Programmable Vertex Processing Unit
for Mobile Game Development

Tae-Young Kim!, Kyoung-Su Oh?, Byeong-Seok Shin3, CheolSu Lim!

! Dept. of Computer Engineering, Seokyeong University 136-704 Seoul, Korea
2Dept. of Media, Soongsil University 156-743 Seoul, Korea
3Dept. of Computer Engineering, Inha University 402-751 Inchon, Korea

tyvkim@zkuniv. ac. kr, oks@szsu. ac.kr, b=shin@®inha. ac. kr.
celin@=kuniv.ac. kr

Abstract. Programmable vertex processing unit increases flexibility and en-
ables customizations of transformation and lighting in the graphics pipeline.
Because most embedded systems such as mobile phones and PDA’s have only
the fixed-function pipeline, various special effects essential in development of
realistic 3D games are not provided. We designed and implemented a pro-
grammable vertex processing unit for mobile devices based on the OpenGL ES
2.0 specification. It can be used as a development platform for 3D mobile
games. Also, assembly instruction set and encoding scheme are examples of
standard interface to high-level shading languages.

1 Introduction

In last a few decades, much research has been done to enhance the functionality and
efficiency of graphics hardware [1]. One of them is the programmable graphics pipe-
line, which provides a programmer with the full control of the vertex and fragment
processes. Various special effects which were impossible with the fixed pipeline can
be implemented [2][3]. The vertex processing in the programmable pipeline does not
use the fixed-function T&L (Transformation & Lighting) but a vertex program writ-
ten by a programmer. As a result, this enables us to make realistic 3D games.

Unfortunately, most embedded systems such as mobile phones and PDA’s only
have fixed-function pipeline. Although some mobile 3D game consoles equip with
specially designed programmable units, they require a lot of computing resource.
Since they are subset of GPU’s for desktop PC, they cannot be applied to generic
mobile phones or PDA’s. Therefore, we have designed and implemented a pro-
grammable vertex processing unit for the mobile devices.

Our vertex processing unit is designed based on the OpenGL ES 2.0 [4] and
GL_ARB vertex_program [5]. The GL_ARB vertex_program is the specification of
assembly shading language for programmable graphics processor in the general
computing systems. OpenGL ES is a graphics APIs standard for the embedded sys-
tems, which specifies graphics APIs and high level shading language for the pro-
grammable vertex and fragment programs [6]. But it does not include low-level

specification of the shading language [7]. We modified GL__ARB_vertex program
assembly language to fully support OpenGL ES 2.0. We defined some instructions
and substituted an instruction with several other primitive instructions to en-
code/decode an instruction efficiently. Since it provides high-order flexibility to
simple mobile devices, we can use them as mobile 3D game consoles. Also, our in-
struction design and operand encoding scheme can be used as an interface standard
between low-level and high-level shader language.

In Sect. 2 we present the structure of our vertex processing unit. Instruction set de-
sign and encoding schemes are explained in Sect. 3. Implementation and results are
in the next section. Lastly, we summarize and conclude our work.

2 Architecture of Vertex Processing Unit

A vertex program is a sequence of vector operations that determines how a set of
program parameters and per-vertex input parameters are transformed to a set of per-
vertex result parameters. Fig. 1 shows the architecture of our vertex processing unit.

\ 0x0000
Temporary

<

0x0000)
0x0016
0x0032

0x0048
: Vertex @ Registers

> Processing Unit (16)

h Instruction code

oos2 [Machine — Address

’ 0XA000
%8 | Codes | - | - Register (1)
(128) | Code fetch & decode |

P | Instruction Operation | Output

< Registers(16)

ocoos | Constant
ool | Registers
. (96) 0xF000

Fig. 1. Architecture of our vertex processing unit. It consists of seven components.

* Machine code: (Up to 128) binary codes to be executed in vertex processing unit.

* Vertex Processing Unit: A processing engine that fetches, decodes and operates
each machine code.

* Vertex data: A set of 16 read-only registers containing 4-component floating
point vector. Each register represents position, colors, normal of vertex.

» Constant Registers: A sct of 96 read-only registers. It stores parameters such as
matrices, lighting parameters and constants required by vertex programs.

* Temporary Registers: A set of 16 readable and writable registers to hold tempo-
rary results that can be read or written during the execution of a vertex program.

* Address Register: A register containing an integer used as an index to perform
indirect accesses to constant data during the execution of a vertex program.

