A Tutoring System for Commercial Games

Pieter Spronck and Jaap van den Herik

Universiteit Maastricht, Institute for Knowledge and Agent Technology
{p.spronck,herik}@cs.unimaas.nl

Abstract In computer games, tutoring systems are used for two pur-
poses: (1) to introduce a human player to the mechanics of a game, and
(2) to ensure that the computer plays the game at a level of playing
strength that is appropriate for the skills of a novice human player. Re-
garding the second purpose, the issue is not to produce occasionally a
weak move (i.e., a give-away move) so that the human player can win,
but rather to produce not-so-strong moves under the proviso that, on a
balance of probabilities, they should go unnoticed. This paper focuses on
using adaptive game Al to implement a tutoring system for commercial
games.! We depart from the novel learning technique ‘dynamic scripting’
and add three straightforward enhancements to achieve an ‘even game’,
viz. high-fitness penalising, weight clipping, and top culling. Experimen-
tal results indicate that top culling is particularly successful in creating
an even game. Hence, our conclusion is that dynamic scripting with top
culling can implement a successful tutoring system for commercial games.

1 Introduction

In computer games, tutoring systems are used for two purposes: (1) to introduce
a human player to the mechanics of a game, and (2) to ensure that the computer
plays the game at a level of playing strength that is appropriate for the skills of a
novice human player. In our view, an ‘appropriate’ playing strength entails that
the computer manages to play an ‘even game’ against the human player, i.e., a
game where both players have an equal chance to win. Of course, winning a game
is not a matter of chance, but a matter of applying strategies, and strategies are
to be chosen at will by the players involved. To ensure that the game remains
interesting, the issue is not for the computer to produce occasionally a weak move
(i.e., a give-away move) so that the human player can win, but rather to produce
not-so-strong moves under the proviso that, on a balance of probabilities, they
should go unnoticed [1]. We refer to the automatic adaptation of the computer’s
playing strength to the skills of the human player as ‘difficulty scaling’. Our
present research investigates the second purpose of tutoring systems, i.e., the
scaling of a game’s difficulty level so that the computer plays an even game
against even a novice human player. Our focus is on commercial games.

1 All software discussed in this paper can be downloaded from the first author’s web-
site: http://www.cs.unimaas.nl/p.spronck

II

Especially for complex commercial games, such as Computer RolePlaying
Games (CRPGs) and strategy games, where for every move the human player
can choose between hundreds of different actions, tutoring systems are a neces-
sity. When available, a tutoring system usually consists of two parts: (1) one or
more ‘introductory levels’, to make the human player familiar with the game’s
mechanics, and (2) a ‘difficulty setting’, a discrete value that allows the human
player to determine at what level of difficulty the game will be played. While
the state of the art for introductory levels is of high quality, the difficulty setting
commonly has some seriously challenging issues.

We indicate three different issues with the difficulty setting in games. First,
the setting is coarse, with the player having a choice between only a limited
number of difficulty levels (usually three or four). Second, the setting is player-
selected, with the player unable to assess which difficulty level is appropriate for
his skills. Third, the setting has a limited scope, (in general) only affecting the
computer-controlled opponents’ strength, and not their strategies. Consequently,
even on a ‘high’ difficulty setting, the opponents exhibit similar behaviour as on
a ‘low’ difficulty setting, despite their greater strength.

We propose to alleviate the three issues mentioned above by replacing the
‘difficulty setting’ with a tutoring system consisting of adaptive game AI and
an adequate difficulty-scaling mechanism. Adaptive game AI changes the com-
puter’s strategies to the way a game is played. As such, (1) it makes changes in
small steps (i.e., it is not coarse), (2) it makes changes automatically (i.e., it is
not player-selected), and (3) it affects the computer’s strategies (i.e., it does not
have a limited scope). With difficulty scaling, the changes made by the adaptive
game Al can be tuned to the human player’s skills, effectively enticing an even
game at all times. We demonstrate the viability of our proposal by enhancing the
online adaptive game Al technique ‘dynamic scripting’ with difficulty-scaling en-
hancements, and empirically validating the effectiveness of the resulting tutoring
system in a simulated CRPG.

The outline of the remainder of the paper is as follows. Section 2 provides
background information on tutoring systems and adaptive game AI. Section 3
describes dynamic scripting. Section 4 deals with three difficulty-scaling enhance-
ments to dynamic scripting. Section 5 presents the experimental results obtained
from applying dynamic scripting with difficulty scaling in a simulated CRPG.
Section 6 discusses the results. In Section 7, the paper concludes and points at
future work.

