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Abstract. As the number of network-based attacks increase, and sys-
tem administrators become overwhelmed with Intrusion Detection Sys-
tem (IDS) alerts, systems that respond to these attacks are rapidly be-
coming a key area of research. Current response solutions are either lo-
calized to individual hosts, or focus on a refined set of possible attacks
or resources, which emulate many features of low level IDS sensors.

In this paper, we describe a modular network-based response framework
that can incorporate existing response solutions and IDS sensors. This
framework combines these components by uniting models that represent:
events that affect the state of the system, the detection capabilities of
sensors, the response capabilities of response agents, and the conditions
that represent system policy. Linking these models provides a foundation
for generating responses that can best satisfy policy, given the perceived
system state and the capabilities of sensors and response agents.
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1 Introduction

The first intrusion detection systems were developed as low level sensors that
detected attacks by using attack signatures on low level event logs [1-3]. Since
these sensors lacked the context of a high level system policy, correlation-based
intrusion detection systems were developed, which allowed for a broader context
for interpreting the higher-level effect of an observed event.

Similarly, current response systems operate on a relatively small scope of
possible responses and state assessment with respect to policy. As an example,
the Intrusion Detection and Isolation Protocol [7] uses a simple cost model for
each link and modifies firewall rules to isolate infected hosts from the rest of
the network. The Light Autonomic Defense System (LADS) [8] is an effective
host-based solution, but does not incorporate a system-wide policy or system-
wide responses. CIRCADIA [9] is a network-wide solution that uses a simple
cost model with a table lookup for determining appropriate responses. Toth and
Kruegel [10] present a useful dependency-based response model that can create
and modify firewall rules, kill and restart processes on individual hosts, and
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reset a user profile to a predetermined template. However, their attack domain
is mainly limited to resource management problems and they do not present
a model capable of incorporating other response systems. In addition, these
response systems assume the sensors that provide their alerts are infallible.

Some response agents, such as Honeynet [14,13] and the Deception Toolkit
[11,12] are extremely useful response agents for a larger response model. These
response agents can be refined with information from higher-level events. If a
high-level IDS predicts an attacker’s goals or future targets, this information
could be used to reconfigure these agents to better deceive the attacker. Other
response agents, such as DDoS mitigation systems [4-6], can also be used and
configured based on their requirements and expected performance.

This paper presents the Autonomic Response Model (ARM), an expressive
model that unites sensor capabilities, response agent capabilities, attack and
state related events, and system policy. This allows for the model to generate a
policy-based optimal response. An implementation and framework based on this
model is discussed in detail, as well as some experimental results.

2 Autonomic Response Model

The decision agent for ARM receives alerts from intrusion detection systems
(i.e., sensors), in addition to agents that report policy changes and model-based
changes. Any resulting response set is submitted to the corresponding response
agents. The decision agent also recalculates the optimal sensor configuration with
respect to policy. If this differs from the previous global sensor configuration,
sensor configuration updates are submitted to the appropriate sensors.

2.1 Basic Components

This model uses several components as building blocks. Event classes contain
attribute/value based pairs that are used to describe attack events, policy events,
and state events. Each event class also has a predetermined set of policy-derived
detection constraints that must be satisfied by current sensor configurations.

FEvent instances are instances of event classes and describe an aspect of the
current perceived state of the system. Alerts from sensors are translated into
event instances. Each event instance has an associated false positive probability
(FPP) that represents the probability that the corresponding event that the
event instance represents does not exist. This probability is directly determined
by the sensor configuration that reported it or the highest F'P P of all prerequisite
event instances of the event instance.

Rules describe the relationship between event classes. If event instances of
the prerequisite event classes exist to satisfy all of the preconditions of a rule,
postrequisite event instances are generated. These postrequisite event instances
are initialized from postrequisite conditions associated with the rule, which refer
to attributes of the prerequisite event instances or rule-specified constant values.
In addition, prerequisite event instances may be modified by a postcondition.



Sensor configurations are represented by the detection thresholds for each
event class it detects. A detection threshold is represented as a threshold for
FPP, false negative probability (FNP), and timeliness (7). F PP represents
the probability that an alert produced by the sensor configuration is based on
an event that does not exist. F'NP represents the probability that given an
event exists that should have been reported as an alert, it was not. T represents
the estimated time the sensor configuration takes to report the alert from the
moment the event takes place. This information can be obtained from receiver
operating characteristic (ROC) curves for each event class and sensor pair?.