* QOutput Registers: A sct of 16 write-only registers to hold the final results of a
vertex program. They are passed to the remaining graphics pipelines.

3 Instruction Set and Encoding Scheme

We define 28 primitive instructions and 3 macro instructions based on the operation
processing method, as shown tables 1. Since macro instruction means an instruction
that can be replaced by a series of primitive instructions, each one is translated into
multiple primitive instructions in assembling time. In table 1, the instructions in
shadowed entries are additional instructions which are not included in the
GL_ARB vertex_program instruction set. We added them in order to implement the
macro instructions as shown in table 1 (below).

Table 1. Primitive instructions and macro instructions used in our implementation

Instruction Description Instruction Description
ARL Address register load DPH Homogenous dot product
MOV Move DP3 3-component dot product
ABS Absolute DP4 4-component dot product
FLR Floor clamp Clamp
FRC Fraction Mulz Multiply on z
SWZ, Extended swizzle MAD Multiply and add
ADD Addition EXP Exponential base 2(approximate)
MUL Multiply LOG Logarithm base 2(approximate)
DST Distance vector EX2 Exponential base 2
XPD Cross product LG2 Logarithm base 2
MAX Maximum RCP Reciprocal
MIN Minimum RSQ Reciprocal square root
SGE Set on greater or equal than tEX2 Exponential base 2(rough)
SLT Set on less than rLG2 Logarithm base 2(rougn)

macro description macro description macro description
: Light coefficients .
LITf, a, b + Power (f=a%) : Subtraction
clamp tmp, a.0, b POWF a.b (f=a-b)
LIT rLG2 tmp.w, tmp.w POW LG2 ,tm,p a SUB
MUL tmp.w, tmp.w, tmp. , SUB £a.b
ip.w, tmp.w, tmp.y MUL tmp, tmp, b ADD [a,-b
rEX2 tmp.w, temp.w EX2 fmmp ”
Mulz f tmp.Ixz1, tmp.w

Fig. 2 shows the 64bit machine code structure, which is composed of an opcode, a
destination operand, and up to 3 source operands. The low bit fields [4™ ~ 18™ bit]
can be used as a source operand (Src,) field or an extended swizzle field. They are
recognized as a source operand field in MAD instruction, and as an extended swizzle
field in other cases. MAD is the only instruction having three source operands.

The opcode has 6 bits, so it is possible up to 64 instructions. The destination oper-
and field (register type, index, and mask) has 9 bits. Each bit is translated as follows:

T (1bit) : type /0 (Temporary register)
/1 (Output register)

index (4bits) : register index (0~15)

mask (4bits) : mask flag for each component

}< 6 }< 9 >)< 15 15 15 3 ><
opcode [[T[index [mask Ln\tyﬁ[index [se.w[sc2scy[sexnfype index [e.w[scz[scy]sex|nfype] index [sew]scz[scy[sex/const]
S 4 1Ty 4 2 2 2.2 N j ‘
/ Destination - \ | I
¢ 6—3 // operand \\ Source o/pﬁvand 0 Source operand 1 \S\ource pperand 2 |
/ \ -7 N
opcode | , \ - E—
neg| type index Src_w | Src_z | Src_y | Src.
/ \\| [type | | | | Srey | srex | JIEEEES
7 \ 2 4 2 2 2 2
\ P
// \ Source operand 0, 1, 2 Extended swizzle
\
&
. mask_|masK_{mask_{mas
type index S v "
1 4 1 1 1 1
Destination operand
6— k 9 N 15 N 15 N 15 3y

0 0 0
[opcode | |T] index | mask |nfiype| index [sewsczsey[sex|nfype] index [sewsc[sey]sex|nfype] index [sew[scs]scy[sex|const
T4 Tiiti2 4 2 2 2 2

Destination

Source pperand 0 Source operand 1 Source operand 2
operand
——7—
index const] index -
T [S A]

Extended constant index

Fig. 2. Machine instruction format : an opcode field, a destination operand field, source oper-
and fields, extended swizzle field, and extended constant index field

The source field (register type, index, and swizzle information) has 15 bits. Each bit
is translated as follows:

neg(1bit): negation flag
type(2bits): type / 00(Temporary register)

/ 01(Vertex data)

/ 10(Constant register, absolute addressing)

/ 11(Constant register, relative addressing)
index (4bits): register index (0~15)
Src_?7(2bits): component swizzle / 00(x component) 01(y component)

/ 10(z component) 11(w component)

The extended swizzle field has additional swizzle information of source operand 0.
With swizzle information, four components of source operand O can be negated or
changed with other components value, zero or one. For example, if the swizzle suffix
is ".yzzx" and the specified source register value is contains {2,8,9,0}, the swizzled
operand used by the instruction is {8,9,9,2}.

