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Abstract. A primary requirement for practical augmented reality systems is a 
method of accurate and reliable camera tracking. In this paper, we propose a 
fast and stable camera matchmoving method aimed for real-time augmented 
reality application. A known marker is used for the fast detection and tracking 
of feature points. From the feature tracking of one of three different types of 
markers on a single frame, we estimate the camera position and translation 
parameters. The entire pose estimation process is linear and initial estimates are 
not required. As an application of the proposed method, we implemented a 
video augmentation system that replaces the marker in the image frames with a 
virtual 3D graphical object during the marker tracking. Experimental results 
showed that the proposed camera tracking method is robust and fast enough to 
interactive video-based applications. 

1   Introduction 

Tracking the camera pose using images it acquires while the camera is moving in 
unknown environments is considered as an important problem in image analysis. 
During the recent two decades, many research works have focused on vision-based 
camera tracking. Most representative approaches can be classified into two categories: 
fiducial marker-based approaches and feature-based approaches. The feature-based 
approaches exploit geometric constraints arising from the automatic selection and 
tracking of appropriate point features [1]. An example is the planar-surface tracking 
method which tracks a manually specified planar region and computes the planar 
homography to align the real and virtual coordinate systems [2]. The fiducial marker-
based approaches rely upon the presence of known fiducial markers or a certain 
calibration object in the given environment [3]. 

Though feature-based approaches do not assume any known geometric objects, 
they require sets of corner matches over an image sequence for the pose estimation, 
which means the methods are designed to operate in a batch off-line mode. However, 
most augmented reality applications require the camera pose in online mode to project 
computer generated 3D graphics models into the real world view in real-time. Hence, 
utilization of a fiducial marker is a natural choice for the fast feature tracking as well 
as for the computation of initial camera pose. 

The projective camera model or the affine camera model is frequently used in 
computer vision algorithms. The projective model has eleven degree of freedoms and 
it is unnecessarily complex for many applications. There are non-linear relationships 
for the camera model parameters and iterative least-squares minimization must be 
used to improve the solution for the cost of a great amount of time. Since the camera 
tracking for an augmented reality application must be fast enough to handle real-time 



interactions, appropriate restrictions on the camera model should be introduced as 
long as the approximation is not far from the optimal solution. 

This paper describes a stable real-time marker-based camera tracking method for 
augmented reality systems working in unknown environments. We propose a fast 
linear camera matchmoving algorithm that the initial estimates are not required. 

2   Simplified Camera Model for Linear Approximation 

Assume an arbitrary point x in the 3D scene space is projected to an image point m 
where all points are represented by the homogeneous form. The projection of a point 
x=[x y z 1]T into the image point m=[u v 1]T is presented by a projection equation of 
the form λm=Px where λ is an arbitrary scalar constant. The 3×4 matrix P, called the 
projection matrix, specifies how each 3D point is mapped to an image point. 

When the transformation between the world space and the camera space is 
Euclidean, the projection matrix of the perspective camera model can be decomposed 
into two matrices and a vector of the form P=K[R|t]. The 3×3 matrix K, called the 
camera calibration matrix, encodes all the intrinsic parameters. The matrix R and the 
vector t encode the pose of the object with respect to the camera. The calibration 
matrix has four intrinsic parameters: the focal length in two image directions (fx and 
fy) and the coordinates of principal point (px and py). The matrix R=[rx ry rz]T is a 3×3 
orthonormal matrix and t=[tx ty tz]T is a 3×1 vector. R and t represent the relative 
rotation translation between the model and the camera. The intrinsic parameters are 
unknown but, in most cases, they are constant or smoothly varying. The intrinsic 
parameters are determined through on the fly calibration performed prior to the pose 
recovery. Assume that the four intrinsic parameters encoded in K are known a priori. 
In a moment, we let K be an identity matrix only for simplicity purposes. 

In the perspective model, the relations between image coordinates (u and v) and 
model coordinates (x, y and z) are expressed by non-linear equations. By imposing 
some restrictions on the projection matrix P, linearized approximations of the 
perspective model are possible. A well-known linearized approximation of the 
perspective camera model is the weak-perspective model [4]. The weak-perspective 
model can be used instead of the perspective model when the dimensions of the object 
are relatively small compared to the distance between the object and the camera. In 
the weak-perspective model, all object points lie on a plane parallel to the image plane 
and passing through xc, the centroid of the object points. Hence, all object points have 
the same depth: zc=(xc−t)·rz. 

The projection equations for an object point x to an image point m are: 
u=(1/zc)(rx·(x−t)), v=(1/zc)(ry·(x−t)). 