Many attack modeling languages can be used for these components [15-18].
In addition, to make the translation from sensor alerts to event instances, a
common report language adapted from CIDF [19] or IDMEF [20] can be used,
despite the difficulties they have encountered in gaining widespread acceptance.

2.2 Prevention and Recovery Response Model

Alerts are translated into event instances and are processed one at a time by
the decision engine. System policy is represented using event classes, rules, and
event instances that represent key aspects of system state. If an event instance is
created that belongs to a policy violation labeled event class, then the decision
engine searches for an optimal response set to handle the problem. This response
set recovers from the effects of the policy violation and prevents attempts from
an identical attack vector from resulting in another policy violation. Each policy
violation event class also has a field that determines the acceptable F'PP thresh-
old that the corresponding event instance’s F'PP must be below to be considered
as a valid policy violation. If a policy violation event instance (PV ET) does not
exist, or existing PV EI F P Ps surpass their corresponding thresholds, then the
decision engine waits for more alerts.

Finding Solutions Each PV EI has at least one prerequisite event instance
that matched a rule to create it, even if it was generated from a one-to-one rule
matching. Each prerequisite may have additional prerequisites that contributed
to the generation of the PV EI. This generates a tree of event instances that
resulted in the generation of the PV EI. A satisfying response solution set is able
to recover all event instances on a path within this tree, as well as preventing
at least one of these event instances from reverting back into the state that
resulted in the generation of the PV EI. Recovery responses are therefore highly
relative to the context of the event instances they are recovering within the policy
violation tree. Recovery responses are designed to break the conditions of the
rule in which the corresponding event instance was used to generate the PV EI.
Prevention responses are designed to ensure that newly changed values do not

! It is acknowledged that most current ROC curves for sensors describe their average
overall detection capabilities, rather than being associated with specific alert types
or categories. It is also acknowledged that these probabilities and values are highly
dependent upon the environment in which they are recorded.



easily revert to their previous values. Prevention responses on event instances at
leaf nodes of the policy violation tree, which are not translated from an attack
alert?, are resistant to attacker influence from previous attack vectors.

If a prevention response is unavailable due to the lack of information on the
origin of an event instance, backchaining can be applied. Suppose a Tripwire [21]
sensor reports that a filesystem has been compromised, but no other alerts can
identify the source of the service that resulted in the compromised filesystem.
Backchaining obtains all services with access to the compromised filesystem that
may be at fault. If prevention responses are initiated for all of these services,
the effect is the same as initiating a prevention response for the compromised
filesystem event instance.

Similarly, an anomaly-based sensor may not be able to pinpoint the origin of
an event instance as well as a signature-based sensor. Alerts from a signature-
based sensor typically directly determine the specific vulnerability that the at-
tack attempted to exploit. By comparison, an anomaly-based sensor may only
be able to report generic attack behavior from a particular source to a partic-
ular host and/or service. Backchaining can be used to cover all possible attack
behaviors against the targetted service.

Evaluating Solutions The response set for a particular path represents the
response event classes that are associated with rules or other event classes. Each
generic response event class can be initialized into a response event instance
based on the values of the corresponding event instance to which it is responding,
or based on the prerequisite event instances and prerequisite conditions of the
corresponding rule matching within the policy violation tree.

Within a specific path in the policy violation tree, different response sets are
tested by temporarily adding the corresponding response event instances. After
the testing of all combinations of a path are complete, new paths in the tree are
tested. The response set that produces the best state assessment when tested is
the response set that is initiated.

A simple metric for assessing the state is the sum of all state assessment values
(SAVS) of current event instances. Rather than have a SAV for all possible
states, this approach has a SAV for each event instance, which corresponds
to that event instance’s influence on the assessment of the overall state of the
system. Event instances that are critical with respect to policy, such as critical
services, have positive SAV's. Event instances that represent penalties to the
system policy and impact the availability or integrity of the system, have negative
S AVs. Each event instance has a S AV associated with the event class from which
is it a member. Rules and policies can have exceptions to this default allocation
can modify or override these values.

This assessment method can be enhanced through the addition of assessment
rules. These rules modify the overall SAV of a state based on the presence or
absence of particular event instances, and can be synergistic (i.e., two event

2 Alerts from system state sensors, such as sensors that scan current versions for
available services, are acceptable.



instances result in a net SAV greater than their sum) or dyssynergistic (i.e.,
two event instances result in a net SAV less than their sum). Cost models based
on risk analysis [22] can also be adapted to determine these values.