2 Tutoring Systems and Adaptive Game Al

In analytical computer games, an interesting domain of research is online adapt-
ing strategies, i.e., strategies that adapt and learn automatically (unsupervised)
while the game is being played. The application areas are (1) learning from the
computer (i.e., tutoring systems), (2) teaching the computer, and (3) provid-
ing human players with sufficient entertainment that they enjoy the game. For
commercial games, ‘online adapting strategies’ are generally referred to as ‘adap-

II1

tive game AI’. We believe that adaptive game Al is a prerequisite for successful
commercial games [2].

In the domain of analytical two-player games such as SHOGI, CHESS, and
CHECKERS we have seen many learning systems, but not so many online learning
systems (apart from opening books). There is an interesting branch of opponent-
model search [3] that might suit our research aim; however, in general opponent-
modelling techniques are applied offline. Early ideas on tutoring strategies in
game-tree search can be ascribed to Iida, Handa, and Uiterwijk [1], with their
introduction of loss-oriented search (LO search), that is used to produce an even
game. lida et al. [1] acknowledged that their model is possibly too detailed to
be realistic, and rather naively replaced the stochastic quality by a numerical
value. Yet, the first ideas are there, even though they are based on an idealised
opponent.

For analytical games, tutoring systems are based on adding adaptive game Al
in minimax search and opponent-model search. So far, most commercial games
do not rely on such advanced AI techniques [4]. Consequently, there is only a
small basis in the game Al of commercial games to apply our ideas of difficulty
scaling to.

The implementation of online adaptive game Al is widely disregarded by
commercial game developers [4,5], even though it has been shown to be feasible
for simple games [6]. Recently, Spronck, Sprinkhuizen-Kuyper, and Postma [2]
introduced a set of four computational requirements for online adaptive game
AT to be successful in commercial games. The four requirements are (1) speed,
(2) effectiveness, (3) robustness, and (4) efficiency. Moreover, Spronck et al.
[2] developed an online learning technique that meets the four requirements,
called ‘dynamic scripting’. Dynamic scripting is a straightforward technique,
but nevertheless the first of its kind. It supports online adaptive game Al in an
intuitive way. Dynamic scripting is the basis for our enhancements to incorporate
difficulty scaling in commercial games.

3 Dynamic Scripting

In this section we present dynamic scripting as a technique that is designed for
the implementation of online adaptive game AI in commercial games (hence-
forth called ‘games’). Those interested in a more detailed exposition of dynamic
scripting are referred to [2].

Dynamic scripting is an unsupervised online learning technique for games. It
maintains several rulebases, one for each opponent type in the game. The rules
in the rulebases are manually designed using domain-specific knowledge. Every
time a new opponent of a particular type is generated, the rules that comprise the
script controlling the opponent are extracted from the corresponding rulebase.
The probability that a rule is selected for a script is proportional to the weight
value that is associated with the rule. The rulebase adapts by changing the weight
values to reflect the success or failure rate of the associated rules in scripts. A
priority mechanism can be used to let certain rules take precedence over other

v

/" team controlled | /" team controlled
by computer i i by human player
| i
generate scripted ! human
Rulebase A script Script A control < control
»
weight updates Combat
generate scripted human
Rulebase B script Script B control control

Figure 1. Dynamic scripting.

rules. The dynamic scripting process is illustrated in Figure 1 in the context of
a game.

The learning mechanism of dynamic scripting is inspired by reinforcement-
learning techniques [7,8]. ‘Regular’ reinforcement learning techniques, such as
TD-learning, in general need large amounts of trials, and thus do not meet
the requirement of efficiency [9,10]. Reinforcement learning may be suitable for
online learning of game AI when the trials occur in a short time-span. Such
may be the case on an operational level of intelligence, as in, for instance, the
work by Graepel, Herbrich, and Gold [11], where fight movements in a fighting
game are learned. However, for the learning on a tactical or strategic level of
intelligence, a trial consists of observing the performance of a tactic over a fairly
long period of time. Therefore, for the online learning of tactics in a game,
reinforcement learning will take too long to be particularly suitable. In contrast,
dynamic scripting has been designed to learn from a few trails only.

