denoted by si ∈ Si. In a stream Si, a variable number of tuples arrive in
each time unit. We use ri to denote the average arrival rate of the stream Si.
In a dynamic stream environment, the stream rate ri can change over time. We
assume that each tuple si ∈ Si carries a time-stamp si.t to denote the time when
the tuple arrives on the stream Si. We use Si[Wi] to denote a sliding window
on the stream Si, where Wi denotes the length of the window in time units.
At time t, we say si belongs to Si[Wi] if si arrives on Si in the time interval
[t − Wi, t]. The basic stream join operator considered in this paper is sliding-
window symmetric join between two streams S1 and S2 over a common attribute
A, denoted by Ji = S1[W1] ./A S2[W2]. The output of the join consists of all

pairs of tuples (s1, s2) such that s1.A = s2.A and s2 ∈ S2[W2] at time s1.t (i.e.,
s2.t ∈ [s1.t−W2, s1.t]) or s1 ∈ S1[W1] at time s2.t (i.e., s1.t ∈ [s2.t−W1, s2.t]).
Each processing between the two tuples s1 and s2 is called one join operation.
Each join operator maintains two queues Q1 and Q2 for buffering incoming tuples
from the streams S1 and S2, respectively. When a new tuple si ∈ Si, 1 ≤ i ≤ 2
arrives, it is inserted into the corresponding queue Qi if Qi is not full. Otherwise,
the system either drops the newly arrived tuple or replace an old tuple in the
buffer with the newly arrived tuple. The tuples in both queues Q1 and Q2 are
processed according to the temporal order, i.e., if s1.t ∈ Q1 < s2.t ∈ Q2, s1 is
processed first. Each queue Qi, i = 1, 2 maintains a pointer pi to refer to the
tuple currently processed by the join operator.

The sliding-window join algorithm processes a tuple s1 ∈ Q1 with the fol-
lowing steps: (1) update Q2 by removing expired tuples. A tuple s2 is expired
if (a) it arrives earlier than s1.t−W2 and (b) it has been processed by the join
operator (i.e., p2 points to a tuple arrived later than s2); (2) produce join results
between s1 and S2[W2], denoted by s1 ./A S2[W2] by comparing s1.A and s2.A,
∀s2 ∈ S2[W2]; (3) update the pointer p1 to refer to the next tuple in Q1; (4)
decide which tuple to process next by comparing s1.t and s2.t, where s1 and
s2 are the tuples pointed by p1 and p2, respectively. A symmetric procedure is
followed for processing a tuple s2 in the queue Q2 of the stream S2.

2.2 System Architecture

The distributed stream processing system consists of a cluster of servers con-
nected by high-speed networks. Each server node, denoted by vi, has a limited
memory capacity Mi for buffering tuples, and a certain CPU processing speed
that can process on average Ni join operations per time unit. Data streams
are pushed into the distributed stream processing system from various external
sources such as temperature sensors, stock tickers, and video cameras. The
distributed stream processing system appears to a client as a unified stream
processing service to serve a large number of continuous query processing over
high volume data streams. The push-based stream environment has two unique
features: (1) the tuples of a single stream can arrive in a bursty fashion (i.e., a
large number of tuples can arrive in a short period of time); and (2) tuples are
pushed into the system where data arrivals cannot be controlled by the system.
The distributed stream processing system needs to efficiently utilize all available
resources to achieve the best possible throughput for keeping up with the high
arrival rates.

The architecture of the distributed stream processing system, illustrated by
Figure 1 (b), consists of a load diffusion proxy and an ensemble of servers. The
load diffusion proxy serves as a gateway of the distributed stream processing
system to distribute stream processing workload across all servers. For each
stream join request, the load diffusion proxy selects a number of servers to
instantiate the join operator. The load diffusion proxy intercepts input streams
and re-directs them to proper servers responsible for handling the stream joins.
Due to the memory and CPU speed limits, a single server can only accommodate

S2

S1S1S1 S1 S1 S1 S1 S1 S1 S1

91 2 3 4 5 6 7 8

S2 S2 S2 S2 S2 S2 S2 S2 S2

1 2 3 4 5 6 7 8 9

time

tuple

time

tuple S2

S1

0

0

Replicated on all nodes

Tuples to

V
1

Tuples to

V
2

Tuples to

V
3

Tuples to

V
4

Fig. 2. The SSP example.

