
Services in Game Worlds: a Semantic Approach
to Improve Object Interaction

Jassin Kessing, Tim Tutenel, and Rafael Bidarra

Computer Graphics Group
Delft University of Technology, The Netherlands

JassinKessing@gmail.com, T.Tutenel@tudelft.nl, R.Bidarra@ewi.tudelft.nl

Abstract. To increase a player’s immersion in the game world, its ob-
jects should behave as one would reasonably expect. For this, it is now
becoming increasingly clear that what game objects really miss is richer
semantics, not eye-catching visuals. Current games’ lack of semantics is
mostly due to the difficulty of game designers to realize such complex
objects. This paper proposes a solution to this problem in the form of
services, characterizing classes of game objects. An example of this is
the service of a vending machine, which exchanges a coin for a soda.
A three-phased methodology is presented to incrementally specify and
add services to game objects. This approach has been implemented and
validated by means of a prototype system, which enables a simple and in-
tuitive definition of services in an integrated environment. It is concluded
that game objects aware of their services facilitate more and better object
interaction, therefore improving gameplay as well.

Key words: game worlds, services, semantics, object interaction

1 Introduction

Look around and you will probably see objects scattered all around the place. If
the same room would be used as the virtual environment of a game, one would
probably want to see the same objects - or at least some objects - because empty
environments are unnatural to walk through. Game environments that are filled
with objects will therefore help immerse the player into the game world. By
using graphics, animations, and physics, virtual objects could appear as players
expect. However, that only accounts for their visual aspect, because most objects
in games are still useless, being there for decoration purposes only. Only few
objects, which are crucial for the game progress, are made functional.

An example is the role-playing game The Elder Scrolls IV: Oblivion [1], where
objects can be picked up and used on specific locations to trigger an event, like
opening a door with a key. Some objects have an effect on the player’s avatar,
for instance eating bread to increase the health, or wearing armor to increase
the level of defense. In the game Alone in the Dark [2], several objects, which
look useless at first sight, can be combined to create a functional object: a full
battery and an empty flashlight will provide a light in the dark when combined.

In the examples above, the functionality of each object (including its mean-
ing, roles, etc.) was thought up by the game designer and implemented by the
programmer. In the real world, a particular object may assume other functions
or roles never anticipated by its designer; with a game object in a virtual world,
this is definitely not (yet) the case, and certainly not automatically. This limita-
tion makes it impossible for a player to (make his avatar) interact with a game
object in many reasonable ways.

In the fields of linguistics, computer science and psychology, semantics is the
study of meaning in communication. When focusing on virtual environments
for computer games, semantics is the information conveying the meaning of (an
object in) a virtual world [3]. A serious problem in current game development is
a lack of tools to easily specify and add semantics to objects, resulting in a lack
of object semantics in games. With a semantically rich object representation,
virtual objects assume behaviors like in the real world, instead of consisting of
a geometric model only. This can be illustrated with a few examples. When
eaten by a character, an apple will reduce the hunger level of that character; in
other words, an apple provides the service of satisfying someone’s hunger. A coat
serves its wearer for warmth. A fire, however, will provide warmth to everyone
in the area. And a vending machine has the service to supply cans of soda, but
only after it has received money.

The role of semantics in virtual environments is receiving increasing attention
[3], but so far not much research has been done on adding semantics to game
objects, let alone with the purpose of making them more functional or improving
the overall gameplay. This paper focuses on our research efforts to improve the
semantics of objects placed within game worlds. In particular, the notion of
services is proposed, by which virtual objects get to ’know’ about their roles
in the world, how they can affect other entities (including the player’s avatar
or artificial agents), and how others can interact with them. Empowered with
the notion of services, objects acquire their own behavior, instead of a purely
predefined behavior; they can behave as one expects, and correspondingly one
is able to interact with them as one expects, regardless of whether the virtual
object is completely imaginary or mimicking some real world object. We believe
that this can significantly change and improve the gameplay, as players will be
able to express their creativity and find more paths to achieve the same goal.
Enabling game developer teams to easily declare services and assign them to
object classes, as described in this paper, is a major step towards the ultimate
goal of achieving more and better object interaction.

2 Related Work

Smart objects [4] were a successful proposal for adding semantics to virtual
objects, dealing with many of the possible user interactions in a virtual en-
vironment. Noticeably, smart objects were primarily devised for manipulation,
animation, and planning purposes, like grasping, pulling, or rotating (individual
parts of) objects. An example is an artificial agent that can open a door by

moving its hand to the door knob, using the correct hand posture, and turning
the knob. Although smart objects are powerful for these purposes, they lack the
information of which services they provide to their users.

