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Abstract. For analyzing properties of complex systems, a mathemati-
cal model for these systems is useful. In this paper we give quantitative
definitions of adaptivity, target orientation, homogeneity and resilience
with respect to faulty nodes or attacks by intruders. The modeling of
the system is done by using a multigraph to describe the connections be-
tween objects and stochastic automatons for the behavior of the objects.
The quantitative definitions of the properties can help for the analy-
sis of existing systems and for the design of new systems. To show the
practical usability of the concepts, the definitions are applied to a slot
synchronization algorithm in wireless sensor networks.
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1 Introduction

A goal for networking systems is to reduce administrative requirements for users
and operators. A technical system should be able to manage itself as much as
possible without requiring human effort. Failures and malfunctioned modules
should be detected automatically and auto-corrected if possible. This leads to
the concept of self-organization, which is a topic that have become more and
more important in the last few years. Much research has been done for the
design and analysis of autonomous and self-organizing systems.

To assist these technological advances, a mathematical model is useful for
a better understanding of complex systems and to improve the design of new
systems. The main goal of this paper is to contribute to this issue. We give
formal definitions of adaptivity, target orientation, homogeneity and resilience.
We also apply these concepts to a practical example, namely the self-organized
slot-synchronization in wireless networks.

In this paper, Section 2 gives an overview of the related work and Section
3 gives a mathematical model for complex systems. Sections 4-7 define quanti-
tatively the concepts adaptivity, target orientation, homogeneity and resilience.
0 This research is partially supported by the SOCIONICAL project (IP, FP7 Call 3,

ICT-2007-3-231288), by the ResumeNet project (STREP, FP7 Call 2, ICT-2007-2-
224619) and by the Network of Excellence EuroNF (IST, FP7, ICT-2007-1-216366).
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In Section 8, we apply our definitions to model slot synchronization in wire-
less networks. Section 9 contains some discussions, applications and advanced
conclusions of the formal model described in this paper.

2 Related work

In the last few years, much research has been done in the topic of self-organizing
systems. Unfortunately, there is no generally accepted meaning of self-organization.
According to [1] and [2] some typical features of self-organization are autonomy,
emergence, self-maintenance, adaptivity, decentralization, and optimization.

A non-technical overview of self-organization can be found in [2]. Other def-
initions and properties of self-organizing systems can be found in thermody-
namics [3], information theory [4], cybernetics [5], [6], [7] and synergetics [8].
An extensive description about the design of self-organizing systems is in [9]. A
good overview about modeling complex systems can be found in [10]. [11] gives
a survey about practical applications of self-organization. For modeling contin-
uous self-organizing systems and a comparison between discrete and continuous
modeling see [12]. Quantitative definitions of autonomy, emergence and global-
state awareness, which use the information theoretical concept of entropy, can
be found in [13], [14] and [15]. The methods of [13] for modeling a system with
stochastic automatons are also used in Section 3 of this paper. While [13] gives
quantitative definitions only for the concepts autonomy and emergence, this pa-
per contains the definitions of adaptivity, target orientation, homogeneity and
resilience.

3 Discrete Systems

For modeling discrete systems, we use the methods of [13], which are based
on the ideas of [2]: A multigraph describes the connections between objects and
stochastic automatons describe the behavior of the objects. These concepts allow
the modeling of a wide variety of complex systems of the real world, e.g. systems
that appear in biology, physics, computer science or any other field.

In the real world, not all properties are known in all detail (e.g. it would
be very difficult to describe a deterministic behavior of an animal), but there
are many things, that can better be described by probabilities. Therefore, a
stochastic behavior is more adequate than a deterministic one. In this section,
we use directed multigraphs to describe the communication channels for the
interaction between objects: Each node in the multigraph corresponds to an
object and each edge of the multigraph is used to model the interaction (e.g.
transfer of data) between the objects. For modeling the external influence of the
environment we use special vertices (external nodes) in the multigraph, where
the edges from these vertices represent the channels for the input into the system,
and the edges to these vertices represent the output of the system. We distinguish
between user data (data from the environment that is processed by the system)
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and control data (data from the environment to change the behavior of the
system). The behavior of the objects is modeled by finite stochastic automatons.