Once a global optimal response set is found, these response event instances
are added to the decision agent’s current state, and each response event instance
is submitted to the appropriate response agent. Each response agent that receives
the response makes the appropriate changes to its local configuration.

2.3 Sensor Retargeting

Sensors can become reconfigured based on policy changes. As critical tasks for
a system change, so should its policy. Some of these critical tasks may be time
dependent, short term tasks, while others may be more long term tasks. These
tasks are represented in the policy model and correspond to individual event
instances with corresponding SAVs. In addition to their use for assessing the
state of the system, SAV's can be used to prioritize the detection of particular
event classes. SAVs of an event class can be used to directly determine its
allowable detection thresholds.

In addition, sensors have resource costs. If costs were ignored for integrity
scanners, such as Tripwire, then the constant operation of these scanners are
likely to impact the performance of the scanned hosts. Instead, the traditional
tradeoff between performance and stability (or security in this case), is acknowl-
edged, allowing these scanners to only run periodically. The balance of this
tradeoff can be shifted depending on the SAV of the event class that the sensor
attempts to detect. A higher SAV event class is more critical, and therefore
results in lower detection thresholds.

S; = [[ (RL» — R(i)) (1)

The overall cost for a set of sensor configurations can also be assessed with a
more complex load balancing metric, as shown in Equation 1, where the solution
set with the highest value of S; is considered the most efficient with respect to
policy. A similar metric can be adapted that measures the distance between
current detection capabilities of sensor configurations and event class detection
thresholds. This alternative metric prefers better detecting sensor configurations
over resource conserving sensor configurations.

Sensors can also be preemptively retargeted. Suppose an event instance (ET,,)
is generated from a rule matching of other event instances. If EI, belongs to
an event class with very low detection thresholds due to its SAV, then these
detection thresholds are passed down to the prerequisite event classes from the
rule that generated ET,,. The first step for this detection threshold propagation is
to obtain v(P, r), which represents how close prerequisite event instances in P are
to creating a successful match with rule r and is defined in Equation 2. Each event
class possesses an « value, which represents the event class’ relative importance



compared to other event classes for rule matchings®. v is initialized with the sum
of all a values of prerequisite event classes, multiplied by a 3 factor?, which is an
attribute of the rule that is matched. If a prerequisite event instance matches all
preconditions for the rule, the entire o value for that prerequisite’s event class
is subtracted from . Partial matches result in only subtracting 5. These values
are also influenced by the false positive probabilities of each prerequisite event
instances, as shown in Equation 2.

WPr) =B () — (aj (1.0 FPP)) —
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New detection thresholds are propagated for prerequisite event classes from
each detection threshold of each postrequisite event class. The k** new propa-
gated FPP detection threshold (NDppp,, ) for prerequisite event class i is de-
fined in Equation 3, where Dpp P;., represents the nth FPP detection threshold
for postrequisite event class j. False negative probability thresholds and timeli-
ness thresholds are propagated using the same equation, but for their respective
threshold values.

Pr
NDFPPI.’,C = (1.0+ M) DFPPM (3
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~

2.4 Attacks and Countermeasures

Attacks against ARM exploit the expressiveness of event classes and the estab-
lished relationships between them. Even with a perfect model of event classes
and their relationships, attacks may exploit the time it takes for the model to
respond to an event by flooding it with trivial decisions that take a significant
amount of time for the decision agent to determine. In addition, poorly designed
models may cause infinite loops for exhaustive decision agents. When control
systems perpetually overestimate or underestimate the current or future state
of the system, increasingly inaccurate responses can occur, resulting in an un-
steady state. Control systems used in chemical and electrical engineering have
adapted meta-control agents that observe the behavior and results of their con-
trol system to enhance their reliability and have been able to prevent unsteady

3 As an alternative, o values could be tied to a specific prerequisite event class and
rule pair which would be more precise, but would likely result in more « values to
calibrate.

4 B3 s considered to be greater than 0. This can result in propagating more strict detec-
tion thresholds if 3 is less than 1, since 7 can be negative for this case. Additionally,
if B is always greater than 1, the propagating detection thresholds are always less
strict.



states from occuring within limited domains. Through the application of a sim-
ilar meta-control agent for this model, many of the effects of these attacks can
be mitigated.