Research in artificial intelligence (AI) proposed the notion of ontologies, due
to the lack of shareable and reusable knowledge bases. An ontology is an explicit
specification of a conceptualization: a representational vocabulary for a shared
domain of knowledge, in the form of human-readable and machine-enforceable
definitions of classes, relations, functions, and other objects [5]. When placing
ontologies in the context of this research, they define the meaning of objects and
the relations between them. In ontologies, important relationships are general-
ization and inheritance, where classes are connected, and each subclass inherits
the features of its superclass [6]. The class Car, for example, has the class Ve-
hicle as its parent. Another important relation is instantiation, which relates a
class with each of the individuals that constitute it. A Ferrari, for instance, is a
kind of Car. In Section 4, the usefulness of these two relations for the creation
of objects with services will become apparent.

3 Designing Services

In order to design services for game objects, it can be very useful to analyze
how real world objects can be structured and classified. In particular, we can
identify the notions of class and attribute. Each object in the real world can
be said to belong to some class, defined as ’a generic description of a collection
of entities based on their essential common attributes’. An attribute, in turn,
is defined as ’a characteristic of an entity’. Classes, therefore, describe entities,
varying from physical objects like ’apples’ and ’people’, to substances like ’water’.
For attributes, one can think of abstract attributes like ’edibility’, or physical
attributes like ’mass’. Units and states express the values of attributes. The
’mass’ attribute could be expressed in the units ’kilograms’ or ’ounces’, while
’edibility’ could be expressed in the states ’edible’ or ’inedible’. Units are also
required to express substances, because they are not quantifiable in integer values
only, unlike physical objects.

The notions introduced above give us a foundation for the definition of ser-
vices. In the real world, entities have particular functions, and provide services,
and this should also be the case for entities in a virtual world; for example, a coat
provides the service of supplying warmth, but only when it is worn. We define
a service as ’the capacity of an entity to perform an action, possibly subject to
some requirements’.

An action can then be described as ’a process performed by an entity, yielding
some attribute value changes or (new) entities’. Actions are best illustrated by
some examples. A service of a heater is to heat the entities in the surrounding
area. This means that the values of their temperature attribute rise; see Fig. 1.
Attribute value changes do not have to occur to target entities only; they can
also affect the actor. Consider an avatar punching an enemy, which lowers the
enemy’s health, but also increases the avatar’s fatigue. The service of a vending

machine, supplying a soda, is a good example of an action yielding an entity; see
again Fig. 1. This soda is an entity that is supplied from the inventory of the
vending machine. However, it is not necessary that the actor always has a stock
of existing entities that can be supplied, as an entity’s action can also yield new
entities. An example is a saw machine that requires trunks, and processes them
into wooden planks, which are new entities. This process leads us to the notion
of service requirements: they can be either actions (e.g. the coat should be worn,
and the saw machine should be given trunks) or some attribute constraints, as
for example a range of values/states (e.g. electrical devices should be powered
on before performing an action, and the fatigue level of the avatar should not
be too high before being able to fight).

Powered on

Coin Supply soda
Sell sodas

Requirement(s) Action
Service

Increase temperature
Heat

Fig. 1. A generic service, a service of a heater, and a service of a vending machine.

From the examples above, there are four important elements that should also
be taken into account when designing services. First, quantities are essential to
indicate how many entities are exchanged during an action, or in which amount
an entity is exchanged, in case of substances. Second, temporal properties are
relevant, because they indicate the duration of a service, which could be a one-
time event, or last for some amount of time. Third, spatial properties indicate
who or what is affected by a service, e.g. the consumer, or all entities within
a certain radius. Finally, a sequence of interaction steps indicates the order in
which requirements should be met before performing an action.

4 Services Put to Work: a Three-phased Approach

The concepts developed in the previous sections have been implemented in a
prototype system which supports the definition of services for game objects
step by step. This system covers the three main phases that were identified in
the object design process: (i) a specification phase, in which generic classes are
specified in a library, (ii) a customization phase, where a selection of classes
from that library is customized into concrete game-specific classes, and (iii) an
instantiation phase, where object instances of these game-specific classes are
placed in a game world. Figure 2 gives an overview of these three phases.