For the rules, weight values are bounded by a range [Winin, Winaz|. The size
of the weight changes depends on how well, or how badly, a team member be-
haved during the encounter. It is determined by a fitness function that rates a
team member’s performance as a number in the range [0, 1]. The fitness func-
tion is composed of four indicators of playing strength, namely (1) whether the
member’s team won or lost, (2) whether the member died or survived, (3) the
member’s remaining health, and (4) the amount of damage done to the member’s
enemies. The new weight value is calculated as W + AW, where W is the origi-
nal weight value, and the weight adjustment AW is expressed by the following
equation:

—memﬂj {F < b}
AW = F 0
LRmammJ {F 2 b}

(1)

v

In Equation 1, R4 € N and P,,,; € N are the maximum reward and maximum
penalty respectively, F is the agent fitness, and b € (0, 1) is the break-even value.
At the break-even point the weights remain unchanged.

4 Difficulty Scaling

This section describes how dynamic scripting can be used to create new opponent
strategies while scaling the difficulty level of the game Al to the experience level
of the human player. Specifically, it describes three different enhancements to
the dynamic scripting technique that let opponents learn how to play an even
game, namely (1) high-fitness penalising in Subsection 4.1, (2) weight clipping in
Subsection 4.2, and (3) top culling in Subsection 4.3. These enhancements have
been discussed before by Spronck, Sprinkhuizen-Kuyper, and Postma [12].

4.1 High-Fitness Penalising

The weight adjustment expressed in Equation 1 gives rewards proportional to
the fitness value: the higher the fitness, the higher the reward. To elicit mediocre
instead of superior behaviour, the weight adjustment can be changed to give
highest rewards to mediocre fitness values, and lower rewards or even penalties to
high fitness values. With high-fitness penalising weight adjustment is expressed
by Equation 1, where F' is replaced by F’ defined as follows.

F' = 1£F (2)

In Equation 2, F' is the calculated fitness value, and p € [0.5,1], p > b, is the
reward-peak value, i.e., the fitness value that should get the highest reward.
The higher the value of p, the more effective opponent behaviour will be. Figure
2 illustrates the weight adjustment as a function of the original fitness (left)
and the high-fitness-penalising fitness (right), with the mapping of F' to F’ in
between. Angles « and 3 are equal.

Since the optimal value for p depends on the strategy that the human player
uses, we decided to let the value of p adapt to the perceived difficulty level of
a game, as follows. Initially p starts at a value p;,;;. After every fight that is
lost by the computer, p is increased by a small amount p;,., up to a predefined
maximum p,q.. After every fight that is won by the computer, p is decreased
by a small amount pge., down to a predefined minimum Py, .

4.2 Weight Clipping

During the weight updates, the maximum weight value W, determines the
maximum level of optimisation that a learned strategy can achieve. A high value
for W4, allows the weights to grow to large values, so that after a while the

VI

Ruax A e Runax)

Figure 2. Comparison of the original weight-adjustment formula (left) and the high-
fitness-penalising weight-adjustment formula (right), by plotting the weight adjust-
ments as a function of the fitness value F'. The middle graph displays the relation
between F and F".

most effective rules will almost always be selected. This will result in scripts that
are close to a presumed optimum. A low value for W, restricts weights in their
growth. This enforces a high diversity in generated scripts, most of which will
not be that good.

Weight clipping automatically changes the value of W,,,,, with the intent
to enforce an even game. It aims at having a low value for W,,,, when the
computer wins often, and a high value for W,,,,, when the computer loses often.
The implementation is as follows. After the computer won a fight, W,,..: is
decreased by Wye. per cent (with a lower limit equal to the initial weight value
Winit). After the computer lost a fight, W4, is increased by W, per cent.

Figure 3 illustrates the weight-clipping process and the associated parame-
ters. The shaded bars denote weight values for arbitrary rules on the horizontal
axis. Before the weight adjustment, W,,,, changes by W,. or Wy, per cent,
depending on the outcome of the fight. After the weight adjustment, in Figure
3 the weight value for rule 4 is too low, and will be increased to W, (arrow
‘a’), while the weight value for rule 2 is too high, and will be decreased to Wi,z
(arrow ‘b’).

4.3 Top Culling

Top culling is quite similar to weight clipping. It employs the same adapta-
tion mechanism for the value of W,,,,. The difference is that top culling al-
lows weights to grow beyond the value of W,,,. However, rules with a weight
greater than W,,,, will not be selected for a generated script. Consequently,
when the computer-controlled opponents win often, the most effective rules will
have weights that exceed W42, and cannot be selected, and thus the opponents
will use relatively weak strategies. Alternatively, when the computer-controlled
opponents lose often, rules with high weights will be selectable, and the oppo-
nents will use relatively strong strategies.

