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Abstract. In this paper, we investigate reinforcement learning (RL) of
intelligent characters, based on neural network technology, for fighting
action games. RL can be either on-policy or off-policy. We apply both
schemes to tabula rasa learning and adaptation. The experimental results
show that (1) in tabula rasa leaning, off-policy RL outperforms on-policy
RL, but (2) in adaptation, on-policy RL outperforms off-policy RL.

1 Overview

Reinforcement Learning (RL) is one of the learning algorithms for Neural Net-
works(NNs) [1]. The RL NN learns how to achieve the goal by repeating trial-
and-error interactions with the environment. Generally, in RL, a NN can be
either on-policy or off-policy [2]. With on-policy RL, the NN’s decision is re-
flected to output. Off-policy RL produces no output but observe the decision
produced by another static algorithm.

In this paper, we present the RL of NN-based intelligent characters (IC) for
fighting action games. We categorize IC’s learning into two classes. In tabula rasa
learning, the IC has no initial knowledge about the game. Thus, it must learn
everything. On the other hand, in adaptation, the IC has previously learned
about its environment, including game rules and the opponent’s action pattern.
However, since the environment is abruptly changed now, the IC must re-learn
it. For each case, both on-policy and off-policy RL methods are applied, and
their performance is compared.

2 Tabular Rasa Learning

In this section, we address tabula rasa learning of an IC. That is, the NN is
initially unaware of its environment, e.g. game rules and OC’s action pattern, and
must learn everything. Both on-policy and off-policy RL methods are applied.
Fig. 1 illustrates them.

In Fig. 1(a), the NN senses the state of the environment and produces ac-
tions. Then, the IC associated with the NN executes the actions, which affect the
environment. The IC and its opponent score according to the fitness of the ac-
tions. Finally, the NN receives a scalar reward value based on the score difference
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Fig. 1. On- and off-policy reinforcement tabula rasa learning

between the two characters. On the other hand, in Fig. 1(b), the IC executes
the action produced by a static algorithm, not by the NN. The action is also
used to teach the NN. That is, the intermediate learning results do not affect
the environment until the learning finishes. In this paper, the static algorithm
takes random actions so that the NN explores its environment in an unbiased
manner.
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(a) Pattern A
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(b) Pattern B
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(c) Pattern C

Fig. 2. Result of tabula rasa learning

We apply the above two methods to the IC of [3], and compare their perfor-
mance. We use three action patterns. For each case, we use 10 random initial
seeds and measure the average of the score ratio between two characters. Fig.
2 shows the results. For all patterns, off-policy RL outperforms on-policy RL.
While the score difference quickly converges in on-policy RL, the final score dif-
ference in off-policy RL is 2-2.5 times larger than that in on-policy RL. This
is because since the NN should learn everything, it would be better to practice
as large a variety cases as possible. In off-policy RL, the static algorithm ran-
domly produces output actions. However, in on-policy RL, although the NN is
randomly initialized, its output is not sufficiently random.
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Fig. 3. On- and off-policy adaptation

3 Adaptation

With adaptation, an IC can adjust itself to environmental change. Unlike the
previous section, the NN has initial knowledge although it is partially unsuitable
for the present environment. Fig. 3 illustrates on-policy and off-policy adapta-
tion.

Fig. 3(a) shows on-policy adaptation. The NN produces output depending
on input states. However, as opposed to Fig. 1(a), the output does not always
determine which actions the IC will execute in a given input state. The NN
controls the IC just at a rate of γ. At other times, a static algorithm decides
output actions. However, in both cases, the NN learns the result of output actions
by using generated score difference. Thus, the NN can have new experiences
with the aid of the static algorithm. Like tabula rasa learning, we use a random
generator as the static algorithm. On the contrary, as shown in Fig 5(b), the
off-policy RL NN does not produce output. At the beginning of adaptation, it is
copied from the previous NN which was trained within the previous environment.
Then, it only learns by using the output actions, determined by either a static
algorithm or the previous NN relying on γ, and the resulting score difference
until the end of adaptation. However, after finishing adaptation, it produces
output to decide the IC’s behavior.

These two methods are applied to the adaptation algorithm of [4]. At first,
the OC, which is used for this experiment, acts with one of the three action
patterns for building IC’s initial knowledge. Then, its action pattern is changed
to another pattern. Fig. 4 shows the results. In on-policy RL, although the score
ratio is very low during the early stage of adaptation, it strongly increases after
all. Thus, as opposed to Section II, on-policy RL outperforms off-policy RL in
most cases. This is because the on-policy RL NN immediately learns wrong
decisions. That is, when its decision produces bad results, the NN updates the
link weights to prevent the same wrong decision. Thus, it has more chances than
its rival to try new actions. This allows the exploration of a larger search space.
Thus, the on-policy RL NN eventually makes better decision.
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Fig. 4. Result of adaptation

4 Conclusion

In this paper, on-policy and off-policy RL for an IC in fighting action games based
on NN technology are investigated. Both learning schemes are applied to tabula
rasa learning and adaptation for the IC and their performance is compared.
The experimental result tells that (1) when the NN has no initial knowledge
(tabula rasa leaning), off-policy RL produces better performance, but (2) when
the NN has some knowledge, which is partly valid (adaptation), on-policy RL
outperforms the rival.
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