Definition 1 A discrete system1 S = (G, E, C,A, a) consists of

– a finite directed multigraph G = (V,K, τ), where V is the set of vertices, K
is the set of directed edges (loops are also allowed), and τ : K → V 2 assigns
to each edge k ∈ K the corresponding vertices τ(k), where the starting vertex
is also denoted by k− and the ending vertex is denoted by k+. Therefore we
have τ(k) = (k−, k+) for each k ∈ K. For a vertex v ∈ V the set of edges
ending in v is denoted by v− := {k ∈ K | k+ = v} and the set of edges
starting at v is denoted by v+ := {k ∈ K | k− = v}. Analogously for T ⊆ V
the sets T− and T+ are defined by T− :=

⋃
v∈T

v− = {k ∈ K | k+ ∈ T} and

T+ :=
⋃

v∈T

v+ = {k ∈ K | k− ∈ T}.

– a subset of vertices E ⊆ V , which elements are called external nodes. The
other vertices are called internal nodes. The input edges are denoted by I =
E+ = {k ∈ K | k− ∈ E}. The output edges are denoted by O = E− = {k ∈
K | k+ ∈ E}. All other edges are called internal edges.

– a subset of the input edges C ⊆ I. The elements of C are called control
edges. The other input edges U := I \ C are called user edges.

– a finite set A, which is used as alphabet for communication between the nodes.
– a family a = (av)v∈V of stochastic automatons av = (Av−, Av+, Sv, Pv, dv),

where
• Av− = {(xk)k∈v− | xk ∈ A, k ∈ v−} are the local input values,
• Av+ = {(xk)k∈v+ | xk ∈ A, k ∈ v+} are the local output values,
• Sv is the set of states,
• Pv : Sv × Av− × Sv × Av+ → [0, 1] is a function, such that P (q, x, ·, ·) :

Sv × Av+ → [0, 1] is a probability distribution on Sv × Av+ for each
q ∈ Sv and x ∈ Av−. The value P (q, x, q′, y) is the probability, that the
automaton moves from state q ∈ Sv into the new state q′ ∈ Sv and gives
the local output y ∈ Av+ when it receives the local input x ∈ Av−.

• dv : Sv → R+ is a map, where dv(q) describes the delay between two
pulses of the clock when the automaton is in state q ∈ Sv (there is no
global clock, but each automaton has its own clock).

These definitions allow us to model complex systems of the real world: As-
sume that we would like to analyze a system, e.g. a computer network. Then
each node of the network corresponds to a vertex of the multigraph. If one node
of the network is able to communicate with another node, then we draw an edge
between the vertices in the graph. The behavior of each node is modeled by a
stochastic automaton, which describes, how the internal state changes for each
input, which it gets from the other nodes. Note that the clock pulses of the au-
tomatons are deterministic: For each node v ∈ V and each state q ∈ Sv the value
dv(q) is the amount of time, the automaton stays in the state q. We could also

1 see also [13]
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use nondeterminism for the clock pulses (e.g. with a probability distribution on
a discrete set of values for the duration), but this is usually not needed, because
this can be modeled by using the nondeterminism for the state transition into
different states q ∈ Sv with different values dv(q).

If we consider the global view on the system at a point of time, then we see
a current local state inside each automaton and a current value on each edge,
which is transmitted from one node to another node. Such a global view is a
snapshot of the system. It is formally defined in the following definition:

Definition 2 Let S be a system. A configuration c = (cV , cK , D) consists of

– a tuple cV ∈
∏

v∈V

Sv of states, which defines the current states of the automa-

tons,
– a map cK : K → A, which defines the current symbols on the edges,
– a map D : V → R+, where D(v) ≤ dv(cV (v)) describes the length of the time

interval between the current point of time and the next pulse of the clock in
the automaton av.

The set of all configuration is denoted as Conf. For a configuration c = (cV , cK , D)
and a set T ⊆ K of edges the assignment cK |T : T → A of the edges in T is
also denoted by c|T . The restriction of c to the external nodes is defined by
c|ext = (cV |E , cK |E+, D|E). The restriction of c to the internal nodes is defined
by c|int = (cV |V \E , cK |(V \E)+, D|V \E). An initialization of S is a pair (Γ, PΓ ),
where Γ is a set of configurations and PΓ : Γ → [0, 1] is a probability distribution
on Γ , which describes, with which probability the system starts in a certain con-
figuration c ∈ Γ . For a configuration c = (cV , cK , D) the duration of c is defined
by dc = min{D(v) | v ∈ V }. Let Nc = {v ∈ V | D(v) = dc}. Then the elements
of Nc are the nodes with the soonest clock pulse after the current point of time.
A configuration c′ = (c′V , c′K , D′) is a successor configuration of c = (cV , cK , D)
with probability p ∈ [0, 1] (notation: P (c → c′) = p) if