Procedure SSP (S1, S2, {v1, ..., vk})
1. receive tuples for S1 and S2

3. ∀s1 ∈ S1, S1: master stream
4. send s1 to the least-loaded host vb

5. ∀s2 ∈ S2, S2: slave stream
6. send s2 to all server hosts

Fig. 3. The SSP algorithm.

a certain data arrival rate in order to keep the unprocessed data in the memory.
When tuples arrive too fast, the server has to drop tuples using some load
shedding technique (e.g., [8]). However, dropping data can affect the accuracy
of stream join results. Thus, the goal of our load diffusion scheme is to avoid
dropping data as much as possible by spreading stream join workload across
multiple servers.

The load diffusion proxy realizes fine-grained and balanced workload distribu-
tion using stream partitions. The stream partition algorithm can continuously
split a high-volume stream into multiple substreams, each of which are sent
to different servers for concurrent processing. Conceptually, the load diffusion
proxy decomposes a resource-intensive join operator into multiple sub-operators
executed on different servers. Each sub-operator only processes a subset of
tuples on the original input streams. For example, in Figure 1 (b), the load
diffusion proxy splits the stream S1 into two substreams S1,1 and S1,2 that are
sent to the server v1, and v2, respectively. Each substream has lower stream
rate than the original stream. Different from load distribution for traditional
distributed computing environments, our load diffusion scheme needs to send
correlated data to the same server, which is called the correlation constraint. By
observing the correlation constraint, the load diffusion proxy can maintain the
full accuracy of stream joins. For example, let us consider a windowed stream join
S1[W1] ./A S2[W2]. If the load diffusion proxy sends a tuple s1 to a server node
vi, the correlated data include those tuples s2 ∈ S2 such that s2 ∈ S2[s1.t−W2, t].

3 Replication-Assisted Single Stream Partition

The basic idea of the single stream partition (SSP) algorithm is to split one
stream for load distribution and replicate the other stream for preserving the
correlation constraint, which is illustrated by Figure 2. The partitioned stream
is called the master stream and the replicated stream is called the slave stream.
Each tuple of the slave stream is replicated on all the server hosts that are
allocated to the join operator. Thus, we can freely partition the master stream
since all the correlated tuples required by the partitioned stream are on the
replicated stream, which have replicas on all server hosts. Figure 3 shows the
pseudo-code of the SSP algorithm, which is described using an example as
follows. Let us consider a join operator Ji = S1[W1] ./A S2[W2] between the

two streams S1 and S2 whose average arrival rates are r1 and r2, respectively.
Suppose the system allocates the host set {v1, ..., vk} for executing the join
operator Ji. Let us assume that S1 is the master stream and S2 is the slave
stream. For each tuple s1 arriving at the stream S1, the SSP algorithm sends s1

to one of the server hosts based on a certain selection policy (e.g., round-robin or
least-loaded-first). For each tuple s2 arrived at the stream S2, the SSP algorithm
replicates s2 into k copies, each of which is sent to the k servers, respectively.
By spreading the tuples of stream S1 among all k servers, the workload of the
join operator Ji = S1[W1] ./A S2[W2] is diffused among all k servers since each
server only processes a subset of all required join operations.

We now formally prove the correctness of the SSP algorithm. We define
that a stream partition algorithm is correct if it executes the same set of join
operations as the original join operator. We use C(Ji) and C ′(Ji) to denote
the sets of join operations performed by the original join operator and the join
operations performed by the diffused join operator, respectively. We prove the
correctness of the SSP algorithm by showing that C(Ji) = C ′(Ji).

Theorem 1. Let C(Ji) and C ′(Ji) denote the sets of join operations performed
by the original join operator and the new join operator diffused by the SSP
algorithm, respectively. We have C(Ji) = C ′(Ji).