Assume xc=0, then zc=−t·rz and it leads the projection equations: 

u=řx·x+xc/zc, v= řy·x+yc/zc (1) 

where řx=rx/zc, řy=ry/zc, xc=−t·rx, and yc=−t·ry. 
The equation (1) corresponds to an orthogonal projection of each model point into 

a plane passing the origin of the object space and parallel to the image plane, followed 
by a uniform scaling by the factor (1/zc). The equation (1) can be solved by the 
orthographic factorization method [5] with constraints |řx|=|řy|=1 and řx·řy=0. Once řx 
and řy are obtained, the motion parameters rx and ry can be computed by normalizing 
řx and řy, i.e., rx=řx/|řx| and ry=řy/|řy|, and the translation along the optical axis is 
computed by zc=1/|řx|. 



Though camera pose estimation for coplanar points is also available [6], known 
methods using a closed form pose solution for coplanar points are not robust. We use 
a known marker in camera tracking mainly for the fast detection and tracking of 
feature points. 

3   Camera Tracking Under Scaled-Orthographic Projection 

The weak-perspective model approximates the perspective projection by assuming 
that all the object points are roughly at the same distance from the camera. The 
situation becomes true if the distance between the object and the camera is much 
greater than the size of the object. 

We assume that the depths of all points of the object are roughly at the same depth. 
All depths of the object points can be set to the depth of a specific object point, called 
a reference point. Let x0 be such a reference point in the object and all other points 
have roughly same depth denoted by z0. We consider the reference point x0 is the 
origin of the object space and all other coordinates of the object points are defined 
relative to the reference point. Consider the point xi and its image mi=[ui vi 1]T, which 
is the scaled orthographic projection of xi. From the equation (1), the relation can be 
written: 

řx·xi=ui−u0, řy·xi = vi−v0 (2) 

where řx=rx/z0, řy=ry/z0, u0=−t·rx/z0, v0=−t·ry/z0, and m0=[u0 v0 1]T is the image of the 
reference point x0. Since the object points are already known and their image 
coordinates mi (0≤i<N) are available, the equations (2) are linear with respect to the 
unknowns řx and řy. 

3.1   Linear approximation 

For the N−1 object points (x1,…,xN−1) and their image coordinates (m1,…,mN−1), we 
construct a linear system using equation (2) by introducing the (N−1)×3 argument 
matrix A, the (N−1)-vector u, the (N−1)-vector v: 

 
A=[x'

1 x'
2 … x'

N−1]T, u=[u'
1 u'

2 … u'
N−1]T, v=[ v'

1 v'
2 … v'

N−1]T 
 
where x'

i=xi−x0, u'
i=ui−u0, and v'

i=vi−v0. All the coordinates are given by column 
vectors in non-homogeneous form. The unknowns řx and řy can be obtained by 
solving the two linear least squares problems: 

Ařx = u and Ařy = v. (3) 

The solution is easily obtained using the singular value decomposition (SVD). The 
parameters rx and ry are computed by normalizing řx and řy. 

3.2   Iterative refinement 

Once the unknowns rx and ry have been computed, more exact values can be obtained 
by an iterative algorithm. Dementhon [7] showed that the relation of the perspective 



image coordinates (ui and vi) and the scaled orthographic image coordinates (ui
″ and 

vi
″) can be expressed by: 

ui″=ui+αiui, vi″=vi+αivi 
in which αi is defined as αi=rz·xi/z0 where rz=rx×ry. Hence, in the equations (2), we 
can replace ui and vi with ui

″ and vi
″ and we obtain: 

řx·xi=(1+αi)ui−u0, řy·xi=(1+αi)vi−v0 . (4) 

Once we have obtained initial estimates of řx and řy, we can compute αi for each xi. 
Hence, the equations (4) are linear with the unknowns, řx and řy. The term αi is the z-
coordinate of xi in the object space, divided by the distance of the reference point 
from the camera. Since the ratio of object size to z0 is small, αi is also small, which 
means only several iterations may be enough for the approximation. 

4   Fast Pose Estimation Using a Known Geometric Marker 

Assume the N object points x0,x1,…xN−1 are observed in a frame and their image 
coordinates are given by m0,m1,…mN−1 in a single frame. All the points are given by 
column vectors in non-homogeneous form. We automatically choose the most 
preferable reference point which minimizes the depth variation. The camera intrinsic 
parameters px, py, fx, and fy are also used for the better pose estimation. The overall 
steps of the algorithm are as follows: 

 
– Step 1: Choose a reference point xk satisfying arg mink ∑i (zi−zk)2 where zi is the z-

coordinate of xi. 
– Step 2: Translate all the input object points by −xk so that the reference point xk 

becomes the origin of object space. Also, translate all the input image points by  
[–px –py]T so that the location of principal point becomes the origin of image space. 

