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Abstract This paper proposes a new real-time video traffic predictor to meet increasing
consumer demand for a high speed high performance wireless broadband net-
work. It analyzes the behaviors and the problems of previous adaptive LMS-type
predictors using fixed step size in detail and then proposes an adaptive predictor
using variable step size for predicting bandwidth requirement of real-time VBR
videos. The proposed adaptive predictor has better ability for handling scene
changes and needs not change its parameters for different VBR videos. The
simulation shows that the performance of the proposed adaptive predictor is bet-
ter or near the optimal performance of previous adaptive LMS-type predictors
using fixed step size.
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1. Introduction

The IEEE 802.15.3[1] standard is designed to connect about 200 wireless
devices and the existing standard 2.4 GHz PHY is up to maximum data rate of
55M bits/sec. Moreover, the IEEE 802.15 Task Group 3a (IEEE 802.15.3a) is
underway to standardize an UWB [6] PHY with a range of data rates between
110 and 480M bits/sec. The new UWB PHY of the IEEE 802.15.3 is ideal
for allowing multiple wireless devices to exchange multimedia traffics such as
video, audio and digital images.

In addition to high data rates, the IEEE 802.15.3 standard also includes
all functionalities needed for reliable QoS. The IEEE 802.15.3 MAC proto-
col uses TDMA to allocate channel time among devices in order to prevent
conflicts and only provides new channel time allocations for a connection if
enough bandwidth is available. The elementary topological unit for the IEEE
802.15.3 MAC layer is a piconet, which is a wireless ad hoc data communi-
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cations system in essence. There are a number of independent data devices
(DEVs) contained in a piconet that are allowed to exchange frames directly
with each other.

The master/slave relationship was adopted for these DEVs; a particular
DEYV, named piconet coordinator (PNC), acts as the master and the others are
slaves. The PNC is also responsible for admission control and channel time
allocation. Timing for a piconet is realized by superframes whose three parts
are Beacon, CAP and CTAP. When a DEV intends to transmit data, it has to
send a request message to the PNC first. The PNC then decides whether the
request can be accepted or not according to the available channel time in the
superframe. If accepted, the PNC will allocate enough channel time for the
DEV and announce this allocation in the next beacon.

Because the bandwidth in the IEEE 802.15.3 WPANSs can be allocated on
demand, dynamic bandwidth allocation during the lifetime of a connection
should be considered, especially for variable bit rate (VBR) video connection.
Since the peak-to-mean ratio of a VBR video is usually high, constant bit rate
(CBR) channel allocation which satisfies peak rate requirement often leads to
low channel utilization. In contrast, if the channel allocation is not served at a
rate close to peak rate, large delays, large queues and packet losses will occur.
Therefore, it is important that DEVs should have ability to predict the band-
width requirement of future superframes in order to support real-time VBR
videos.

A dynamic allocation scheme with a novel VBR video traffic predictor is
necessary in order to utilize channel efficiently and guarantee the QoS require-
ment of real-time VBR videos at the same time. By allocating bandwidth equal
to the predicted value, only the errors of prediction need to be buffered. Thus,
higher channel utilization, small buffers and small delays can be achieved if
the prediction is accurate enough.

Several papers which deal with multimedia traffic prediction had been pro-
posed. We simply classify these works into two categories. The first one is
model-type prediction [10], [16], [17] which deals with the development of
stochastic source models and adopts these models to predict. These models
has the ability to capture both the short-range dependent (SRD) and long-range
dependent (LRD) [15]. Since VBR videos have been shown that it has a self-
similar characteristic [9], these stochastic source models can be used for accu-
rate prediction if the parameters of the models were estimated correctly.

Another class of multimedia traffic prediction is adaptive least mean square
(LMS) type prediction [2], [5], [12], [14].The adaptive LMS algorithm is well
known for its simplicity. Moreover, the adaptive LMS-type prediction neither
does require prior knowledge of the video statistics nor does assume stationary.
Therefore, they are fit for on-line VBR video prediction for the IEEE 802.15.3
devices.
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However, adaptive LMS-type predictions using fixed step size [13] perform
bad performance while scene changes occur. This paper analyzed the effects
of scene change on the prediction errors in the adaptive LMS-type prediction
which adopts fixed step size. Moreover, this paper proposes an adaptive VBR
video predictor based on a variable step-size LMS algorithm [11] in order to
overcome the problem of scene change.

The proposed predictor performs much better performance while scene change
occurs. Furthermore, instead of the fixed step-size adaptive LMS-type predic-
tor which is hard to determine the optimal parameters for different VBR video
traffics in advance, the proposed adaptive predictor adjusts its step size auto-
matically according to the statistics of different VBR video traffics. And the
computational complexity of the proposed predictor is also low. By above
reasons, the proposed predictor not only satisfies the low-cost requirement of
the IEEE 802.15.3 devices but also produces good performance for predicting
VBR videos.