Colr.{-}[01xyzw] {-}[01xyzw] {-}[01xyzw] {-}[01xyzZwW]

PARAM Colr = {5, 6,7, 8};

TEMP Tmpl, Tmp2;

SWZ Tmpl, Colr.xy01; // Tmpl = {5
SWZ Tmp2, Colr.-x-yzl; // Tmp2 = {-5

,6,0, 13
13

-6,7

sTVsl s

>

In this field, N, and S, mean negation and zero or one value flags for each compo-
nent. The extended index field has 3 bits, which is used for indexing the location of
constant register. Totally, 7 bits indexing is possible with the 4 bits in the source
operand field and the 3 bits in the extended constant index field.

4 Implementation and Results

We implemented our programmable vertex processing unit in software emulation.
Our implementation can be used to emulate mobile game applications including
vertex programs. We tested the performance of our work on a desktop PC with 4.3
GHz Pentium processor and ATI Radeon 9800 XT graphics card.

To test our vertex processing unit, we implemented the OpenGL ES 2.0 APIs re-
lated with vertex processing. Using the APIs, vertex data are stored and passed to our
vertex processing unit. A vertex program is assembled into machine codes and they
are passed to the vertex processing unit through our APIs. The vertex processing unit
calculates the position and the color of each vertex by fetching, decoding, and exe-
cuting the machine codes. The outputs of our vertex processing unit are sent to the
OpenGL graphics pipeline installed in our computer via the original OpenGL APIs.

The arithmetic unit in our vertex processing unit supports 24 bit floating point
format which satisfies the requirement of the OpenGL ES 2.0. We tested three vertex
programs as shown in Fig.3.

Fig. 3. Test vertex programs, left: Normal value, middle: Cook-Torrance illumination, right:
Environment map. All programs use same model whose vertex count is 6,984.

We compared an image rendered by our system with an image rendered by pure
OpenGL on PC. We found little differences that cannot be recognized with naked
eye. Comparison of frame rates among test programs is shown in table 3. We can see
that the frame rate is inversely proportional to the number of assembly commands.

Table 2. Frame rate accoding to the number of instructions

sample 1 sample 2 sample 3
Number of assembly commands 6 31 21
fps 61.79 17.54 262

5 Conclusion

We design and implement a programmable vertex processing unit for the mobile
environments based on the OpenGL ES 2.0 specification. Since the final draft of

OpenGL ES 2.0 came out about September 2005, it is hard to find software or hard-
ware implementation based on the specification. We present the architecture and
instruction format of vertex processing unit. And we define 28 primitive instructions
and 3 macro instructions based on the operation processing method. Our implemen-
tation and test results show that error is negligible and the performance is inversely
proportional to the number of vertices and the number of instructions in the vertex
program as we expected. At present we have only implemented the vertex processing
unit. However, the fragment processing unit is also under development and the both
units will be implemented as H/W chip.

Fig. 4. A screen shot of mobile game implemented with our vertex processing unit (left) and a
hardware prototype of target system using FPGA (right).

Acknowledgement

This work was supported by the Ministry of Culture & Tourism and KOCCA under
the Culture and Content Technology Research Center (CTRC) Support Program.

References

1. James D. F., Andries van D., Steven K. F., John F. H.:Computer Graphics: Principles and
Practice in C Addison-Wesley Professional, Boston (2005)

2. Matt, P., Randima, F.:.GPU GEMS 2. Addison-Wesley Professional, Boston (2005)

3. Michael M., Stefenus D. T., Tiberiu P., Bryan C., Kevin M.:Shader algebra, Transaction on
Graphics, Vol 23, ACM Press, Newyork (2004)

4. OpenGL ES 2.0 specification. Available at http://www.khronos.org/opengles/2 X/

5. OpenGL ARB Vertex program specification. Available at http://oss.sgi.com/projects/ogl-
sample/registry/ARB/vertex_ program.txt

6. OpenGL ARB Fragment program specification. Available at http://oss.sgi.com/projects/ogl-
sample/registry/ARB/fragment_ program.txt

7. Randi J. R.: OpenGL Shading Language, Addison Wesley, Boston (2004)