3 Implementation

Despite the previously mentioned response systems, and a response testbed [23],
a modular response framework and testbed is not readily available. This modular
response framework was developed and used in the Emulab [24] environment and
is freely available upon request.

Response Controller
Agent ~ 4| Aggregation Agent
e

#

Host- based

Agent
(HA]

Fig. 1. Overall Response Framework

The implementation of this response framework that is presented in Figure
1 is comprised of four types of agents. The host-based agent is responsible for:
simulating the effects of host and network based intrusion detection sensors, ex-
ecuting responses received from the response agent, and storing local host-based
vulnerability profiles and sensor configurations. The aggregation agent is respon-
sible for aggregating reports received from all host-based agents and submitting
the relevant new reports to the response agent. Reports that have a higher false
positive probability than a previously received report is not forwarded to the
response agent. The response agent receives all sensor reports from the aggre-
gation agent. Each report is processed individually. If a new policy violation
occurs, the response agent searches for an optimal response set. If one is found,
the corresponding responses are submitted to all applicable host-based agents.
In addition, new sensor configurations are evaluated to determine if a new global



sensor configuration better satisfies system policy. New sensor configurations are
sent to the corresponding host-based agents. The controller agent is responsible
for initializing all the other agents, and initiating any external attacks against
the network.

3.1 Document Types

Messages passed between agents are in the form of XML documents. This sub-
section briefly describes the XML schemas used in the implementation. The
event class schema contains the unique identifier for that event class, as well
as all appropriate fields that are associated with the class. Fields can be of type
integer, float, or string. This schema also supports detection thresholds for the
event class, as well as the a value previously discussed in Subsection 2.3.

The alert schema contains a unique identifier of the host and attack event
that triggered it, as well as a F'PP value that is associated with the probability
that the alert is a false positive. Alert schemas contain fields that represent
specific values that differ from the defaults of the event class from which it is
derived. In addition, alert schemas are used for passing response messages from
the response agent to the host-based agents.

The host profile schema contains information about a host, including its
IP address and services available on that IP address. This schema also mentions
which filesystems each service has access to, as well as the version number of the
service and its dependencies with other services.

The IDS profile schema lists the identifiers of the event classes that the
specific configuration detects and their corresponding detection values for F PP,
FNP, and T. This sensor configuration schema also contains a generic resource
cost for operating the sensor with this configuration. This schema also supports
a NULL configuration for sensors that are disabled.

The rule schema includes prerequisite event class identifiers, postrequisite
event class identifiers, preconditions, and postconditions. Preconditions are rep-
resented by referencing the local rule identifier of the prerequisite event instance
along with the name of its field that is being compared. For example, position
3 and field “Port” would refer to the rule’s third prerequisite event instance’s
port value. Comparisons can be made to a constant value, or to another prereq-
uisite event instance’s field value. The supported operators are equal, not equal,
greater than or equal, less than or equal, greater than, and less than. Postcon-
ditions only support the equal operator for the initialization of postrequisite
values. Postconditions can also be used to modify prerequisite event instance
field values by referencing negative identifier values. In addition, rule schema
include the § value of the rule that is used for preemptive sensor retargeting
previously described in Subsection 2.3.

The response map schema maps event classes to recovery and prevention
response event class sets. It references the event class identifiers for each event
class involved in the mapping, as well as additional fields for the response event
classes to specify additional initialization information, as well as additional fields



for the source event class that limit the applicability of the mapping. For ex-
ample, a response map for an infected filesystem event class could restrict the
response map to a specific filesystem. In addition, the response map specifies if
the corresponding response sets are prevention response sets, recovery response
sets, or both.

The next two schemas were adapted from Joseph McAlerney’s thesis [25],
which presented a framework for simulating and recording worm behavior using
agents and XML documents. The event profile schema represents the vulner-
ability profile of the host-based agent with respect to an individual attack event
class. This schema was modified to support a requirements field, which lists the
required services or filesystem needed for the corresponding attack event to suc-
ceed. The event propertiesschema is used for documents that represent attack
events. It specifies propagation details, including the rate and amount of attacks
that are initiated, if the attack event is intended to propagate. This schema was
modified from the worm simulation version by adding fields to represent the ef-
fects of the attack, which correspond to creating specific event instances. This
schema was also modified to represent the filesystem (including memory) that
the attack resides in, if it is persistent.