The rest of this paper is organized as follows. Related work is introduced
in next section. The proposed adaptive VBR video predictor is addressed in
Section 3. Analysis and simulation results are shown in Section 4. Finally, this
paper concludes with some remarks in Section 5.

2. Related Work

There were several papers which deal with traffic prediction proposed in
recent years. We simply classify these works into two categories: statistical
model-type prediction and adaptive LMS-type prediction. For the first cate-
gory, the fractional autoregressive integrated moving average (F-ARIMA) [7]
model is the most popular one. The F-ARIMA is a self-similar [15] model
which has the ability to capture both the SRD and LRD characteristics. It also
has been shown that VBR video traffic has a self-similar characteristic [9].
Therefore, the F-ARIMA model is useful for a VBR video traffic predictor.

All parameters of F-ARIMA model should be estimated from the historical
traffic data before starting to predict. This causes the bottleneck of compu-
tation, especially for the low-cost IEEE 802.15.3 devices. Furthermore, the
performance of model-type prediction depends on the parameters of the model
can be estimated accurately. It requires large traffic data to estimate the pa-
rameters precisely. Therefore, the model based prediction does not suit for
bandwidth prediction for real-time VBR videos.

The second category is the adaptive LMS-type prediction. The adaptive
LMS algorithm has been wide used in many domains due to its simplicity
and relatively good performance. Moreover, the adaptive LMS-type predic-
tion does not require any prior knowledge of the video statistics and does not
assume video contents to be stationary. Thus, it well suits for bandwidth pre-
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diction for on-line real time VBR videos which can be non-stationary. A pth
order k-step linear predictor has the form as:

-1
Z(n + k) =prn(l):c(n —1)=WIX(n) 6))
i=0

The k-step linear predictor estimates z(n+ k) using a linear combination of
the current and previous values of X (n). In an adaptive LMS algorithm, W,
is the time varying coefficient vector obtained by minimizing the mean square
error. The initial vector Wy can be assigned any value and W), is updated using
the recursive equation as:

Wn+1 =W, + Ue(n)X(n) 2

Since it is difficult to select the proper value of i to guarantee convergence,
the normalized LMS (NLMS) is often used in practice. The NLMS is a modi-
fication of LMS algorithm where the update equation is changed as:

pe(n) X (n)
X ()2 @)

The NLMS will converge in the mean [13] if 0 < p < 2. Large p causes
a faster convergence and quicker response to statistic change. However, after
convergence, misadjustment is larger. In contrast, the use of a small p results
in a slower convergence with smaller misadjustment. It is a tradeoff.

[2] proposed a dynamic bandwidth allocation using the NLMS predictor
with the fixed value of y to support real-time VBR video under RCBR network
service model. [5] adopted the fixed step-size NLMS predictor for traffic man-
agement of ATM networks. [12] proposed method based on a scene change
identification to improve the forecasting performance. They made X (n) to
forget historical data while scene changes occur and still used fixed step size.

[14] proposed a scene change indicator for real-time VBR MPEG videos
and dynamically controlled the step size p between two values: figefaui; and
STEP_JUMP X pigefquit- STEP_JUMP is a constant. A scene change is recog-
nized by indicator as:

W1 = Wn +

le(n)]

i=n—k T()l(k +1)

The step size p is increased to STEP_JUMP times pigefquiz When a scene

change is detected. In contrast, the step size is returned to the initial default

value if the normalized prediction error is less than or equal to the threshold
value.

Unlike [14] whose step size of u is determined by indicator using expe-

rienced values of STEP_JUMP, Threshold and the default value pgefquit, this

> Threshold 4
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paper adopts a variable step size LMS algorithm [11] to control the step size for
handling scene changes and needs not to determine the value of  in advance.
The performance of the proposed predictor is better than the other LMS-type
predictors which use fixed step size.

3. Proposed NLMS Adaptive Predictor

This paper proposes an adaptive predictor based on the variable step size
LMS (VSSLMYS) algorithm proposed in [11]. This section introduces to the
VSSLMS algorithm first and then describes our modification to the VSSLMS
algorithm in order to obtain better performance for predicting different VBR
videos.

The VSSLMS algorithm adjusts the step size by the square of the predic-
tion error. The motivation of the VSSLMS algorithm is that a large prediction
error will cause the step size to increase to provide faster tracking, whereas a
small prediction error will result in a decrease in the step size to obtain smaller
misadjustment.