VII

Weights
lb ? Wi
Wmax
\L Wdec
VVinit ''''
Weio 1 'y
a
0 [] Rules

Figure 3. Weight clipping and top culling process and parameters.

In Figure 3, contrary to weight clipping, top culling will leave the value of
rule 2 unchanged (the action represented by arrow ‘b’ will not be performed).
However, rule 2 will be unavailable for selection, because its value exceeds Wy, 4.

5 Experimental Results

To evaluate the effect of the three difficulty-scaling enhancements to dynamic
scripting, we employed a simulation of an encounter of two teams in a complex
Computer RolePlaying Game (CRPG), closely resembling the popular BALDUR’S
GATE games. We used this environment in earlier research to demonstrate the
efficiency of dynamic scripting [2]. Our evaluation experiments aimed at assessing
the performance of a team controlled by the dynamic scripting technique using
a difficulty-scaling enhancement, against a team controlled by static scripts.
If the difficulty-scaling enhancements work as intended, dynamic scripting will
balance the game so that the number of wins of the dynamic team is roughly
equal to the number of losses. In the simulation, we pitted the dynamic team
against a static team that uses one of five, manually designed, basic strategies
(named ‘offensive’, ‘disabling’, ‘cursing’, ‘defensive’, and ‘novice’), or one of three
composite strategies (named ‘random team’, ‘random agent’ and ‘consecutive’).

Of the eight static team’s strategies the most interesting in the present con-
text is the ‘novice’ strategy. This strategy resembles the playing style of a novice
BALDUR'S GATE player (for whom a tutoring system is most needed). While
the ‘novice’ strategy normally will not be defeated by arbitrarily picking rules
from the rulebase, many different strategies exist that can be employed to defeat
it, which the dynamic team will quickly discover. Without difficulty-scaling, the
dynamic team’s number of wins will greatly exceed its losses.

VIII

Plain High-Fitness Penalising
10 10
5 5
o o
0 10 20 30 40 50 60 70 80 90 100 0 10 20 30 40 50 60 70 80 90 100
15 15
Weight Clipping Top Culling
10 1o
5 5
0] o L1

Figure 4. Histograms of 100 tests of the achieved number of wins in 100 fights, against
the ‘novice’ strategy.

In our experiments we initialised W, 4. = 2000. We set Wiy = 100, Wiin =
0, Wine = Waee = 10%7 Pinit = 077 Pmin = 0.65, Pmax = 0.75, Pine = Pdec =
0.01, Ryaz = Pmae = 100, and b = 0.3. We employed the same fitness function as
in previous research [2], and dynamic scripting with fitness-propagation fallback
[13].

For each of the static strategies, we ran 100 tests in which dynamic script-
ing was enhanced with each of the three difficulty-scaling enhancements, and,
for comparison, also without difficulty-scaling enhancements (‘plain’). Each test
consisted of a sequence of 150 encounters between the dynamic team and the
static team. Because in each of the tests the dynamic scripting process starts
with a rulebase with all weights equal, the first 50 encounters were used for find-
ing a balance of well-performing weights (in an actual game, weights would be
biased to prefer the best rules from the start, so this ‘training period’ would not
be needed). We recorded the number of wins of the dynamic team for the last
100 encounters. The results of these tests are displayed in Table 1. Histograms
for the tests with the ‘novice’ strategy are displayed in Figure 4. The length of
each bar in the histograms indicates the number of tests that resulted in the
number of wins (out of 100) that is displayed on the horizontal axis.

To be recognised as an even game, we decided that the average number of
wins over all tests must be close to 50. To take into account random fluctuations,
in this context “close to 50” means “within the range [45,55]”. In Table 1, all

IX

Table 1. Experimental results of testing the difficulty-scaling enhancements to dy-
namic scripting on eight different strategies, averaged over 100 tests. The results
achieved against the ‘novice’ strategy (marked with an asterisk) are detailed in the
histograms in Figure 4.

Plain High-Fitness Weight Top
Penalising Clipping Culling
Strategy Average St.Dev.|Average St.Dev.|Average St.Dev.|Average St.Dev.
Offensive 61.2 16.4 46.0 15.1 50.6 94 46.3 7.5
Disabling 86.3 10.4 56.6 8.8 67.8 4.5 52.2 3.9
Cursing 56.2 11.7 42.8 9.9 48.4 6.9 46.4 5.6
Defensive 66.1 11.9 39.7 8.2 52.7 4.2 49.2 3.6
Novice* 75.1 13.3 54.2 13.3 53.0 5.4 49.8 3.4
Random team | 55.8 11.3 37.7 6.5 50.0 6.9 47.4 5.1
Random agent| 58.8 9.7 44.0 8.6 51.8 5.9 48.8 4.1
Consecutive 51.1 11.8 34.4 8.8 48.7 7.7 45.0 7.3

cell values indicating an even game are marked in bold font. From Table 1 the
following four results can be derived.