The key idea of the specification phase is to create a library of generic seman-
tic classes. By designing generic classes that can be used in all kinds of virtual

Customization:
Game classes

Instantiation:
Object instances

Specification:
Generic classes Game

development
project

Fig. 2. A phased approach with generic classes in the specification phase, game-specific
classes in the customization phase, and object instances in the instantiation phase.

worlds, consistency and reusability are stimulated, and thus development time
reduced. In this phase, libraries of classes, attributes, units, states, and actions
are created. Relations can be established among these components, and for each
class, services can be defined in order to specify its semantics. By applying inher-
itance, a class hierarchy is developed, with attributes and services that have been
assigned to a class being inherited by all its children. In this way, for example, an
attribute like ’mass’ does not have to be defined for each single class, but to the
’physical object’ class only. To populate these libraries, the WordNet database
[7] was used, as it contains many nouns and verbs in the English language, being
therefore useful for many possible classes, attributes, actions, etc.

In contrast with the specification phase, the other two phases are not generic.
Instead, customization and instantiation play a central role during each partic-
ular game project, which typically has its own unique environment, object style
and desired behavior, etc. In the customization phase, specific game classes are
derived from the generic classes from the first phase, thus automatically inher-
iting all their generic semantics, including their set of attributes, and also the
services they provide. It suffices then to customize the specific behavior desired
for this particular project, including their specific attribute values, e.g. quanti-
ties and temporal properties. The customization phase is also the right time to
assign the project-specific 3D models to the relevant game classes. Finally, in the
instantiation phase, instances of the customized game classes can be created and
placed inside a game world, which is done by means of a level editor specifically
created for this purpose.

5 Conclusions

Despite exuberant visuals, most current games considerably lack proper seman-
tics in the objects populating their virtual worlds. This is partly because design-
ing semantic objects poses especially difficult challenges, including the inherent
complexity of maintaining and scaling all interactions among such objects. This
paper presented a solution to that problem in the form of services, specified as
characteristics of classes of objects. A three-phased methodology has been pre-
sented that enables a game development team to incrementally specify and add
services to game objects. This approach has been implemented and validated by

means of a prototype system, providing an integrated environment which effec-
tively supports a simple and intuitive definition of services. Among the numerous
advantages of this approach, among them (i) it promotes reusability of previ-
ously specified object semantics, (ii) it easily supports behavior customization as
required by each specific game, and (iii) it seamlessly blends with our semantics
engine, charged with all service handling during the game (analogously to what
a physics engine does with in-game physics).

We believe that enabling designers to create game objects that are aware
of each other’s services will be instrumental to achieve more and better object
interaction. This in turn is considered one of the key conditions to significantly
improve gameplay. However, it should also be stressed that object semantics
isn’t but a (powerful) means to serve the gameplay. In particular, it will never
automatically make dispensable the creative work of designers. On the contrary,
care should be taken to avoid overloading objects with superfluous semantics, as
semantics make virtual objects not only more realistic, but more complex as well,
which could end up undermining the gameplay. Therefore, it is the task of the
game designer to seek a balance between achieving realism and good gameplay.
The approach presented here, giving designers the possibility to include realistic
semantics by means of services, while keeping much control on the fine-tuning
of the behavior of their objects, is a valuable aid in that direction.

In the future, we would like to experiment with coupling our semantics engine
with a game AI system, so that artificial agents can make use of services as well,
in addition to players’ avatars.

Acknowledgement. This research has been supported by the GATE project,
funded by the Netherlands Organization for Scientific Research (NWO) and the
Netherlands ICT Research and Innovation Authority (ICT Regie).

References

1. Bethesda Game Studios: The Elder Scrolls IV: Oblivion. Bethesda Softworks (2006)
2. Eden Studios: Alone in the Dark. Atari (2008)
3. Tutenel, T., Bidarra, R., Smelik, R. M., de Kraker, K. J.: The Role of Semantics

in Games and Simulations. In: Computers in Entertainment, vol. 6 (4). ACM, New
York (2008)

4. Kallmann, M., Thalmann, D.: Modeling Objects for Interaction Tasks. In: Proceed-
ings of the 9th Eurographics Workshop on Animation and Simulation, pp. 73–86.
Lisbon (1998)

5. Gruber, T. R.: A Translation Approach to Portable Ontology Specifications. In:
Knowledge Acquisition, vol. 5 (2), pp. 199–220. Academic Press Ltd., London (1993)

6. Huhns, M. N., Singh, M. P.: Ontologies for Agents. In: IEEE Internet Computing,
vol. 1 (6), pp. 81–83. IEEE, Piscataway (1997)

7. Miller, G.: WordNet: A Lexical Database for English. In: Communications of the
ACM, vol. 38 (11), pp. 39–41. ACM, New York (1995)