3.2 Host-based Agent

The code used for the host-based agents were adapated from the worm simulation
project [25] to support responses, sensor reconfigurations, sensor simulation for
false positives, false negatives, and timeliness values. The code was also adapted
to support the changes to event profiles and event properties discussed at the
end of Subsection 3.15. Host-based agents are the only agents in the implemen-
tation that are multi-threaded. When a new document is received, a new thread
is created to parse and process the document. Mutexes are used to ensure shared
data constructs are not shared while a thread is operating in a critical section. A
host-based agent is initialized with: all event class definitions used in an upcom-
ing experiment, current IDS configurations, a host profile document describing
the simulated services running on the host, and an event profile document for
each attack class used in the upcoming experiment.

Once an event properties document is received from either another host-based
agent or the controller agent, the document is parsed into a local structure and
current IDS configurations are checked to determine if any sensors successfully
detect the attack. If the randomly generated probability is above the detecting
sensor configuration’s F'N P value for the attack’s corresponding event class, a
new thread is spawned which generates the corresponding alert and submits it
to the aggregation agent after sleeping for a period of time derived from the
T value of the sensor configuration. If a sensor configuration fails to detect the

5 All other agents, with the exception of the controller agent that sends arbitrary XML
files to a designated host and port, were not associated with the worm simulation
project.



attack, it is locally blacklisted from being able to report future occurrences with
the same attack identifier®.

If the host-based agent is not vulnerable to the received attack event, the
thread terminates. Otherwise, the effects of the thread get added as local event
instances, and sensor configurations that detect the corresponding event classes
of these effects are examined. As above, if a sensor configuration detects an event
instance, a new thread is spawned which submits the alert after sleeping.

False positives are represented by receiving a non-attack event property doc-
ument that mirrors a specific attack event property in every other way. If the
randomly generated probability is below the FPP7 for a given sensor configu-
ration, an alert is generated and submitted as mentioned above, representing a
false positive that appears identical to a true positive.

Host-based agents are also responsible for updating local sensor configura-
tions to those received from the response agent. In addition, host-based agents
process responses from the response agent. Some responses, such as filesystem
recovery responses, require a delay, which is specified in the appropriate delay-
related fields of the response. Similar to alert reporting, a new thread is spawned
which sleeps for the amount of time the response takes to complete. Other re-
sponses, such as firewall rule changes, are made instantaneously. In addition,
since dependencies between filesystems and services are represented, responses
that temporarily disable services or filesystems also disable services that require
them. These filesystems and services are restored when the corresponding re-
sponse is complete. Some responses require a service or filesystem to be available
before it can become available again. Responses that have overlapping require-
ments are initiated sequentially on a first-come-first-serve basis. If a response
recovers a filesystem that an attack event was residing in, the attack event ceases
propagation. Prevention responses prevent future attack events from succeeding
by making the host no longer satisfy the requirements for the attack event that
are specified in the event profile.

3.3 Aggregation Agent

When the aggregation agent receives an alert, it compares the host and attack
identifiers of the alert to previously seen alerts. If it does not find a match, it
records the alert and forwards it to the response agent. If it finds a match, it
compares the new alert’s FPP to the recorded alert’s F'PP. If the new alert’s
F PP is lower than the previous matching alert’s F'PP, it passes this alert on to

6 To clarify attack identifiers, suppose an experiment consisted of two worms. Each
worm would have a different attack identifier. If a host-based agent received the
worm from multiple hosts, each attack event would have the same attack identifier.
However, if it received a different worm from the same host, it would have a different
attack identifier.
Recall that the definition provided for F'PP is the probability that a given alert
is a false positive, rather than the probability that a false positive alert will be
generated from non-attack events. As a result, each sensor configuration could also
contain these alternative false positive probabilities for this purpose.

g



the response agent and overwrites the old alert with the new alert. Otherwise,
the alert is dropped.

3.4 Response Agent

The response agent is initialized by receiving: event class documents defining
all event classes to be used in the upcoming experiment, all IDS configuration
profiles for all available sensors, the host profiles of all hosts, an event profile doc-
ument for each host and attack event pair, rule documents including backchain
rules as described near the end of Subsection 2.2, and response map documents
that map event classes to available responses.