First, dynamic scripting used without a difficulty-scaling enhancement results
in wins significantly exceeding losses for all strategies except for the ‘consecutive’
strategy (with a reliability > 99.9% [14]). The ‘consecutive’ strategy is the most
difficult strategy to defeat [2]. Note that the fact that, on average, dynamic
scripting plays an even game against the ‘consecutive’ strategy even without
difficulty scaling, is not because it is unable to consistently defeat this strategy,
but because dynamic scripting continues learning after it has reached a local
optimum. Therefore, it can “forget” what it previously learned, especially against
an superior strategy like the ‘consecutive’ strategy.

Second, high-fitness penalising performs considerably worse than the other
two enhancements. It cannot achieve an even game against six of the eight strate-
gies.

Third, weight clipping is successful in enforcing an even game against seven
out of eight strategies. It does not succeed against the ‘disabling’ strategy. This
is caused by the fact that the ‘disabling’ strategy is so easy to defeat, that even a
rulebase with all weights equal will, on average, generate a script that defeats this
strategy. Weight clipping can never generate a rulebase worse than “all weights
equal”.

Fourth, top culling is successful in enforcing an even game against all eight
strategies.

From the histograms in Figure 4 we derive the following result. While all
three difficulty-scaling enhancements manage to, on average, enforce an even
game against the ‘novice’ strategy, the number of wins in each of the tests is
much more “spread out” for the high-fitness-penalising enhancement than for

X

the other two enhancements. This indicates that the high-fitness penalising re-
sults in a higher variance of the distribution of won games than the other two
enhancements. The top-culling enhancement seems to yield the lowest variance.
This is confirmed by an approximate randomisation test [14], which shows that
against the ‘novice’ strategy, the variance achieved with top culling is signifi-
cantly lower than with the other two enhancements (reliability > 99.9%). We
observed similar distributions of won games against the other strategies, except
that against some of the stronger strategies a few exceptional outliers occurred
with a significantly lower number of won games. The rare outliers were caused
by dynamic scripting occasionally needing more than the first 50 encounters to
find well-performing weights against a strong static strategy.

6 Discussion

Of the three different difficulty-scaling enhancements we conclude the top-culling
enhancement to be the best choice. It has the following three advantages: (1) it
yields results with a very low variance, (2) it is easily implemented, and (3) of
the three enhancements, it is the only one that manages to force an even game
against inferior strategies, which is of crucial importance for tutoring systems.
We further validated the results achieved with top culling, by implementing
dynamic scripting with the top-culling enhancement in a state-of-the-art com-
puter game, NEVERWINTER NIGHTS (version 1.61). We tested it against the
game Al implemented by the game developers, with the same experimental pro-
cedure as used in the simulation environment. Ten tests without difficulty scaling
resulted in an average number of wins of 79.4 out of 100, with a standard devi-
ation of 12.7. Ten tests with the top-culling enhancement resulted in an average
number of wins of 49.8 out of 100, with a standard deviation of 3.4. Therefore,
our simulation results are supported by the NEVERWINTER NIGHTS tests.
Obviously, the worst difficulty-scaling enhancement we tested is high-fitness
penalising. In an attempt to improve high-fitness penalising, we performed some
tests with different ranges and adaptation values for the reward-peak value p,
but these worsened the results. However, we cannot rule out the possibility that
with a different fitness function high-fitness penalising will give better results.

An additional possibility with weight clipping and top culling is that they can
be used to set a desired win-loss ratio, simply by changing the rates with which
the value of W, 4, fluctuates. For instance, by using top culling with Wy..=30%
instead of 10%, leaving all other parameters the same, after 100 tests against the
‘novice’ strategy, we derived an average number of wins of 35.0 with a standard
deviation of 5.6.

In previous research we concluded that dynamic scripting is suitable to be
applied in real commercial games to improve strategies automatically [13]. With
a difficulty-scaling enhancement, dynamic scripting becomes a tutoring system
for novice players, improving its usefulness significantly.