Proof. We first prove (1) C(Ji) ⊆ C ′(Ji) by showing that ∀s1, if s1 ./A S2[W2] ∈
C(Ji), then s1 ./A S2[W2] ∈ C ′(Ji), and ∀s2, if s2 ./A S1[W1] ∈ C(Ji), then
s2 ./A S1[W1] ∈ C ′(Ji). Suppose the SSP algorithm sends s1 to the server vi.
Because SSP replicates the stream S2 on all servers, S2[W2] must be present
on the server vi, too. Thus, s1 ./A S2[W2] ∈ C ′(Ji). We now prove ∀s2, if
s2 ./A S1[W1] ∈ C(Ji), then s2 ./A S1[W1] ∈ C ′(Ji). For any s2 ∈ S2, s2 needs
to join every tuple in S1[W1]. Suppose SSP sends s1 ∈ S1[W1] to the server vi.
Because s2 is also present at vi, we have s2 ./A s1 ∈ C ′(Ji). By aggregating all
the results of s2 ./A s1, ∀s1 ∈ S1[W1], we have s2 ./A S1[W1] ∈ C ′(Ji). Thus,
we have C(Ji) ⊆ C ′(Ji). We then prove (2) C ′(Ji) ⊆ C(Ji) by showing that
∀s1, if s1 ./A S2[W2] ∈ C ′(Ji), then s1 ./A S2[W2] ∈ C(Ji), and ∀s2, if s2 ./A

S1[W1] ∈ C ′(Ji), then s2 ./A S1[W1] ∈ C(Ji). The proof is straightforward since
any join operation in C ′(Ji) follows the windowed join definition, which thus
should appear in C(Ji), too. Because ∀s1 ∈ S1, s1 is only sent to one server,
two different servers do not perform duplicated join operations. Thus, we have
C ′(Ji) ⊆ C(Ji). Combining (1) and (2), we have C(Ji) = C ′(Ji). ¤

We now analyze the properties of the SSP algorithm. Since the number
of total join operations is not changed by the SSP algorithm, each server in
{v1, ..., vk} only processes on average one k′th of the original join operations. One
advantage of the SSP algorithm is that it can achieve the finest-grained spreading
for the master stream at a per-tuple basis. By splitting the master stream S1

into k substreams, the SSP algorithm can reduce the resource requirements for
individual servers. Let r1 denote the arrival rate of the master stream S1. Each
sub-stream of S1 has an average arrival rate of r1/k. Thus, in addition to reduce
the processing workload, the SSP algorithm can reduce (1) memory requirement

for buffering tuples in the sliding windows and (2) bandwidth requirement for
receiving tuples.

Theorem 2. Let r1 and r2 denote the rates of the two joined streams S1 and S2.
Let W1 and W2 denote the sliding-window sizes of S1 and S2. Let m denote the
average tuple size. Let k denote the server number. Let ∆M and ∆B denote the
average memory reduction, average bandwidth reduction, and average processing
load reduction at each server node compared to the original join operator. We
have

∆M =
k − 1

k
·m · r1 ·W1 (1)

∆B =
k − 1

k
·m · r1 (2)

Proof. Without load diffusion, the original join operator is executed on a single
server vi. The server needs a memory space for buffering the tuples in the two
sliding windows S1[W1] and S2[W2], which can be calculated as m · (r1 ·W1 +
r2 ·W2). The server needs m · (r1 + r2) bandwidth for receiving the tuples. With
load diffusion, the tuple arrival rate of the stream S1 at each server is reduced to
r1
k . The memory space for buffering the tuples in the sliding windows at a single
server is reduced to m · (r1

k ·W1 + r2 ·W2). The bandwidth requirement at each
server is reduced to m · (r1

k + r2). Thus, the average memory reduction at each
server is ∆M = m · (r1 ·W1 + r2 ·W2)−m · (r1

k ·W1 + r2 ·W2) = k−1
k ·m · r1 ·W1.

The average bandwidth reduction at each server is ∆B = k−1
k ·m · r1. ¤

We now analyze the overhead of the SSP algorithm. Since the SSP algorithm
replicates the tuples of the slave stream S2 on all allocated servers, the load
diffusion proxy pushes more tuples into the server cluster than the original input
streams. The system needs to spend part of CPU cycles on processing these extra
tuples such as receiving the tuple from the network, extracting the time stamp
and sequence number, dropping the tuple if not needed, inserting the tuple into
the queue if it is useful and memory is not full, and replacing an old tuple if
memory is full. We define the overhead of the SSP algorithm as the number of
these extra tuples. We can easily derive that the overhead of the SSP algorithm
is (k−1)·r2 since only S2 is replicated on (k−1) extra hosts. In order to minimize
the algorithm overhead, the SSP algorithm adaptively selects the stream with
lower rate as the master stream, and the other stream as the slave stream. The
load diffusion proxy estimates the arrival rate of each stream by counting the
number of arrived tuples on each stream within a sampling period. The average
arrival rate of the input stream can be estimated by dividing the tuple number
over the sampling period.