When an alert document is received, it is first translated to a local event
instance (ET;). If EI)’s values are identical to a currently existing event instance
(EI,), and EI;’s FPP is lower than EI,’s FPP, then EI,’s FPP is updated to
EI’s FPP, detection propagation thresholds are recalculated, and the response
agent skips attempting to match the new event instance with other existing event
instances. Otherwise, rules that require EI;’s event class are then checked with
EI; and all current event instances. As event instance combinations are tested,
preemptive detection threshold propagation occurs, as discussed previously at
the end of Subsection 2.3. Newly generated event instances inherit a F'PP equal
to the highest FPP of their prerequisite event instances. New event instances
and modified event instances are added to a queue. Once all rules are checked
for EI;, event instances from the queue are added one at a time, just as FI;
was added, until the queue is empty. Rules that modify currently existing event
instances must be designed carefully. Incorrect versions of these rules may result
in an infinite loop where an event instance is constantly changed back and forth
or the queue never becomes empty. All newly added and modified event instances
are appended to a rollback queue as transactions.

SAVgveran = Y (SAV; (1 - FPP)) (4)

1€EICurrent

If a policy violation event instance is generated, the response agent searches
for a response solution set as described previously in Subsections 2.2 and 2.2.
Before testing a response set, the rollback queue is cleared. After adding response
event instances the system state and the resulting state is assessed, the system
state is rolled back by rolling back each transaction on the rollback queue. A
tested response set’s resulting system state assessment (SAV,yerair) is defined
in Equation 4, where Elcy,rent represents the set of currently existing event
instances. If a response set is found to provide a state that is estimated to be
better than the current state, the responses are translated to alerts that are then
submitted to the corresponding host-based agents.

After the response phase, sensor configurations are analyzed with respect to
all event class detection thresholds that must be upheld. If it is found that a
detection threshold can not be satisfied by any existing sensor configuration, the
response agent generates a local alert and the detection threshold is flagged as



impossible. Some detection thresholds can also be virtual, representing the notion
that they are intended to be inherited through preemptive detection threshold
propagation rather than satisfied for the parent event class. All sensor configu-
rations are then tested to determine the global sensor configuration that satisfies
all detection thresholds but has the lowest impact on resources. For the purposes
of this implementation, resource impact is assessed by the sum of all resource
costs of sensor configurations into a single value, which could be enhanced with
a more thorough cost model [22] or use of the more advanced metrics previously
discussed in Subsection 2.3. If a new sensor configuration is found, the IDS profile
representing the new configuration is sent to the affected host-based agents.

4 Experiments

A worm buffer overflow scenario was used for the experiments with this imple-
mentation. The majority of experiments were executed on a 7 node network on
Emulab [24] where one node provided the aggregation agent and the response
agent, and the remaining 6 nodes provided the host-based agents.

4.1 Setup

The experiments used a host-based anomaly IDS, a network-based signature
IDS, and a host-based integrity IDS. The host-based anomaly IDS is similar to
an anomaly-based IDS presented by Wenke Lee and Salvatore Stolfo [26]. In this
case, a sliding window is used to observe anomalies in traffic patterns. The larger
the traffic window, the lower the false negative and false positive probability, but
results in a larger timeliness value strictly based on the size of the window, which
includes window sizes of 5, 10, 30, 60, and 90 seconds. Since this sensor takes
a traffic stream as input, if there exists a temporary cache of this traffic, the
retargeted sensor could process old traffic with a new sensor configuration for an
additional attempt to detect an attack or provide more evidence to a correlation-
based sensor.The network-based signature IDS is loosely based upon Snort [27]
or Bro [28] and only has default and NULL configurations. The timeliness values
for this sensor is estimated to be approximately 80 milliseconds, based on a re-
port presented in [29]. The host-based integrity IDS is Tripwire [21], which can
scan a filesystem every 10, 15, 20, 30, 45, 60, 120, 240, or 720 minutes. The more
frequent filesystem checks are intended for small but critical filesystems. Avail-
able responses included upgrading a service, disabling a service, and restoring a
filesystem.

The worms tested were run at propagation speed of one scan per 5 microsec-
onds (fast), one scan per 50,000 microseconds (medium), and one scan per 80,000
microseconds (slow). In most experiments the vulnerability density was set to
0.5, representing 3 vulnerable nodes and 3 invulnerable nodes in the 7 node
experiments. Experiments that exhibit the retargeting capabilities of the imple-
mentation used a vulnerability density of 0.83, which resulted in 5 vulnerable
nodes and one invulnerable node in the 7 node experiments.