– c′V (v) = cV (v) for v ∈ V \Nc,
– c′K(k) = cK(k) for k ∈ (V \Nc)+,
– D′(v) = D(v)− dc for v ∈ V \Nc,
– D′(v) = dv(c′V (v)) for v ∈ Nc,
– p =

∏
v∈Nc

Pv(cV (v), (cK(k))k∈v−, c′V (v), (c′K(k))k∈v+).

A (finite or infinite) tuple s = (c0, c1, c2, . . .) of configurations is called configu-
ration sequence if for each j ≥ 0 we have P (cj → cj+1) > 0. For a configuration
c let succ(c) be a random variable with the probability distribution P (succ(c) =
c′) = P (c → c′) for each successor configuration c′ of c. This concept of successor
can be extended in a canonical way to arbitrary sequences (c0, c1, c2, . . . , cj) of
configurations to get the probability P (c →∗ c′), that c′ is reached from the
configuration c, where the steps are considered as independent. The duration of

a sequence s = (c0, c1, c2, . . . , cj) of configurations ci ∈ Conf is ds =
j∑

i=0

dci . For
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a given duration t ≥ 0 let P (c →t c′) be the probability, that c′ is active t time
units after the time of c, i.e. we consider the probabilities of the sequences s =
(c0, c1, c2, . . . , cj) of configurations with c0 = c and cj = c′ with ds−dc′ ≤ t < ds.
For t ≥ 0 let P (Γ →t c) be the probability, that c is active at time t. Define

Γt = {c | P (Γ →t c) > 0},

i.e. Γt is the set of all configurations c that may be active at time t, where we
assume that the initialization of the system is at time t0 = 0. Let Conft be the
random variable taking values in Γt with the probability distribution P (Conft =
c) = P (Γ →t c) for c ∈ Γt.

To analyze the behavior of a system, we initialize it at time t0 = 0 by choosing
a start configuration c0 ∈ Γ and then the automatons produce a sequence c0 →
c1 → c2 → . . . of configurations during the run of the system. When we do a
snapshot of the system at time t ≥ 0, we see a current configuration c ∈ Γt.
Since the automaton and the initialization are not deterministic, the sequence
c0 → c1 → c2 → . . . is not uniquely determined by the system, but it depends
on random events. So for each time t ≥ 0, we have a random variable Conft,
which describes, with which probability P (Conft = c) the system is in a given
configuration c at time t.

A single node v in the system has not the global view, it only sees its local
input and output values and its internal state. This concept is given in the
following definition.

Definition 3 Let S be a system, v ∈ V and c = (cV , cK , D) be a configuration.
The local configuration of c in v is defined by

Locv(c) = (cV (v), (cK(k))k∈v−∪v+, D(v))

Let Conft,v = Locv(Conft) be the random variable for the local configuration of
v at time t ∈ R+

0 .

For measuring the information in a system we use the statistical entropy:

Definition 4 For a discrete random variable X taking values from a set W the
entropy H(X) of X is defined by [16]

H(X) = −
∑

w∈W

P (X = w) log2 P (X = w).

For discrete random variables X, Y the conditional entropy H(X|Y ) is defined
by

H(X|Y ) =H(X, Y )−H(Y )

=−
∑

w,w′∈W

P (X = w, Y = w′) log2 P (X = w, Y = w′)

+
∑

w∈W

P (Y = w) log2 P (Y = w)
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The entropy measures, how many bits are needed to encode the outcome of
the random variable in an optimal way. In Section 6 we use this concept to define
quantitatively the homogeneity of a system. Another concept, that we need for
the quantitative definitions in Sections 4-7, is the average value of a function:

Definition 5 Let f : R+
0 → R be a real function, which is integrable on every

finite interval. For points of time s > r ≥ 0 the average value of f in the interval

[r, s] is defined by Avg[r,s](f) = 1
s−r

s∫
r

f(t)dt. The average value of f is defined

by Avg(f) = lim inf
t→∞

Avg[0,t](f).