– Step 3: Using object points xi and their corresponding image points mi (i=1,…,N−1), 
build the (N−1)×3 argument matrix A, the (N−1)-vector u, and the (N−1)-vector v 
shown in equation (3). Set ut and vt by ut=u and vt=v. 

– Step 4: Solve the two linear least squares problems, Ařx=ut and Ařy=vt, for the 
unknowns řx and řy. The solution is easily obtained using the singular value 
decomposition (SVD). 

– Step 5: Compute zk by zk=2fxfy/(fy|řx|+fx|řy|) where fx and fy are the camera focal 
lengths by the x- and y-axis. Compute rx and ry by rx=řx/|řx| and ry=řy/|řy|. 

– Step 6: Compute αi by αi=rz·xi/zk where rz=rx×ry. If αi is nearly same to the previous 
one, stop the iteration. 

– Step 7: Update ut and vt by ut=(1+αi)u and vt=(1+αi)v. Go to Step 4. 
 
The rotation matrix R is the arrangement of the three orthonormal vectors:   

R=[rx ry rz]T. The translation vector t is the vector from the origin of the camera space 
to the reference point. Hence, once we found řx and řy, the depth of the reference 
point zk is computed by zk=2fxfy/(fy|řx|+fx|řy|). Then, the translation t is obtained by 
t=[zkuk/fx, zkvk/fy, 2/(|řx|+|řy|)]T. 

If at least three points are available other than xk and not every point is on the same 
plane, the matrix A in equation (3) has rank 3 and the over-determined linear system 
in Step 4 can be solved. On the other hand, if all the object points are on a single 



plane, the matrix A has rank 2 and the linear system in equation (3) is ill-conditioned. 
For such rank deficient cases, the SVD-based method is a better choice among several 
least squares method then the Cholesky factorization method or the QR 
decomposition method. For the rank-deficient cases, the Cholesky method will fail 
and the QR decomposition method is unstable. 

5   Experimental Results 

To demonstrate the effectiveness of the proposed method we implemented the camera 
pose tracking system that relies on known marker tracking from a real video stream. 
The 3D coordinates of the marker are assumed to be known and are fixed in the 
program codes. For each frame, the feature points for the marker have been identified 
after converting the image frame to a binary image. 

 

  
Fig. 1. A calibration pattern and its detected corners. 

To recover the accurate shape geometry, it is required to know the camera intrinsic 
parameters, the focal lengths for two axes and the coordinates of the principal point. 
In our implementation, we equipped the system to deal with on-line camera 
calibration for convenience purpose only. The calibration algorithm is well described 
in [8]. When the system enters the calibration mode, the system monitors a grid 
pattern and it starts to accumulate detected grid pattern corners. When the grid pattern 
is found more than four frames the camera parameters are calculated. 

 

   



Fig. 2. Three different types of known markers: Cube, TwoSidedMarker, and ARMarker. 

   
Fig. 3. Camera tracking results from two video frames each containing a known marker (Cube 

and TwoSidedMarker in Fig. 2). 

 
Fig. 4. Camera matchmoving for 507 frames using marker Cube. 

As an example, we tested on a sequence of 768×512 image frames containing a 
4×5 grid pattern as shown in Fig. 1. The computed focal lengths and principal point 
coordinates are as follows: fx=1034.96, fy=1024.62, px=360.79, py=204.29. 

For each frame, the camera pose for the current frame is calculated using the 
tracked feature points on a marker from a single frame. The implemented system can 
recognize three types of markers (Cube, TwoSidedMarker, and ARMarker) as shown 
in Fig. 2. The continuous marker tracking and re-initialization are robust and also not 
sensitive to illumination changes. Fig. 3 shows the camera tracking results (recovered 
marker points and the camera pose trajectory). Fig. 4 shows a camera trajectory for a 
long sequence. The camera positions and orientations for the frames are shown 
relative to the marker points. 

We compared the estimation accuracy of the proposed method with the linear 
scaled orthographic method (SOP) [9] and the iterative scaled orthographic method 
(POSIT) [7]. Using the estimated camera pose parameters, we projected 3D points 
onto the frames and compared the distances between the image features, which are 
shown in Fig. 5. The projection error is under 2 pixels in most cases and it is less than 
that of SOP or POSIT. The comparison of accuracy is shown in Fig. 6. We measured 
the error variation according to the relative distance of the marker from the camera 



divided by the marker radius, which is shown in Fig. 6(a). The average reprojection 
error is also measured when the scene point depth variation relative to the reference 
point increases, which is shown in Fig. 6(b). We found the proposed method is fast, 
stable, and versatile for various point distributions and various camera distances from 
a marker. 
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Fig. 5. Comparison of reprojected points. 

Table 1. Accuracy and computing time with respect to marker types. 

