
Framework of an Application-Aware Adaptation
Scheme for Disconnected Operations

Umar Kalim, Hassan Jameel, Ali Sajjad, Sang Man Han, Sungyoung Lee and
Young-Koo Lee

Department of Computer Engineering, Kyung Hee University
Sochen-ri, Giheung-eup, Yongin-si, Gyeonggi-do, 449-701, South Korea

{umar, hassan, ali, i30000, sylee}@oslab.khu.ac.kr, yklee@khu.ac.kr

Abstract. The complex software development scenarios for mobile/hand-
held devices operating in wireless environments require adaptation to
the variations in the environment (such as fluctuating bandwidth). This
translates to maintenance of service availability in preferably all circum-
stances. In this paper we propose that a mobile computing system (for
hand-held, wireless devices) must be based on the combination of re-
flection, remote evaluation and code mobility mechanisms such that the
communication framework1 allows developers to design disconnection-
aware applications which maintain service availability in case of vary-
ing circumstances by automatically redeploying essential components to
appropriate locations. This not only allows the application to continue
executing in varying conditions, but also in entirely disconnected modes.

1 Introduction

The complexity, size and distribution of software today is rapidly increasing.
This has complemented the ubiquity of hand-held devices and promoted the
growth of distributed systems and applications. One can thus think of numerous,
complex software development scenarios which utilize a large number of hand-
held devices, such as in environment monitoring and surveying, postal services,
patient monitoring etc. Such scenarios present intricate technical challenges for
middleware technologies [1]. In particular, the middleware must adapt to the
variations in the environment (e.g. fluctuating bandwidth) of the mobile device
and service availability must be maintained in (preferably) all circumstances [1].

The conventional middleware being heavy, and relatively inflexible, fails to
properly address such requirements. The fundamental reason is that traditional
middleware systems have been designed adhering to the principle of trans-
parency. Despite the fact that this design [2] [3] has proved successful for tra-
ditional distributed systems, this concept has limitations when considered in a
mobile environment, where it is neither possible, nor preferred, to hide the im-
plementation details from the user. Also, applications may posses information
1 This research work has been partially supported by KOSEF, Korea, for which Pro-

fessor Sungyoung Lee is the corresponding author



that could facilitate the middleware to perform efficiently. Thus to cope with
such limitations, numerous research efforts have been made [4] [5] on design-
ing middleware systems suitable for such environments. However the solutions
developed to date do not fully support the necessary level of middleware con-
figurability and reconfigurability that is required to facilitate mobile computing
and disconnected operations. Thus in our opinion a simple but dynamic solution
is the need of the hour.

We propose that a mobile computing system for hand-held devices must be
based on the combination of reflection [6], remote evaluation [7] and code mobil-
ity [8]. The remote evaluation paradigm not only enables the clients to out-source
resource intensive tasks, but also allows more client-side applications (because
of their smaller footprint). Reflection is a fundamental technique that supports
both introspection and adaptation. In order to maintain service availability in a
distributed system, in case of varying circumstances the middleware can utilize
code mobility and reflection to automatically redeploy essential components to
appropriate locations defined by the application policy. Moreover, such systems
can be implemented optimally if the adaptation scheme is application aware, i.e.
the framework allows the developer to determine the policies, such as the con-
straints the components may have, dependency among components, restriction
on collocation of components, how the system should react to different circum-
stances etc.

1.1 Code Mobility and Autonomy of Components

Under favourable circumstances, remote evaluation is one of the most appropri-
ate solutions for mobile, hand-held devices. However in unfavourable conditions,
code mobility overcomes the limits of fluctuating bandwidth and disconnections
as it allows for specifying complex computations to move across a network -
from the server to the client end. This way, the services that need to be exe-
cuted at a platform residing in a portion of the network reachable only through
an unreliable link could be relocated and hence maintain Quality of Service. In
particular, it would not need any connection with the node that sent it, except
for the transmission of the final results of its computation.