4 Target orientation

Before a new system is designed, we have the goal of the system in our mind:
The system should fulfill a given purpose. The behavior of each node is defined
in such a way, that this goal is reached, so the design of a system needs a target
orientation, which is specified in the following definition.

Definition 6 Let S be a system and (Γ, PΓ ) be an initialization. Let b : Conf →
[0, 1] be a valuation map for the configurations. For a point of time t ≥ 0 the
level of target orientation of S at time t is defined by TOt(S, Γ ) = E(b(Conft)),
where E is the mean value of the random variable. The level of target orientation
of the system S is defined by TO(S, Γ ) = Avg(t 7→ TOt(S, Γ )). The system S
is called target oriented with respect to b if TO(S, Γ ) = 1.

For the target orientation, the valuation map b describes which configurations
are “good”: A high value b(c) ≈ 1 means that the configuration c is a part of
our goal which we had in mind during the design of the system. The level of
target orientation measures the valuations b(c) of the configurations during the
whole run of a system: A high level of target orientation (TO(S, Γ ) ≈ 1) means,
that the mean valuation of the configurations during a run of the system often
is nearly 1.

In [17], a practical application of target orientation is given in the theory
of cellular automatons. In this example, the target goal is the classification of
the initial state. This is the reason, why [17] uses a different definition of target
orientation: A system is target oriented, if the nodes are able to classify the
initial state with respect to a given equivalence relation, which describes the
classes of interest.

5 Resilience

For computer networks, there are different forms of resilience:

– resilience with respect to malfunctioned nodes
– resilience with respect to attacks by an intruder, which is inside the network
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– resilience with respect to attacks by an intruder, which is outside the network
– resilience with respect to natural disasters or other external influence, which

might cause a breakdown of some nodes

The following definition can be used to measure these different forms of
resilience:

Definition 7 Let S be a system and (Γ, PΓ ) be an initialization. Let Θ be a set
and pΘ : Θ → [0, 1] be a probability distribution. Let Z = (Zθ,v)θ∈Θ,v∈V be a
family of stochastic automatons

Zθ,v = (Av−, Av+, ZSθ,v, ZPθ,v, Zdθ,v)

For θ ∈ Θ let Sθ be the system S after replacing av by Zθ,v for all v ∈ V . Let
(ΓSθ

, PΓSθ ) be an initialization of Sθ. Let Confθ be the set of the configurations
of Sθ. Let b = (bθ)θ∈Θ be a family of valuation maps bθ : Confθ → [0, 1] for
the configurations. For a point of time t ≥ 0 let ConfΘ

t be the random vari-
able, which applies the random variable Conft in the system Sθ after choosing
θ ∈ Θ randomly according to the probability pΘ. The level of resilience of S
at time t is defined by Rest(S, Γ ) = E(b(ConfΘ

t )), where E is the mean value
of the random variable. The level of resilience of the system S is defined by
Res(S, Γ ) = Avg(t 7→ Rest(S, Γ )). The system S is called resilient with respect
to b if Res(S, Γ ) = 1.

In this definition the automaton Zθ,v can be used to describe the malfunc-
tioned behavior of a node v. In a computer network, this behavior could be
caused by hardware failure, it could be the behavior of an intruder inside the
network (v ∈ V \ E) or outside of the network (v ∈ E) or it does not send data
to its successor nodes due to a breakdown. The system is resilient if despite the
malfunctioned nodes the system still runs through many “good” configurations.

If there are only few malfunctional nodes, then we can use Zv = av for the
other nodes. If the behavior of a malfunctional node v depends on the origi-
nal behavior av, then the automaton Zv can be a modification of the original
automaton av to describe the malfunctional behavior of v.

6 Homogeneity

The following definition describes how homogenous a system is.

Definition 8 Let S be a system and (Γ, PΓ ) be an initialization. Let < be a strict
linear order on V . For a point of time t ≥ 0 the level of homogeneity of S at

time t is defined by Hot(S, Γ ) = 1−
∑

v,w∈V,v<w

|H(Conft,v)−H(Conft,w)|∑
v,w∈V,v<w

max(H(Conft,v),H(Conft,w)) . The level

of homogeneity of the system S is defined by Ho(S, Γ ) = Avg(t 7→ Hot(S, Γ )).
The system S is called homogeneous, if Ho(S, Γ ) = 1.
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The level of homogeneity measures the similarity of the local configurations of
different nodes: A high level of homogeneity means, that the local configurations
have a similar entropy, while a low level indicates, that the entropies of the local
configurations in different nodes differ very much.