The VSSLMS algorithm is the same as the LMS algorithm except the step
size of the VSSLMS is updated dynamically. The step-size update equation is
expressed as:

fint1 = g + 7€ (n) 5)

where 0 < a <1, v > 0, and p,+1 i set tO fmaz OF Lmin When it falls
above or below these upper bound and lower bound, respectively. The constant
Umaz Should be chosen to ensure that the MSE of the VSSLMS algorithm
remains bounded and is normally selected near the point of instability of fixed
step-size LMS algorithm to provide the maximum possible convergence. The
constant L,y is chosen as a compromise between the desired level of steady-
state misadjustment and the required tracking capability. Usually, the value of
Imin 18 near the one of y that would be chosen for the fixed step-size algorithm.

The parameter « is selected from the range (0, 1) in order to provide expo-
nential forgetting. The parameter -y controls the convergence time and the level
of misadjustment. The value of « is usually small. The additional computa-
tional overhead of the VSSLMS algorithm is one update for p value at each
iteration, so that the computational complexity is also low.

The prediction error is large while a scene change occurs and the value of
1 should be larger during scene changes. Therefore, the VSSLMS algorithm
can meet our requirements for predicting VBR videos. For practical uses, we
adopt the NLMS algorithm instead of the LMS algorithm, so our modified al-
gorithm of the VSSLMS one is called the VSSNLMS algorithm. The weighted
vector W,+1 update equation of VSSNLMS algorithm is the same as one of
the NLMS listed in (3). For an one-step predictor, the value of z(n + 1) is not
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available to calculate e(n) at time n. Thus, e(n — 1) is instead of e(n) and the
step-size update equation of the VSSNLMS algorithm should be changed as:

fint1 = Opin + ve*(n — 1) (6)

By the properties of the NLMS algorithm, the VSSNLMS algorithm will
converge in the mean if 0 < pmin < tmas < 2. However, in theory of [3],
the value ¢g= 1 for the NLMS algorithm provides the fastest convergence,
whereas the step size of the NLMS algorithm needs to be considered smaller
in practice [4]. By experiments, we set the value fiyq, = 0.5 in the beginning
of prediction. The value of iy, is chosen as 0.1 for smaller misadjustment
while there is no scene change occurs.

The value of + is set to 1 x 1078 to detect scene changes properly. Too
large value of « causes the value of y to be increased even through there is
no scene change. On the contrary, too small value of y can not make predictor
response to scene changes. The optimal value of is varied by video videos with
different autocorrelations. Since the autocorrelation of a real-time VBR video
can not be known in prior, it is difficult to determine the optimal value of
before predicting. However, the effect on performance by different values of o
is small. By our experiments, the optimal values of « for simulated traces fall
in the range from 0.93 to 0.99. The VSSNLMS predictor chooses o = 0.96 for
simulations.

4. Analysis and Simulation Results

This section analyzes the order selecting strategies of the VSSNLMS pre-
dictor as well as shows the ability of the VSSNLMS predictor for handling
scene changes first. And then we compare the performance between the fixed
step-size NLMS predictor and the VSSNLMS predictor by simulations using
the MATLAB. The optimal values of step size and the optimal orders using
by the fixed step-size NLMS predictor for different VBR videos are listed in
Table 1. These values were obtained by exhausting search and will be used for
comparison.

Unlike the order of the NLMS algorithm varied with different autocorrela-
tions of VBR Videos, the VSSNLMS algorithm provided better performance
while the order is increased. Figure 1 shows that both the MSE of the "Soccer"
and the one of the "Parking Cam" are decreased while the order is increased.
Figure 1(a) shows the performance of predicting the "Soccer" is not obviously
promoted when the order is increased in excess of 23, whereas Figure 1(b)
shows the performance of predicting the "Parking Cam" is not obviously pro-
moted when the order is increased in excess of 6.

Therefore, there is no confusion for the VSSNLMS to determine the order
(i-e. the larger order is, the better performance is). However, the computational
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Table 1. Optimal value of 1 and order for NLMS algorithm

Trace Subsequence " Order Trace Subsequence m Order
Jurassic I 0.01 2 Soccer I 0.07 2
Park I P 0.02 3 P 0.03 2
B 0.03 3 B 0.04 2
Silence of I 0.22 15 The I 0.07 2
The P 0.06 3 Firm P 0.05 12
Lambs B 0.16 15 B 0.04 2
Parking I 0.47 11 Lecture I 0.39 10
Cam P 0.21 15 Room P 0.27 15
B 0.19 8 Cam B 0.28 15
1.4821° 6.2210"
1.46 6.19
il 618
31.42 % 6.17
7] 7]
=14 = 6.16
1.38 6.15
s w0 5 20 25 30 6% 5 10 45 20 25 %0
Order Order
Figure 1(a). Performance of the Figure 1(b). Performance of the
VSSNLMS predictor with increased order VSSNLMS predictor with increased order
(Soccer) (Parking Cam)

complexity of the VSSNLMS algorithm depends on the order. Too large order
causes higher computational complexity of the VSSNLMS algorithm. By ex-
periment, the order = 12 is good enough for most cases and we adopt order =
12 for comparison.