Also, autonomy of application components brings improved fault tolerance as
a side-effect. In conventional client-server systems, the state of the computation
is distributed between the client and the server. A client program is made of
statements that are executed in the local environment, interleaved with state-
ments that invoke remote services on the server. The server contains (copies of)
data/code that belongs to the environment of the client program, and will even-
tually return a result that has to be inserted into the same environment. This
structure leads to well-known problems in presence of partial failures, because it
is very difficult to determine where and how to intervene to reconstruct a consis-
tent state. The action of migrating code, and possibly sending back the results,
is not immune from this problem. In order to determine whether the code has
been received and avoid duplicated or lost mobile code, an appropriate protocol
must be in place. However, the action of executing code that embodies a set of



interactions that should otherwise take place across the network is actually im-
mune from partial failure and can permit execution even in the face of absolute
disconnection. An autonomous component encapsulates all the state involving a
distributed computation, and can be easily traced, check-pointed, and possibly
recovered locally, without any need for knowledge of the global state.

Thus to introduce the capability of dynamic reconfiguration to achieve the
above mentioned objectives, the system must posses certain characteristics, such
as, it should be based on a distributed object framework, the system must be
able to redeploy/replace2 components3, it should be able to recover gracefully
in the case of faults and there should be a procedure to reconcile components
upon reconnection.

2 Framework

In order to narrow down the scope of the problem, we distinguish between vol-
untary and involuntary disconnection. The former refers to a user-initiated event
that enables the system to prepare for disconnection, and the latter to an un-
planned disconnection (e.g., due to network failure). The difference between the
two cases is that in involuntary disconnection the system needs to be able to
detect disconnection and reconnection, and it needs to be pessimistically pre-
pared for disconnection at any moment, hence requiring to proactively reserve
and obtain redundant resources (if any) at the client. Here we are only focusing
on voluntary disconnections and defer the task of predicting and dealing with
involuntary disconnections as future work. Note that the steps for the remedy
will be the same, whether the disconnection is voluntary or involuntary.

2.1 Characteristics of the Components and their Classification

As the system comprises of components as the building blocks we propose that
the primary components participating in the reconfiguration must be serial-
izable and they must implement the DisconnectionManagement interface as
shown in figure 1. This interface advertises two primary methods; disconnect
and reconnect. These methods are invoked by the framework on disconnection
and reconnection. The first requirement facilitates the components in relocating
themselves while maintaining their state. The second requirement enables the
application to prepare for disconnection. The use of disconnect is to compile
the component state and transfer it in marshaled form, over the network along,
with the code to be executed locally at the client. Similarly, reconnect is used
to perform the process of reconciliation among components upon reconnection,
details of which are explained in [9]. The components are classified with respect
2 The use of a component with reduced (or similar) functionality but the same inter-

face, as the substitute to a (remote) component with reference functionality
3 Analogous to an object, here a component is referred to as a self contained entity that

comprises of both data and procedures. Also data access has not been considered
separately because data is always encapsulated in a component



to disconnection (Log, Substitute and Replica) and reconnection (Latest, Revoke,
Prime and Merge), details of which are specified in [9].

Remote Object
<<interface>>

Application Logic 
(Server Implementation )

<<interface>>

Application Logic
<<interface>>

Disconnection Management
<<interface>>

Fig. 1. Hierarchy of interfaces for disconnection-aware components

3 Disconnection Management

When it comes to maintaining service availability in the face of a disconnection,
there is a need to relocate the required server code (partially or completely) to
the client, in order to make local processing possible.

3.1 Working

The state-transition diagram in figure 2 summarizes the working [9] of the
framework. The mechanisms of Reflection, dynamic class loading and linking
and serialization (provided by Java [10]) are employed to achieve code mobil-
ity. Once a disconnection event is fired, the framework propagates the event to
all disconnection-aware references. These references then invoke the disconnect
method. This method prepares the reference for the disconnection. Using the
mechanisms of introspection each component and each of its contained objects
are traversed recursively and a list of references to be relocated is prepared. This
list is prioritized with respect to the policy determined by the application de-
signer and each reference is treated as per its classification [9]. The framework
maintains a sufficient state of each reference in order to restore the system to
the state before disconnection.

4 Related Work

A substantial debt is owed to Coda [4]. The authors were among the first to
demonstrate that client resources could be effectively used to insulate users and
applications from the hurdles of mobile information access. Coda treats discon-
nection as a special case of network partitioning where the client may continue
to use the data present in its cache, even if its disconnected. Odyssey [5], inspired
by Coda [4], proposed the concept of application-aware adaptation. The essence



Connected

DisconnectedReconnection
triggered

Traversing reference
graph

Transferring state
(as per policy)

Swapping local 
references with

remote references

Disconnection
triggered

Traversing reference
graph

Downloading reference
implementation

(.class files )

Creating local 
references

Transferring state
(as per policy)

Swapping remote 
references with local

references

Reconnecting

Disconnecting

disconnect
identify 

references for 
relocation

download 
references

create 
instances

transfer state

reconfigure

disconnection 
complete

reconnectidentify 
references for 

relocation

reconfigure
reconnection 

complete

initialize

finalize 
[off=true]

Fig. 2. State-transition diagram from disconnection/reconnection management

of this approach is to have a collaborative partnership between the application
and the system, with a clear separation of concerns.