4.2 General Results
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Fig. 2. Average Performance of Fast Experiments

Figure 2 presents the average of 10 experiments using a 7 node experiment
with a vulnerability density of 0.5 with a propagation speed of one scan per 5
microseconds. The y-axis represents the number of hosts, and the x-axis repre-
sents time in seconds on a logarithmic scale. Each graph is comprised of three
lines: one for the number of infected hosts, one for the number of clean hosts,
and one for the number of contained hosts. Five of these experiments under these
conditions resulted in one node that failed to detect the attack with an anomaly
or signature-based sensor, but where the Tripwire sensor succeeded in detecting
the attack®. In this case, the node was only recovered after sending the Tripwire
sensor alert, which took “1800 seconds or 30 minutes with the default sensor
configuration compared to the ~0.1 seconds or less for nodes that detected the
attack with an anomaly or signature-based sensor.

Figure 3 presents the results of one experiment using the same experimental
setup but with a propagation speed of one scan per 50,000 microseconds. In

8 Even though this allows for the case that a host-based anomaly IDS can miss the at-
tack against one host, but catch the attack against another host, these discrepancies
can be due to different background traffic observed on each host at the time of the
attack. Similarly, this allows for the network-based signature IDS to catch an attack
against some hosts, but miss them against others. This can be due to polymorphic
worms where the available signature is able to detect some variants of the worm,
but not all, and the worm changes form as it spreads.



Performance of the Response Engine
with a Medium Worm (Trial 1)
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Fig. 3. Medium Experiment #1

this case, the worm is caught before being able to spread to a vulnerable host,
resulting in only one infection. About half of the remaining medium experiments
exhibited this behavior, with the remainder representing the behavior shown for
the fast worms. All but one of the slow experiments exhibited behavior similar
to that of Figure 3.

One of the rules used represents the generation of an unknown worm event
class. This rule requires three event instances that have the same compromised
filesystem but reside on different hosts. In experiments with a vulnerability den-
sity of 0.83, as this rule received more partial matches, and eventually a full
match, the preemptive detection threshold propagation discussed at the end of
Subsection 2.3 resulted in new sensor configuration changes, which included low-
ering the Tripwire timeliness values from one scan per 30 minutes to one scan per
20 minutes. For some nodes that failed to detect the attack with a signature or
anomaly-based sensor, this reduced the amount of time the alert was sent from
the infected node to the response agent from ~1800 seconds to ~1200 seconds.

4.3 Scalability Test Results

For scalability concerns, the experiment was also executed with 15 and 31 nodes
with a 0.5 vulnerability density. On average, 7 node experiments resulted in
the response agent calculating the last optimal response set within 0.019993
seconds. The 15 node experiment was able to calculate the last optimal response
set within 0.280744 seconds, while the 31 node experiment took 2.49284 seconds
resulting in about a 10 fold increase each time the number of nodes are doubled.



However, it should be noted that these results were obtained with extensive
debug log information, printing out timestamps and data for key points within
the decision engine, including partial and full rule match information, and new
detection threshold additions from propagation. With the trimming of just rule
match notifications (but not information about newly generated event instances),
the 31 node experiment was able to reduce the calculation time to 0.700421
seconds, which could likely be reduced further with less precise timestamps and
further trimming. Note that decreasing the number of nodes or lowering the
vulnerability density increases performance.

4.4 Advanced Scenario

The following scenario can be adapted into an experiment with this implemen-
tation with relatively minor adjustments. In this scenario, the attacker utilizes
multiple attack vectors for the primary goal of obtaining access to a relatively
secure workstation, halfdome. Halfdome runs a local firewall and does not pro-
vide any services that are externally visible. The network halfdome is on (N)
does not utilize any firewalls and is externally accessible.

In the first step, the attacker initiates a worm similar to the worm described
in the experiments within Subsections 4.2 and 4.3. Although halfdome is not
compromised, pinatubo, which resides on network N, is vulnerable and becomes
compromised. This attack goes undetected by quick intrusion detection sensors,
but will be detected by an upcoming integrity scan. The attacker then attempts
to sniff passwords from network N, but is unable to find unencrypted traffic
involving halfdome. However, the attacker is able to discover that halfdome uses
hawkeye for DNS requests, which happens to be a Windows 2000 DNS server.