We compare the ability of handling scene changes between the VSSNLMS
algorithm and the NLMS algorithm (with 1 = 0.47 and p = 0.01) for the case
of predicting the "Parking Cam". The order used by the NLMS algorithm is 11
and the results is depicted in Figure 2. It shows that the VSSNLMS algorithm
has better ability for handling scene changes. And the VSSNLMS algorithm
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can achieve smaller misadjustment if there is no scene change. A scene change
occurred from the frame 2030. The prediction errors of the VSSNLMS algo-
rithm can converge to steady state with the fastest speed. Also, the prediction
errors of the VSSNLMS algorithm are smaller than the other two instances in
steady state.

200 . —
ol

-200

(bytes)

-400; scene change .
e NLMS (u = 0.47)
-600¢ N NLMS (u = 0.01)
© | — VSSNLMS
-800t

, Prediction errors

1000}
-1200¢

14000 2030 2040 2050 2060 2070 2080
Frames

Figure 2. Comparison of the ability for handling scene change

Finally, the comparisons of performance for predicting I-frames, P-frames
and B-frames of all MPEG-4 video traces are shown in Table 2. Smaller MSE
(bytes?) indicates better performance and the ratio is defined as that the MSE
of the VSSNLMS algorithm divided by the one of the NLMS algorithm. The
parameters used by the VSSNLMS algorithm have been discussed in Section 3.
The parameters used by the NLMS algorithm are listed in Table 1. The perfor-
mance of the VSSNLMS predictor is compared with the optimal performance
of the NLMS predictor.

The results in Table 2 show that the performances of the VSSNLMS pre-
dictor are better or close to the optimal performances of the NLMS predictor.
It means that the VSSNLMS algorithm with fixed values of parameters can
obtain good performance for most VBR videos with difference statistics and
does not need any prior knowledge of VBR videos. Therefore, the VSSNLMS
predictor is suitable for the prediction of real-time VBR videos.
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Table 2. Performance comparison for NLMS AND VSSNLMS

Trace Subsequence || NLMS (MSE) | VSSNLMS (MSE) || Ratio
Jurassic I 6.7995 x 10° 7.4378 x 10° 1.094
Park P 9.3774 x 10° 9.5932 x 10° 1.023
B 3.1501 x 10° 3.3754 x 10° 1.072

Soccer I 1.5527 x 10° 1.4495 x 10° 0.934
P 1.3397 x 10° 1.3179 x 10° 0.984

B 3.8252 x 10° 3.7135 x 105 0.971

Silence I 1.2415 x 10° 1.0353 x 10° 0.834
of The P 9.9232 x 10° 8.9586 x 10° 0.903
Lambs B 4.1607 x 10° 3.8041 x 10° 0.914
The I 3.1928 x 10° 2.9656 x 10° 0.929
Firm P 4.6159 x 10° 4.6378 x 10° 1.005
B 4.5939 x 10* 4.3917 x 10* 0.956

Parking I 6.1875 x 10% 6.1545 x 107 0.995
Cam P 8.4472 x 10* 1.0586 x 10* 1.253
B 7.035 x 10* 7.9874 x 108 1.135

Lecture I 2.5206 x 10% 2.3031 x 10% 0.914
Room P 2.4951 x 10* 2.178 x 10* 0.873
Cam B 1.5203 x 10* 1.4246 x 10* 0.907

5. Conclusion

329

This paper proposed the VSSNLMS predictor which can overcome the prob-

lems caused by the fixed step-size LMS-type predictor. The VSSNLMS is
based on a variable step-size LMS algorithm which controls step size dynami-
cally by the square of the prediction error. The simulations showed that, with-
out any prior determination of the parameters of the VSSNLMS predictor, the
performances of the VSSNLMS predictor are almost better or close to the opti-
mal performances of the fixed step-size LMS-type predictor for the predictions
of different VBR videos. Moreover, since the computational complexity of the
VSSNLMS predictor is low and the parameters of the VSSNLMS predictor
need not be changed for different VBR videos, the VSSNLMS predictor can
be implemented in the low-cost IEEE 802.15.3 devices to require predictive
bandwidth for different real-time VBR videos.
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