4 Experimental Evaluation

4.1 Experiment Setup

We have implemented the load diffusion middleware proxy that executes the
proposed stream partition algorithm. We conduct experiments to evaluate the

0

2

4

6

8

10

12

5 10 15 20 25 30 35 40 45 50

server number per operator

th
ro

u
g
h
t
(M

 j
o
in

o
p
e
ra

ti
o
n
s
)

SSP LLF-Distribution

Fig. 4. Throughput results.

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

5 10 15 20 25 30 35 40 45 50

server number per operator

A
v
e
ra

g
e
 C

P
U

 u
ti
liz

a
ti
o
n

SSP LLF-Distribution

Fig. 5. CPU utilization results.

performance of the load diffusion proxy using a simulated stream processing
cluster and a variety of stream join workloads. The source streams first arrive the
load diffusion proxy and then directed to different server hosts for join processing.
Each server executes the sliding-window join algorithm described in Section 2.1.
The memory space of each server is randomly set in the range of [1000, 2000]
tuples. The CPU speed of each server is distributed in the range of [1000, 5000]
MIPS. Different values reflect the heterogeneity among different servers. The
average CPU cost to process a join operation is set as 50 MIPS. The average
CPU cost for processing each tuple upon receiving (i.e., insert the new tuple,
drop the new tuple, or replace an old tuple with the new tuple) is set as 10
MIPS. The tuples on the input streams Si, i = 1, 2 are generated at an average
rate of ri tuples per second. We use the same tuple arrival model as [7] where
the inter-arrival time is uniformly selected at random between 1/2ri and 2/ri

time units. Our experiments use different stream rates ri to represent dynamic
workloads. For comparison, we use the following metrics: (1) throughput that is
defined as the number of join operations finished by all servers over a period of
time, and (2) effective CPU utilization that is defined by the ratio between the
CPU cycles spent on the join processing at a server per second over the server’s
CPU capacity. We use LLF-Distribution to denote the traditional least-loaded-
first load distribution algorithm that instantiates a join operator on a single
least-loaded server. In all experiments, we use W1 = W2 = 10 seconds. Each
simulation run lasts 5000 seconds.

4.2 Results and Analysis

We first evaluate the scaling property of the SSP algorithm. The experiment
executes 10 join operators using a 100 node heterogeneous cluster. The stream
rates r1 and r2 of each join operator are randomly selected from the range of
[5,20] tuples/second. Figure 4 shows the throughput of different algorithms as we
gradually increase the number of servers allocated to each join operator. Each
throughput value represents the total number of join operations performed by the
system during the whole 5000-second simulation duration. The system randomly

0

0.2

0.4

0.6

0.8

1

1 2 3 4 5 6 7 8 9 10

server ID

A
v
e
ra

g
e
 C

P
U

 U
ti
liz

a
ti
o
n

SSP LLF-Distribution

Fig. 6. Load balancing results.

49

50

51

52

53

54

55

50 550 1050 1550 2050 2550 3050 3550 4050 4550

time (second)

th
ro

u
g
h
p
u
t
(K

 j
o
in

 o
p
e
ra

ti
o
n
s
)

Adaptive SSP static SSP

Fig. 7. Adaptation results.

selects k servers for each join operator given the number of servers allocated to
it. We observe that the SSP algorithm achieves best performance when each join
operator is allocated with about 15 servers. The reason is that the overhead of
the SSP algorithm increases proportionally to the number of allocated servers. In
contrast, the throughput of the LLF-Distribution algorithm is unchanged during
the above experiment since each join operator can only use one server. Figure
5 shows the average effective CPU utilization results as we gradually increase
the number of servers allocated to each stream join. We observe that in the SSP
algorithm, the average CPU utilization first increases as the algorithm spread
the workload among all servers, and then decreases when more than 15 servers
are used for each join operator since all servers are overwhelmed by excessive
overhead tuples.

