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Abstract Cross layering has recently emerged as a new trend to cope with performance is-
sues of mobile ad hoc networks. The concept behind this technique is to exploit
local information produced by other protocols, so as to enable optimizations
and deliver better network performance. However, the need for a new inter-
action paradigm inside the protocol stack has to face with the legacy aspects
of classical architectures (e.g., the Internet), where layer separation allows for
easy standardization and deployment. In this paper, we show that cross layering
can be achieved maintaining a clean architectural modularity, making protocols
exchange information through a vertical interface. Specifically, we present the
design of a cross-layer module, and provide a proof of concepts of its “usabil-
ity” at different layers of the protocol stack, considering two case studies from a
design and implementation standpoint.

1. Introduction

Cross layering is generally intended as a way to let protocols interact be-
yond what allowed by standard interfaces. This clashes with the design prin-
ciples of classical protocol stacks. Just to provide an example, the Internet
architecture layers protocols and network responsibilities, breaking down the
networking system into modular components. The resulting “strict-layered”
system is composed by modules that are independent of each other and interact
through well-defined (and static) interfaces, located between adjacent layers.
Although this design principle brings important benefits in terms of flexibility
and maintenance costs, it suffers from several characteristics of wireless net-
works (e.g., node mobility or power constraints), degrading the overall network
performance [1]. Hence, the need of introducing stricter cooperation among
protocols belonging to different layers. This last point sets the focus of this pa-
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per, which aims at investigating cross-layer interactions from an architectural
standpoint, in the context of mobile ad hoc networking.

In the ad hoc literature, there are several contributions showing the potential
of cross layering for isolated performance improvements [2][3][4][5]. They all
focus on specific problems, mainly looking at the joint design of two layers.
However, their deployment has to deal with the following issues:

1 Tight-coupling: the design of cross-layer optimizations requires direct
modification of interfaces, causing the involved protocols to become
tightly-coupled, and therefore mutually dependent.

2 Unbridled stack design: while an individual suggestion for cross-layer
design, in isolation, may appear appealing, combining several of them
together could result in a “spaghetti” stack design [6], making architec-
tural maintenance a challenging task. Moreover, an uncontrolled combi-
nation of isolated cross-layer optimizations may cause mutual interfer-
ences, which could lead single nodes to unstable and degraded behavior,
with negative impacts on the entire network.

3 Correct system implementation: when introducing new interactions among
protocols, special care has to be taken to maintain a correct execution
flow, without causing critical problems on the internals of the operating
system. In real platforms, network protocols consist of a mixed set of
processes executing at both kernel and user levels. For this reason, the
implementation of cross-layer interactions should guarantee a correct in-
terleaving of protocols execution, without introducing failure patterns on
synchronization and scheduling of local system processes.

This paper addresses cross-layering from an architectural standpoint, pro-
viding a basis for tackling the semantic problems of interfering optimizations
and correct system implementation. In particular, we claim that new inter-
actions can be realized maintaining the layer separation principle, with the
introduction of a cross-layer interface (XL-interface) that standardizes verti-
cal interactions and gets rid of tight-coupling from an architectural standpoint.
The key aspect is that protocols are still implemented in isolation inside each
layer, offering the advantages of:

s allowing for full compatibility with standards, as the XL-interface does
not modify each layer’s core functions;

m providing a robust upgrade environment, which allows the addition or
removal of protocols belonging to different layers from the stack, with-
out modifying operations at other layers;

= maintaining the benefits of a modular architecture (layer separation is
achieved by standardizing the usage of the XL-interface).
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Engineering the XL-interface presents a great challenge (Section 2). This
component must be general enough to be used at each layer, providing a com-
mon set of primitives to realize local protocol interactions (Section 3). To sup-
port this novel paradigm, we classified cross-layer functionalities and extended
standard TCP/IP protocols in order use them. The result of this effort has been
implemented in the ns2 Network Simulator (Section 4), realizing a simulative
evaluation framework for the usability of the XL-interface at different layers.