7 Adaptivity

The following definition measures the adaptivity of a system.

Definition 9 Let S be a system and (Γ, PΓ ) be an initialization. Let (Θ, pΘ) be
a set with a probability distribution pΘ : Θ → [0, 1]. Let Z = (Zθ,v)θ∈Θ,v∈C− be
a family of stochastic automatons

Zθ,v = (Av−, Av+, ZSθ,v, ZPθ,v, Zdθ,v)

For θ ∈ Θ let Sθ be the system S after replacing av by Zθ,v for all v ∈ C−.
Let ΓSθ

be an initialization of Sθ. Let Confθ be the set of the configurations of
Sθ. Let b = (bθ)θ∈Θ where bθ : Confθ |int → [0, 1] is a valuation map for the
configurations of the internal nodes. For a point of time t ≥ 0 let ConfΘ

t be the
random variable, which applies the random variable Conft in the system Sθ after
choosing θ ∈ Θ randomly according to the probability pΘ. The level of adaptivity
of S at time t is defined by Adt(S, Γ ) = E(b(ConfΘ

t |int)), where E is the mean
value of the random variable. The level of adaptivity of the system S is defined
by Ad(S, Γ ) = Avg(t 7→ Adt(S, Γ )). The system S is called adaptive with respect
to b if Ad(S, Γ ) = 1.

The level of adaptivity measures the influence of the change of control data:
A high value of Ad(S, Γ ) means that the mean valuation of the configurations
during each run of the system with the new control data is nearly 1, so many
“good” configurations are reached.

If the system has no external nodes (E = Ø), then no automaton in replaced.
In this case, the concept of target orientation can be seen as a special case
of the concept of adaptivity: By choosing a one element set Θ = {θ} we get
TO(S, Γ ) = Ad(S, Γ ). For E = Ø with |Θ| > 1 the level Ad(S, Γ ) is the
weighted mean level of target orientation TO(S, Γ ) with respect to θ ∈ Θ:

Ad(S, Γ ) =
∑
θ∈Θ

pΘ(θ) · TOθ(S, Γ )

where TOθ(S, Γ ) is the level of target orientation with respect to bθ.

8 Slot synchronization in wireless networks

In this section we apply the definitions of the previous sections to the process of
self-organized slot-synchronization in wireless networks [18]. We consider a set of
nodes, each node being able to communicate with some of the other nodes. The



Quantitative Modeling of Self-Organizing Properties 9

access on the shared medium is organized in time slots. Since there is no central
clock, which defines when a slot begins, the nodes perform a slot synchronization
in a completely distributed manner. An algorithm for this purpose is proposed by
Tyrrell, Auer, and Bettstetter in [18]. It is based on the model of pulse-coupled
oscillators by Mirollo and Strogatz [19].

In the latter synchronization model, the clock is described by a phase func-
tion φ which starts at time instant 0 and increases over time until it reaches a
threshold value φth = 1. The node then sends a “firing pulse” to its neighbors
for synchronization. Each time a node receives such a pulse from a neighbor, it
adjusts its own phase function by adding ∆φ := (α− 1)φ + β to φ, where α > 1
and β > 0 are constants.

In [18] the pulse-coupled oscillator synchronization model is adapted to wire-
less systems, where also delays (e.g., transmission delay, decoding delay) are
considered. The duration of an uncoupled period is now 2T with T > 0. This
period is divided into four states (see Figure 1). Let γ ∈ [0, 2T ] be a time instant.
Then the node is in a

– waiting state, if γ ∈ [0, Twait) =: Iwait,
– transmission state, if γ ∈ [Twait, Twait + TTx) =: ITx,
– refractory state, if γ ∈ [Twait + TTx, Twait + TTx + Trefr) =: Irefr,
– listening state, if γ ∈ [Twait + TTx + Trefr, 2T ) =: IRx,

where the constants are defined as follows:

– TTx: Delay for transmitting a value,
– Twait: Waiting delay after the phase function reached the threshold. The

transmission of the firing pulse begins after this delay. The waiting delay is
calculated by Twait = T − (TTx + Tdec), where Tdec is the delay for decoding
the received value.