FarGo-DA [11], an extension of FarGo, a mobile component framework for
distributed applications proposes a programming model with support for de-
signing the behaviour of applications under frequent disconnection conditions.
The programming model enables designers to augment their applications with
disconnection-aware semantics that are tightly coupled with the architecture,
and are automatically carried out upon disconnection.

5 Prototype Implementation

The framework is developed using J2SE [10] as the fundamental platform for
the application; both the client and server components. Java RMI [12] is used
for remote evaluation, where as the Reflection classes are used for introspection
and reference management when objects are relocated (from the server to the
client or vice versa) and references are swapped. Components are notified about
disconnection or reconnection via event-notification mechanism.

Core

Java Virtual Machine (JVM)

Java 
(J2SE) API

Resource 
Monitor

Reference 
Manager

Event 
Listener

Component 
Relocator

Application

Java 
RMI

Fig. 3. Module layout of the prototype implementation

We have implemented a prototype application for patient monitoring and
diagnosis service along with the framework libraries in order to verify the fea-
sibility of our proposal. This implementation [9] is part of our ongoing research



[13]. The module layout of the framework along with the application is shown
in figure 3. It may be noted that the framework comprises of two sub-systems;
one operating at the server end and the other at the client end.

Unlike [14], our approach being simple and discreet avoids the computational
overhead required to determine the component distribution in different circum-
stances. This is primarily due to the application aware approach, which allows
the developer to determine the application policies

6 Conclusion

In this paper we proposed a mobile computing middleware-framework for hand-
held devices which is based on the combination of reflection [6], remote evalu-
ation [7] and code mobility [8]. We have implemented a prototype application
[9] along with the framework libraries in order to demonstrate the feasibility of
the approach. The results reflect that significant benefits may be obtained by
maintaining service availability even in the face of a disconnection.

References

1. Satyanarayanan, M.: Pervasive computing: Vision and challenges. IEEE Personal
Communications (2001) 10–17

2. Reference-model: Iso 10746-1 - open distributed processing. International Stan-
dardization Organization (1998)

3. Emmerich, W.: Engineering Distributed Objects. John Wiley and Sons (2000)
4. Kistler, J. Satyanarayanan, M.: Disconnected operation in the coda file system.

In: 13th ACM symposium on Operating Systems Principles, ACM (1991) 213–225
5. Noble, B. Satyanarayanan, M.: Agile application-aware adaptation for mobility.

In: 16th ACM Symposium on Operating Systems Principles, ACM (1997)
6. Maes, P.: Concepts and experiments in computational reflection. (In: 2nd Confer-

ence on Object Oriented Programming Systems, Languages and Applications)
7. Stamos, J. Gifford, D.: Remote evaluation. In: Transactions on Programming

Languages and Systems, ACM (1990) 537–564
8. Fuggetta, A.: Understanding code mobility. In: Transactions on Software Engi-

neering. Volume 24., (IEEE) 342–361
9. Kalim, U.: Technical report: Framework of an application-aware adaptation scheme

for disconnected operations. (http://oslab.khu.ac.kr/xims/mgrid/techreport-
disconn-umar.pdf)

10. Sun-Microsystems: Java. (http://java.sun.com/j2se/)
11. Weinsberg, Y. Israel, H.: A programming model and system support for

disconnected-aware applications on resource-constrained devices. In: 24th Interna-
tional Conference on Software Engineering. (2002) 374–384

12. Sun-Microsystems: Java rmi. (http://java.sun.com/products/jdk/rmi/)
13. Kalim, U. Jameel, H.: Mobile-to-grid middleware: An approach for breaching the

divide between mobile and grid environments. In: 4th International Conference on
Networking, Springer Verlag (2005) 1–8

14. Marija, M.: Improving availability in large, distributed, component-based systems
via redeployment. Technical Report USC-CSE-2003-515, Center for Software En-
gineering, University of Southern California (2003)