2. Architectural Functionalities

We designed the XL-interface with two models of interaction in mind: syn-
chronous and asynchronous. Protocols interact synchronously when they share
private data (i.e. internal status collected during their normal functioning). A
request for private data takes place on-demand, with a protocol issuing a query
to retrieve data produced at other layers, and waiting for the result. Asyn-
chronous interactions characterize the occurrence of specified conditions, to
which protocols may be willing to react. As such conditions are occasional
(i.e. not deliberate), protocols are required to subscribe for their occurrences,
and then return to their work. The XL-interface is in turn responsible for deliv-
ering eventual occurrences to the right subscribers. Specifically, we consider
two types of events: internal and external. Internal events are directly gen-
erated inside the protocols. Picking just one example, the routing protocol
notifies the rest of the stack about a “broken route” event, whenever it dis-
covers the failure of a preexisting route. On the other hand, external events
are discovered inside the XL-interface on the basis of instructions provided by
subscriber protocols. An example of external event is a condition on the host
energy level. A protocol can subscribe for a “battery-low” event, specifying
an energy threshold to the XL-interface, which in turn will notify the protocol
when the battery power falls below the given value. Note that the host energy
controller simply provides the current battery level value, but it is not in charge
of checking the threshold and notify related events.

As the XL-interface represents a level of indirection in the treatment of
cross-layer interactions, an agreement for a common representation of data
and events inside the vertical component is a fundamental requirement in or-
der to guarantee loosely-coupling. To this end, the XL-interface works with
abstractions of data and events, intended as a set of data structures that com-
prehensively reflect the relevant (from a cross-layering standpoint) information
and special conditions used throughout the stack. A straightforward example
is the topology information collected by a routing protocol. In order to abstract
from implementation details of particular routing protocols, topology data can
be represented as a graph inside the XL-interface. Therefore, the XL-interface
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becomes the provider of shared data, which appear independent of its origin,
and hence usable by each protocol.

How is protocols internal data exported into XL-interface abstractions? This
task is accomplished by using call-back functions, which are defined and in-
stalled by protocols themselves. A call-back is a procedure that is registered
to a library at one point in time, and later on invoked (by the XL-interface).
Each call-back contains the instructions to encode private data into an associ-
ated XL-interface abstraction. In this way, protocol designers provide a tool
for transparently accessing protocol internal data.

3. Designing the cross-layer interface

In order to give a technical view of the vertical functionalities, we assume
that the language used by the XL-interface allows for an object oriented repre-
sentation of data structures and functions. We adopt the following notation to
describe the XL-interface interface:

X L_object.method : (input) — (output)

As described in the previous Section, the XL-interface does not generate
shared data, but simply acts as intermediary. Protocols synchronize on an ab-
stract representation of internal data (namely XL _data) where one producer
protocol specifies a call-back function to export its private data to the abstract
representation.

XL _data.seize : (callback()) — ()

On the other hand, consumer protocols access the shared data with read only
permissions, using

XL_data.access : () — (abstractData)

Going back to the example on network topology data, the routing agent plays
the role of the producer protocol, exporting routing tables into an abstract
graph representation. Consumer protocols living in the scope of other lay-
ers, could gather network topology information calling the access() method,
which in turn invokes the call-back function registered by the routing agent.
This makes the interaction between producer and consumer protocols loosely-
coupled, avoiding direct protocol dependencies.

The remaining functionalities of the XL-interface cope with asynchronous
interactions. In the case of internal events, the role of the XL-interface is to
collect subscriptions, wait for notifications, and vertically dispatch event occur-
rences to the appropriate subscribers. A protocol subscribes for a cross-layer
event (namely XL _event) by calling the function

X L_event.subscribe : (handler()) — ()
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Note that the subscriber protocol has to specify a handler function, which will
be used by the XL-interface to notify occurrences and triggering event han-
dling. So, subscriber protocols play again the consumer role, while producer
protocol notify event occurrences by calling

XL_eventnotify: () = ()

The XL-interface is in charge of maintaining a subscription list for each kind
of cross-layer event, dispatching occurrences to the correct subscribers.

In the case of external events, the XL-interface must additionally act as event
notifier. The idea is that some protocols might be interested in conditions that
are not directly verified by other protocols. To this end, subscriber protocols
instruct the XL-interface on how to detect the event. The detection rules are
embedded in a monitor function, which periodically checks the status of the
cross-layer abstractions under inquiry. When the monitor detects the speci-
fied condition, the XL-interface dispatches the information to the subscriber
protocol. A protocol initiates the monitoring of an external event by passing
a monitor and a handler function to the XL-interface, through the following
method of the target data abstraction

X L_data.setMonitor : (monitor(), handler()) — ()

The XL-interface serves this call by spawning a persistent computation that
executes the following steps:
while true do
freshData = XL _data.access()
if monitor(freshData)
handler()
endif
endwhile