Marker type #frame #feature points avg accuracy(pixel) Time(ms) 
CubeSparse 1000 5 1.64 1.73 

TwoSidedMarker 500 16 0.815 1.986 
ARMarker 300 4 0.435 1.672 
CubeDense 700 72 0.327 2.113 

Fig. 7 shows the stability of the camera pose estimation. The camera was moved 
very slowly and smoothly during 60 frames. The camera rotation parameters and 
translation parameters are stable along the frame sequence without serious oscillation. 
Fig. 8 shows the comparison of stability of the proposed method with other methods. 
The proposed method was stable when the number of feature points varies (See Fig. 
8(a)). Since the proposed method is based on a single frame, any error from previous 
frames does not affect future frames (See Fig. 8(b)). 
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(a)                                  (b) 

Fig. 6. Comparison of accuracy: (a) error variation with respect to the relative distance of the 
marker, (b) error variation with respect to the point distribution. 

 

  
(a)                                   (b) 

Fig. 7. The stability of camera pose parameters: (a) rotation parameters and (b) translation 
parameters. 

The computation time for the proposed camera tracking method was measured. On 
a Pentium 4 (2.6GHz) computer, the processing speed is about 27 frames per second 
including all steps of the system such as frame acquisition, marker detection, feature 
extraction, pose estimation, and 3D rendering. The camera pose estimation process 
roughly takes 4 ms and 8 ms, respectively, and its speed is fast enough to be ignored 
for real-time augmented reality applications. Fig. 9 shows the camera pose computing 
time of the proposed method together with other methods. The camera pose 
estimation stage of the proposed method consumes about 1.8 ms CPU time per frame 
and, moreover, the number of points hardly increases the processing time. 

Our method has also been applied to coplanar cases. We compared the results with 
ARToolKit method [10] which can estimate relative camera pose from a single 
rectangular marker. Although ARToolKit is fast and interactive, we found several 
critical problems exist in ARToolKit. First, the error of image corners of the marker 
rectangle critically increases errors. Second, when the camera moves away too much 
from the marker the marker detection step fails frequently. The proposed method is 
relatively more stable in most cases. The comparison of accuracy is shown in Fig. 10. 
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(a)                                    (b) 

Fig. 8. Comparison of stability: (a) according to the number of points, (b) according to the 
frame moving. 
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Fig. 9. Comparison of the computing time. 

We have measured the accuracy and computing time with respect to different type 
of markers. We compared four different types of markers: CubeSparse,  
TwoSidedMarker, ARMarker, and CubeDense (See Table 1). Note that CubeSparse 
and CubeDense correspond to the same marker (Cube in Fig. 2) but they utilize 
different number of feature points on the marker. 

The time is proportional to the number of feature points and the accuracy is 
inversely proportional to the number of feature points. Overall numerical values 
indicate that the type of markers does not affect the pose accuracy critically. 

 



  
(a)                                   (b) 

Fig. 10. Comparison of accuracy for coplanar cases: (a) error variation with respect to the 
relative distance of the marker, (b) error variation with respect to the point distribution. 

We implemented an interactive augmented reality system and tested camera 
tracking with real video frames. From a video stream, an image frame is captured and 
the known marker is detected in the frame. From the marker features, we estimate the 
camera pose. Then, we project some 3D graphical object onto the frame and render 
the projected virtual object together with the original input frame. 

Fig. 11 shows the AR application which inserts a virtual object into a live video 
stream. The upper figure shows the insertion of a virtual flowerpot at the cube marker 
position. The lower figure shows the tracked planar marker is replaced by a wall clock. 

This article has presented a real-time camera pose estimation method assuming a 
known marker is visible. A fast detection and tracking of marker points is possible by 
assuming a known marker. From the marker tracking from a single frame, the camera 
position and translation parameters are estimated using a linear approximation. The 
pose estimation process is fast enough to real-time applications since entire pose 
estimation process is linear and initial estimates are not required. Compared with 
previous fast camera pose estimation methods, the camera pose accuracy is greatly 
improved without paying extra computing time. Another advantage is that it can cope 
with a planar marker since the SVD method can handle rank deficient cases. 

As an application of the proposed method, we implemented an augmented reality 
application which inserts computer-generated 3D graphical objects into a live-action 
video stream of unmodeled real scenes. Using the recovered camera pose parameters, 
the marker in the image frames is replaced by a virtual 3D graphical object during the 
marker tracking from a video stream. Experimental results showed that the proposed 
camera tracking method is robust and fast enough to interactive video-based 
applications. 

As future work, it would be preferable to extend the type of markers so that it 
accepts general primitives. Another possible direction concerns the use of features on 
a planar patch without using any known markers. 

 



 
(a) 

 
(b) 

Fig. 11. An augmented reality application to insert virtual objects into a video stream: (a) using 
Cube maker, (b) using planar ARMarker. 
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