– Trefr: Refractory delay after the transmission of the firing pulse to avoid an
unstable behavior.

Figure 1: State diagram

Let TRx = 2T − Twait − TTx − Trefr be the duration of an uncoupled listening
state. We assume that each of these durations Twait, TTx, Trefr, TRx is less than
T . The listening state is the only state, in which firing pulses from the neighbors
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can be received and decoded, and the phase function is changed only during the
listening state.

This network can be modeled as a discrete system S = (G, E, C,A, a), where
the internal state of an automaton consists of the current value of the phase
function φ ∈ [0, 1], the current position γ ∈ [0, 2T ] in the cycle in Figure 1 and
some information about the decoding delays. In [13] the complete system and
the algorithm is modeled in full details, so we omit the details here. Simulation
results in [18] show that during the run of the system, groups of synchronizations
are built, i.e. inside each group we have good synchronization (each node of the
group fires at nearly the same time like the other nodes of the group), and if we
wait long enough, then there are only two groups left firing T time units apart
from each other. If we use T as the size of the slots, where the beginning of each
slot is at γ = 0 or γ = T , then both groups have the same slot allocation, so the
slots of all nodes are synchronized.

We now apply our definitions of the previous sections.
Concerning the level of target orientation of S, the good configurations are

those, where nearly all nodes work synchronously. Since the beginning of a slot
is at γ = 0 or γ = T , we define the slot distance of two nodes v, w ∈ V in a
configuration c ∈ Conf by distc(v, w) = dist(γv + TZ, γw + TZ), where γv is the
current value of γ at node v and dist(X, Y ) = inf{|x−y| : x ∈ X, y ∈ Y } is the
usual distance between sets of numbers. The slot distance distc(v, w) ∈ [0, T

2 ] is
the amount of time elapsed between the beginning of the slot of one node and
the beginning of the slot of the other node. For a good configuration the slot

distances should be low: b(c) = 1 −
∑

v,w∈V

distc(v,w)

|V 2|·T/2 . In this example, the level
of target orientation does not depend on the initialization (Γ, PΓ ), so the mean
value E(bθ(Conft)) can be calculated by using an arbitrary start configuration
as a deterministic initialization. We have calculated the level of resilience for a
complete graph G with the parameters, which had also been used for the analysis
in [18]:

– |V | = 30
– T = 100
– Tdec = 15
– TTx = 45
– Trefr = 35
– Twait = 40
– α = 1.2
– β = 0.01

We have calculated TOt(S, Γ ) = E(b(Conft)) for t ≤ 106 steps. Then we can
approximate the level of target orientation by TO(S, Γ ) ≈ Avg[105,106](t 7→
TOt(S, Γ )). The result is TO(S, Γ ) ≈ 0, 997, so the system has a very high level
of target orientation. This can also be derived from the results of [18]: After the
groups of synchronizations are built, the slot distances are zero for almost every
pair of nodes, so TOt(S, Γ ) ≈ 1 and therefore the system is target orientated:
TO(S, Γ ) ≈ 1.
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Now we consider the level of resilience. Assume that a set θ ⊆ V of nodes
have a breakdown in the wireless network. Then the parameter set Θ consists
of all subsets of V , i.e. Θ = P(V ) and pΘ(θ) ∈ [0, 1] is the probability that
the nodes of θ brake down and the other nodes are still working. After the
breakdown we have a system Sθ, where the automaton Zθ,v does not send any
pulses for v ∈ θ and Zθ,v = av works like before for v ∈ V \ θ. The valuation
map bθ describes the good configurations, i.e. all working nodes should still be

able to synchronize: bθ(c) = 1−

∑
v,w∈V \θ

distc(v,w)

|(V \θ)2|·T/2 . If the working nodes still form
a strongly connected graph, they are able to synchronize. If G is the complete
graph, where each node is connected to each other node, then the system is
resilient: Res(S, Γ ) ≈ 1. If G is not the complete graph then the working nodes
might not be strongly connected anymore, so the synchronization only take place
inside each connection component. In this case we have Res(S, Γ ) < 1, where
the exact value depends on the graph G and on the probabilities pΘ: If pΘ(θ) is
small for large sets θ, then with high probability, the working nodes still form a
connected graph, so Res(S, Γ ) is near 1.