4. Using the cross-layer interface

In order to practise the usage of the XL-interface, we realized a simula-
tion framework, based on the Network Simulator ns2 (v. 2.27), and a library
of objects and abstractions, called ProtoLib, provided by the Naval Research
Laboratory (NRL) [7]. The choice of ProtoLib is motivated by its high flex-
ibility. It provides a set of simple, cross-platform C++ classes that allow the
development of network protocols and applications. Currently, the ProtoLib
supports several real platforms (e.g., Unix and WIN32), as well as the ns2
simulation environment. Another important feature is that the ProtoLib pack-
age comes with an implementation of Optimized Link State Routing protocol
(OLSR), compliant with the latest specification [8]. In the framework result-
ing from the integration of ns2 with the ProtoLib, it was a “natural” choice to
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Figure 1.  Cross-layer data. Figure 2. Cross-layer events.

place the objects of the XL-interface inside the ProtoLib. We engineered them
as abstract classes that other protocols can implement in order to share data
and exchange local events. Specifically, we realized interfaces for XL Data
and XL_Event objects, respectively for sharing protocol internal data (i.e., syn-
chronous interactions) and for subscribing/notifying internal events (i.e., asyn-
chronous interactions). In the following, we briefly describe the functionalities
of the new objects:

ProtoXLData This is a generic class (see Figure 1) that identifies internal
data owned by a protocol and shared to the rest of the network stack. It
offers methods to declare ownership of the data and to specify a call-back
function for “translating” the internal data format used by the owner, in a
cross-layer ontology common to the whole stack. Other protocols access
instances of this class with read-only permissions.

ProtoXLEvent This is a generic class (see Figure 2) that identifies conditions
or events detected internally to the protocol, which may result of interest
for the rest of the stack. It offers methods to subscribe interest in events
derived from this class, as well as to notify occurrences of them.

In the following, we present two examples of cross-layer optimization based
on the XL-interface. We show interactions involving network, transport and
middleware layers, to highlight how the objects of the XL-interface suites dif-
ferent levels of the protocol stack. The two case studies implement their cross-
layer interactions by specializing the base objects presented in the previous
Section.

4.1 Improving the performance of data transfer

In this Section, we show how the XL-interface has been used to cope with
performance issues of TCP data transfer. TCP performance degrades in ad hoc
environments due to losses, which are induced by fault conditions (e.g. net-
work partitions, route failures, and misbehaving nodes), and are erroneously
interpreted as effects of congestion. To deal with this problem, we introduce
a forwarding mechanism able to improve the performance and reliability of
data transfer, also in presence of misbehaving (e.g. selfish) nodes, by means
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of a cross-layer interaction between the forwarding and transport agents. This
mechanism is based on multi-path forwarding and estimates neighbors reliabil-
ity according to end-to-end acknowledgments. Specifically, in case of reliable
data transfer, TCP acknowledgments are used as delivery notifications. The
reception of a TCP ack at the transport layer indicates that the corresponding
sent packet has been correctly delivered at destination, and hence correctly for-
warded by intermediate nodes. Each node estimates only neighbors’ reliability,
and uses this index to forward packets on most reliable routes, so as to avoid
unreliable paths and minimize congestion events. For further details on the
forwarding mechanism we point the reader to [9].

The realization of the forwarding mechanism in our evaluation framework
involves the introduction of a class of cross-layer events of type Recv TCP-
ack/nack, to which the forwarding agent subscribes for notifications coming
from a local TCP agent (see Figure 3). Specifically, the TCP agent notifies a
TCP-ack event to the forwarding agent whenever it receives a valid acknowl-
edgment. Instead, TCP-nack events are caused by packets retransmissions. An
event notification causes the forwarding agent to update the reliability index
associated to the neighbor through which the packet passed. The update is pos-
itive for TCP-ack and negative for TCP-nack. Reliability indexes are used to
send packets on most reliable routes. Specifically, we implemented a forward-
ing policy which chooses the route with the smallest route-length/reliability
ratio, namely best-route forwarding. As the simultaneous use of multiple paths
(i.e., load-balancing) degrades TCP performance [10], we compare our best-
route forwarding policy with the conventional case in which packet forwarding
is based on single path routing (like in OLSR), where the shortest route is al-
ways chosen (i.e., single path).
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The simulation study investigates TCP performance by varying the percent-
age of misbehaving nodes. The simulated network is composed of 20 nodes,
with 5 active Telnet sessions. Connection endpoints are generated randomly,
and each simulated scenario is characterized by an increasing number of mis-
behaving nodes that cooperate to routing, but do not forward TCP traffic. Fig-
ure 4 shows how best-route outperforms single path forwarding whenever mis-
behaving nodes are present, while the two method are comparable in coop-
erative networks. Specifically, the performance gain achieved with our for-
warding mechanism grows up to 50% in the case of 20% and 30% of mis-
behaving nodes. Results also confirms the poor performance achieved by the
load-balancing policy, that increase the chances of encountering misbehaving
nodes.