We then evaluate the load balancing property of the SSP algorithm. This
experiment executes two stream join operators on a ten-node heterogeneous
cluster. Figure 6 shows the average effective CPU utilization of the ten server
nodes after the 5000 second simulation period. We observe that the SSP algo-
rithm can achieve more balanced load distribution than the LLF-Distribution
algorithm that can only perform load balancing at inter-operator level not at the
intra-operator level. Our last experiment evaluates the adaptation strategy. The
experiment runs ten stream join operators on a 100-node cluster. In the SSP
algorithm, each join is allowed to use 5 servers. The initial average stream rates
r1 and r2 are randomly selected from the range of [5,20] tuples/second. We then
dynamically change the average stream rates every 500 seconds. The throughput
value is sampled every 50 seconds. The throughput value at time t records the
total number of join operations performed by the whole server cluster between
time [t − 50, t]. Figure 7 shows the adaptation results of the SSP algorithm
that dynamically switches the master stream and the slave stream based on the
rate changes. We observe that the adaptive SSP consistently achieves better
performance than the static SSP algorithm that always uses the same master
and slave streams.

5 Conclusion

In this paper, we presented a novel load diffusion middleware proxy to enable
distributed execution of resource-intensive stream joins using a cluster of servers.
To the best of our knowledge, this is the first work that studied fine-grained
load management problem for sliding-window stream joins. We proposed a sim-
ple correlation-aware stream partition algorithm that is proved to preserve the
stream join accuracy while spreading the workload among distributed servers.
Our experimental results show that the load diffusion scheme can greatly improve
the system throughput and achieve balanced load distribution. For future work,
we will develop more efficient and sophisticated stream partition algorithms and
extend the system to support multi-way stream joins.

References

1. C. Amza, A. Cox, W. Zwaenepoel. Consistent Replication for Scaling Back-
end Databases of Dynamic Content Web Sites, Proc. of the ACM/IFIP/Usenix
Middleware Conference, June, 2003.

2. M. Balazinska, H. Balakrishnan, M. Stonebraker: Contract-based Load Management
in Federated Distributed Systems, Proc. of 1st Symposium on Networked Systems
Design and Implementation (NSDI), March, 2004.

3. G. Cybenko: Dynamic load balancing for distributed memory multiprocessors.
Journal of Parallel and Distributed Computing, 7(2):279-301, 1989.

4. X. Gu, P. S. Yu, K. Nahrstedt, Optimal Component Composition for Scalable
Stream Processing, Proc. of IEEE International Conference on Distributed Com-
puting Systems (ICDCS), June, 2005.

5. S. Krishnamurthy et al. TelegraphCQ: An Architectural Status Report. IEEE Data
Engineering Bulletin, 26(1):11-18, March, 2003.

6. Arvind Krishna, Douglas C. Schmidt, and Raymond Klefstad, Enhancing Real-
Time CORBA via Real-Time Java, Proceedings of the 24th IEEE International
Conference on Distributed Computing Systems (ICDCS), May 23-26, 2004.

7. U. Srivastava, J. Widom: Memory Limited Execution of Windowed Stream Joins,
Proc. of the 30th International Conference on Very Large Databases (VLDB),
August, 2004.

8. N. Tatbul and U. etintemel and S. Zdonik and M. Cherniack and M. Stonebraker:
Load Shedding in a Data Stream Manager, Proc. of the 29th International
Conference on Very Large Data Bases (VLDB), September, 2003.

9. Y. Xing, S. B. Zdonik, J.-H. Hwang, Dynamic Load Distribution in the Borealis
Stream Processor, Proc. of International Conference on Data Engineering (ICDE),
April, 2005.

10. M. A. Shah, J. M. Hellerstein, S. Chandrasekaran, M. J. Franklin, Flux: An
Adaptive Partitioning Operator for Continuous Query Systems, Proc. of the 19th
International Conference on Data Engineering (ICDE), March, 2003.

11. The STREAM Group. STREAM: The Stanford Stream Data Manager. IEEE Data
Engineering Bulletin, 26(1):19-26, March 2003.

12. S. Zdonik et al. The Aurora and Medusa Projects. IEEE Data Engineering Bulletin,
26(1), March 2003.