Instead of a breakdown of nodes, we also can model the resilience with respect
to an intruder at a node v0 ∈ V , who wants to disturb the communication. In this
case, the parameter set Θ can be used to describe the behavior of the intruder.
Here we use Θ as a discrete subset of R+, where θ ∈ Θ is the duration between
two consecutive pulses, that the intruder sends periodically to the neighbors. The
system Sθ is the system S after replacing the automaton av0 by Zv0 and leave all
other automatons as they are: Zv = av for v 6= v0. The good configurations are

those, where all other nodes are synchronized: bθ(c) = 1−

∑
v,w∈V \{v0}

distc(v,w)

|(V \{v0})2|·T/2 . If
the graph without the node v0 is not connected anymore, then the two connection
components are not able to synchronize anymore, so we get Res(S, Γ ) < 1. For
the complete graph with the parameters, which have already been used above
for the target orientation, we calculated the level of resilience (with the approx-
imation Res(S, Γ ) ≈ Avg[105,106](t 7→ Rest(S, Γ ))). The results for different sets
Θ with the uniform distribution pΘ : Θ → [0, 1] are given in Table 1.

Θ {45} {70} {100} {120} {150} { 45, 70, 100, 120, 150 }
Res(S, Γ ) 0.987 0.985 0.996 0.991 0.996 0.991

Table 1. Level of Resilience

Therefore the system in this model has a high level of resilience with respect
to an intruder, which periodically sends pulses.

Now let us consider the level of homogeneity. If the in-degree |v − | of
all nodes are the same (e.g. in a complete graph), then the local configura-
tion Conft,v has the same entropy for all nodes v since all automatons are
the identical and the initialization is uniform. Therefore the have Hot(S, Γ ) =
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1−
∑

v,w∈V,v<w

|H(Conft,v)−H(Conft,w)|∑
v,w∈V,v<w

max(H(Conft,v),H(Conft,w)) = 1 and the system is homogeneous. If the

in-degrees of the nodes differ, then the entropies H(Conft,v) and H(Conft,w)
need not be the same, but after the two groups of synchronization have been
built, we have H(Conft,v) ≈ H(Conft,w), because the only difference of these
entropies is the information which predecessor q ∈ v− belongs to which group
during the transmission state. So in this case the system is nearly homogeneous.

For the level of adaptivity, we note that the system has no external nodes.
For the valuation map, which we already used for the level of target orientation,
we get Ad(S, Γ ) = TO(S, Γ ) = 1.

9 Discussion of the results

The main result of this paper is, that we get a formalism to analyze complex
systems with respect to self-organizing properties. For the adaptivity, target
orientation, homogeneity and resilience the quantitative definitions given in the
previous sections can be useful for the analysis of complex systems.

When we have a real world system and we would like to analyze this system
with respect to self-organizing properties, we first create the model with the
definitions of Section 3. The connections between the objects are described by the
multigraph and the behavior of the objects are described stochastic automatons.
In this model we can apply the definitions of sections 4-7 to calculate

– the level of target orientation,
– the level of adaptivity,
– the level of resilience,
– the level of homogeneity.

The level of target orientation shows, how good the system satisfies the goal,
for which the system is designed for. The adaptivity and the resilience are two
of the main properties of self-organizing systems, so together with the level of
emergence and the level of autonomy of [13] they are also indicators, how self-
organizing the system is. Finally, the level of homogeneity shows how different
or equal the nodes behave.

One major problem with the definitions of these levels is the complexity: For
a very complex system, it might be difficult to compute the exact values for the
levels. But the examples in this paper show, that even if the system is too large
to compute the exact levels, the definitions can still be useful to get an approx-
imation of these levels. For example, if we consider the level of homogeneity for
the slot synchronization in Section 8, then we can derive Ho(S, Γ ) ≈ 1 from
Definition 8 without computing the exact value.

10 Conclusion

In this paper we described how self-organzing properties of complex systems can
be measured quantitatively. While [13] and [14] have already given definitions
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for the emergence and autonomy, the novel contribution of this paper are the
quantitative definitions for some other properties of self-organizing systems:

– adaptivity,
– target orientation,
– homogeneity,
– resilience.

These definitions may help for the analysis of existing systems and for the design
of new systems with self-organizing properties.
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