The attacker then launches a Distributed Denial of Service (DDoS) attack
against hawkeye using attacks from remote hosts, as well as attempting to steal
hawkeye’s TP address using pinatubo and other local, compromised hosts by
spoofing ARP requests and replies. The DDoS attack is easily detected by sensors
and is reported to the response agent which initiates pushback on cooperating
routers [4]. Pushback provides some mitigation of the attack, but is unable to
provide complete protection from the attack due to the limited domain of routers
that support pushback. After the response agent receives a status alert on the
partial success of the pushback response, it activates a proportional-integral-
derivative controller-based response [6]. This combined response towards the
DDoS attacks sufficiently mitigates the attack to allow for critical services to
satisfy availability levels determined by policy.

During the external attack, the response agent also receives an alert of
spammed ARP spoofs from hosts trying to steal hawkeye’s IP address. This
event is detected, but the response agent does not initiate a response since it
is unsure which ARP replies are spoofs and which are genuine. A correlation
sensor is able to suggest a common service the ARP spoofing hosts shared as
a possible source of infection. The response agent also receives this report, but
due to the high false positive probability, it does not issue a response.



During the DDoS attack, the attacker is able to poison the DNS cache of
halfdome by spoofing DNS replies [30,31] from hosts that were able to tem-
porarily successfully steal hawkeye’s IP address. Because the attacker attempts
to spam the DNS replies to halfdome in an attempt that one will get through, an
anomaly-based sensor detects the attack and forwards an alert to the response
agent. A correlation sensor sees the anomaly-based sensor’s alert and correlates
this with the ARP spoofs and the possible common compromised service to pro-
duce a low false positive report on the compromised hosts. This results in a
Tripwire integrity scan of all suspicious hosts while the traffic from halfdome to
external sites is temporarily throttled at halfdome’s local firewall. All suspicious
hosts are soon confirmed to be infected, which results in the restoration of in-
fected filesystems and the disabling of the previously correlated service on the
infected hosts.

Alternatively, backups of the recovered systems are made with the disabled
service. Once complete, an attempt is made to upgrade the vulnerable service
to a more recent version. An automated testing procedure is executed to detect
if dependent services are still able to function with the upgraded service. If
successful, additional previously infected hosts attempt to upgrade their service
as well and test for problems. If a problem occurs, the previous image is rolled
back with the service disabled and the local administrator is notified to remedy
the problem.

In order to use this scenario with the current developed framework, a few
key changes would have to be made. First, response feedback would have to
be added by preserving policy violations that were responded to, observing the
results of previous responses by retargeting sensors to observe the corresponding
event classes, and initiating alternative responses that are stored along with the
previous policy violation. Second, the response agent must be able to correlate
seperate alerts into an overall attack vector, which is a problem many correlation
systems have attempted to solve. Third, the event properties schema must be
modified to be able to encapsulate other event properties documents, allowing
for any attack scenario.

5 Conclusions and Future Work

In this paper we presented a modular, extensible response framework along with
an implementation of a response system that utilizes this framework. The frame-
work allows for various simulated or real intrusion detection systems, response
agents, and aggregation agents. The response model and implementation pre-
sented demonstrated the benefits of sensor retargeting and supporting an ex-
pressive model that encompasses a wide variety of attacks, sensors, response
agents, and policies. The experimental results presented could be compared for
different high level response systems for specific response scenarios for purposes
of evaluation. Although the experimental scenarios were relatively simple, a de-
tailed scenario is presented that can be executed with minor modifications to
the current implementation. Although attacks such as infinite loops are possible



through poor design as described in Subsection 3.4, they can be prevented or
mitigated with loop timeouts, or with the integration of a professional expert
system that is designed to catch such loops.

There are many other approaches for extending and enhancing this work, in
addition to those proposed in Subsection 4.4, including the following:

— Bayesian inferencing can be used to more accurately calculate the false posi-
tive probabilities of an event instance by taking several additional conditional
probabilities into account.

— This probabilistic model can be used to create a metric that assesses the
detection or response capability of a system by comparing the probabilities
that a system can be recovered and prevent future attacks for a given general
scenario within a specified timeframe.

— The integration of a professional expert system into the response agent,
which would greatly increase the efficiency of the implementation, but would
make the preemptive detection threshold propagation discussed in Subsec-
tion 2.3 more difficult.

— A model for making sensor configuration detection threshold values a func-
tion of state properties makes these values much more realistic and dynamic.

— By modifying rules to allow for any type of computation, rather than straight-
forward expert system rules, entire sensors/response engines or their com-
ponents can be included in the model.
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