XI

7 Conclusions and Future Work

In this paper we proposed to implement a tutoring system for commercial games
by enhancing online adaptive game Al with difficulty scaling. We demonstrated
the viability of our proposal by testing three different enhancements to the on-
line adaptive game Al technique ‘dynamic scripting’ that allow scaling of the
difficulty level of game AI. These three enhancements are (1) high-fitness pe-
nalising, (2) weight clipping, and (3) top culling. Of the three difficulty-scaling
enhancements tested, top culling gave the best results. We also discovered that
both weight clipping and top culling, besides forcing an even game, can be used
to set a different win-loss ratio, by tuning a single parameter. We conclude that
dynamic scripting, using top culling, can be used as a tutoring system for com-
mercial games.

In future work, we intend to apply dynamic scripting, including difficulty
scaling, in other game types than CRPGs. We will also investigate whether offline
machine learning techniques can be used to “invent” completely new rules for
the dynamic scripting rulebase. First results for this research are reported by
Ponsen and Spronck [15]. Finally, we will aim to investigate the effectiveness
of the proposed tutoring system in games played against actual human players.
While such a study requires many subjects and a careful experimental design,
the game-play experiences of human players are important to convince game
developers to adopt the proposed tutoring system in their games.

References

1. Tida, H., Handa, K., Uiterwijk, J.: Tutoring strategies in game-tree search. ICCA
Journal 18 (1995) 191-204
2. Spronck, P., Sprinkhuizen-Kuyper, I., Postma, E.: Online adaptation of game
opponent Al with dynamic scripting. International Journal of Intelligent Games
and Simulation 3 (2004) 45-53
3. Donkers, H.: Nosce Hostem: Searching with Opponent Models. Ph.D. thesis.
Universitaire Pers Maastricht, Maastricht, The Netherlands (2003)
4. Rabin, S.: Promising game AT techniques. In Rabin, S., ed.: AT Game Programming
Wisdom 2, Hingham, MA, Charles River Media, Inc. (2004) 15-27
5. Woodcock, S.: The future of game AI: A personal view. Game Developer Magazine
7 (2000)
6. Demasi, P., Cruz, A.: Online coevolution for action games. International Journal
of Intelligent Games and Simulation 2 (2002) 80-88
7. Sutton, R., Barto, A.: Reinforcement Learning: An Introduction. MIT Press,
Cambridge, MA (1998)
8. Russell, S., Norvig, P.: Artificial Intelligence: A Modern Approach. Second edition
edn. Prentice Hall, Pearson Education, Upper Saddle River, NJ (2003)
9. Manslow, J.: Learning and adaptation. In Rabin, S., ed.: Al Game Programming
Wisdom, Hingham, MA, Charles River Media, Inc. (2002) 557-566
10. Madeira, C., Corruble, V., Ramalho, G., Ratitch, B.: Bootstrapping the learning
process for the semi-automated design of challenging game AI. In Fu, D., Henke,
S., Orkin, J., eds.: Proceedings of the AAAI-04 Workshop on Challenges in Game
Artificial Intelligence, Menlo Park, CA, AAAI Press (2004) 72-76

XII

11.

12.

13.

14.

15.

Graepel, T., Herbrich, R., Gold, J.: Learning to fight. In Mehdi, Q., Gough, N.,
Natkin, S., Al-Dabass, D., eds.: Computer Games: Artificial Intelligence, Design
and Education (CGAIDE 2004), Wolverhampton, UK, University of Wolverhamp-
ton (2004) 193-200

Spronck, P.; Sprinkhuizen-Kuyper, 1., Postma, E.: Difficulty scaling of game AI. In
El Rhalibi, A., van Welden, D., eds.: GAME-ON 2004 5th International Conference
on Intelligent Games and Simulation. (2004)

Spronck, P., Sprinkhuizen-Kuyper, 1., Postma, E.: Enhancing the performance of
dynamic scripting in computer games. In Rauterberg, M., ed.: Entertainment Com-
puting — ICEC 2004. Lecture Notes in Computer Science 3166, Berlin, Germany,
Springer-Verlag (2004) 296-307

Cohen, P.: Empirical Methods for Artificial Intelligence. MIT Press, Cambridge,
MA (1995)

Ponsen, M., Spronck, P.: Improving adaptive game AI with evolutionary learning.
In Mehdi, Q., Gough, N., Natkin, S., Al-Dabass, D., eds.: Computer Games: Ar-
tificial Intelligence, Design and Education (CGAIDE 2004), Wolverhampton, UK,
University of Wolverhampton (2004) 389-396