4.2 Improving the quality of unstructured overlays

In this Section, we show how the XL-interface has been used to improve
the performance of Gnutella, a well-known unstructured overlay platform. Al-
though we used Gnutella as a case study, a similar approach could be used
for other peer-to-peer (p2p) platforms, so as to make them more reactive and
usable in ad hoc environments. Full details about this application of the XL-
interface are reported in [11].

By simulating a fully-fledged Gnutella system in ad hoc environments, we
identified peer discovery as a critical issue. In summary, discovery procedures
based on application layer flooding generate overhead, and decrease the ca-
pacity of building the overlay. Moreover, as peer selection is random, Gnutella
overlays are significantly sensitive to nodes mobility, and fail to react promptly
in scenarios with partitioning or heavy churn rates. Under these observations,
we re-designed peer discovery and link selection in order to interact with the
routing agent at the network layer. The fundamental idea is to exploit node dis-
covery procedures provided by routing agents, so to jointly perform peer dis-
covery together with gathering topology information. For example, in a proac-
tive routing protocol like OLSR, nodes periodically issue Hello and Topol-
ogy Control messages, containing information about the neighbors that they
currently sense. This information could be enriched with Optional Informa-
tion (Ol), containing peer credentials (e.g., IP address and port number of the
Gnutella service). This approach saves the network resources consumed by an
explicit peer discovery protocol.

We modeled the cross-layer interactions using events between Gnutella peers
and OLSR agents (see Figure 5). We initially extended the NRL implementa-
tion of OLSR to handle new messages for optional information, and afterward
specialized two classes of cross-layer events: i) Spread OI events, to which
routing agents subscribe, receiving notifications from Gnutella peers. These
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events are used to ask OLSR agents to advertise local peer credentials around,
along with the next Hello or Topology Control message (see OLSR RFC [8] for
details on the protocol); ii) Recv OI events, to which Gnutella peers subscribe,
in order to receive notifications from underlying OLSR agents. These events
are used to notify Gnutella peers about incoming credential advertisements of
remote peers. This allowed us to realize peer discovery by making each peer
periodically advertise its credentials, and reacting to events of advertisements
reception. The overall discovery procedure became simpler and easier to con-
trol. On receiving cross-layer events, peers were able to fill up a local table of
advertisement generated by foreign agents. Moreover, as advertisements travel
the network along with routing control packets, it was possible to get accurate
estimates of peers physical distances (in number of hops). This topological
information enriched the advertisement table, and allowed us to play a smarter
overlay formation protocol, introducing a link selection policy based on phys-
ical distances. The rational behind was to simply prioritize closer connections
over further ones, with the goal of building an overlay topologically closer to
the physical network. In order to give a flavor of the benefits introduced by the
XL-interface, Figure 6 shows the results obtained by studying the path stretch
generated by the legacy and the cross-layer version of the protocol, defined as
the ratio of the number of hops (in the physical network) along the path con-
necting two peers in the overlay, to that along the direct unicast path. This
metric measures how far (from a topological point of view) the overlay is from
the physical network, and characterizes the overhead induced by the former
on the latter. By configuring an increasing percentage of peers in a network
of fixed size, we observed that cross-layer Gnutella (XL-Gnutella) produces
better path stretches (e.g., respectively 1.35 against 2.1 of legacy Gnutella with
a 50% of peers), exhibiting a stable behavior with smaller variances.
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5. Concluding Remarks

Cross layering represents a trendy solution to overcome performance lim-
itations of mobile ad hoc environments. Current proposals testify the effec-
tiveness of cross-layering in delivering better protocol performances, but they
tackle single cases without prospecting any form of coexistence from an archi-
tectural standpoint. The contribution of this paper is the design of an interface
able to support several cross-layer solutions, using common interaction mod-
els. This approach decouples interacting entities, and preserves the flexibility
and modularity features of legacy architectures.

In order to evaluate the usability of the proposed interface, we considered
two case studies, verifying that the cross-layer primitives could be used at dif-
ferent layers of the stack, for different purposes. The next step is to engineer
and deploy an implementation of the cross-layer interface on a real platform,
and verify that the interaction primitives guarantee a clean execution pattern,
without introducing mutual interferences.
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