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Jó Ueyama1, Geoff Coulson1, Gordon S. Blair1, Stefan Schmid1,
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Abstract. We argue that currently developed software frameworks for
active and programmable networking do not provide a truly generic ap-
proach to the development, deployment, and management of services.
Furthermore, current systems are typically targeted at a particular level
of the programmable networking design space (e.g. at low-level, in-band,
packet forwarding; or at high-level signaling) and/or at a particular hard-
ware platform. In addition, most existing approaches, while they may ad-
dress the initial configuration of systems, neglect dynamic reconfiguration
of running systems. In this paper we present a reflective component-based
approach that addresses these limitations. We show how our approach
is applicable at all system levels, can be applied in heterogeneous hard-
ware environments (specifically, commodity PC-based routers and net-
work processor-based routers), and supports both initial configuration
and dynamic reconfiguration. We especially address the latter point; we
show the viability of our approach in (re)configuring services on an Intel
IXP1200 network processor-based router.

1 Introduction

Although significant progress has been made in programmable networking, nu-
merous research challenges remain. In particular, there remain important issues
clustered around configurability and heterogeneity. Programmable networking
systems must be highly configurable and, moreover, run-time reconfigurable, to
meet requirements for dynamic fine-grained deployment, 24x7 operation, man-
aged software evolution, dynamic quality of service (QoS) and resource man-
agement, and configurable security [19]. Similarly, these systems must be easily
deployable in complex, multi-programming language, multi-operating system,
and multi-hardware platform environments, and offer transparency and porta-
bility without sacrificing performance.

N. Wakamiya et al. (Eds.): IWAN 2003, LNCS 2982, pp. 202–214, 2004.
c⃝ IFIP International Federation for Information Processing 2004



A Globally-Applied Component Model for Programmable Networking 203

In recent years significant progress has been made in the design and im-
plementation of generic component-based systems-building methodologies (e.g.
[THINK [11], OpenCOM [10], Knit [18]]) which, because of their emphasis on
fine-grained configurability, reconfigurability, and system heterogeneity, have in-
teresting implications, we believe, for programmable networking research. Based
on these observations, we have initiated a project that is attempting to apply
component-based principles to programmable networking environments.

Deriving from this project, this paper presents the design and implementa-
tion of a component-based architecture for programmable networking systems,
which provides an integrated means of developing, deploying and managing such
systems. The proposed architecture consists of i) a generic, reflective, component
model that, we argue, can be uniformly applied at all levels of the programmable
network design space (i.e., from fine-grained, low-level, in-band packet process-
ing to high-level signaling and coordination), and ii) an extensible architecture of
component frameworks that are built in terms of the generic component model
and support plug-in functionality in diverse areas of the programmable network
design space. The claimed benefits of the proposed architecture are detailed in
section 3.

The paper is structured as follows. First, section 2 provides background to our
approach: it presents the basics of our reflective component model, introduces the
concept of component frameworks, and provides a brief overview of the network
processor-based router environment in which we are primarily working. Section 3
then presents our “globally applied” approach to network programmability, and
section 4 discusses our results and implementation efforts so far. Subsequently,
section 5 presents an application scenario that illustrates our approach. Finally,
section 6 surveys and analyses related work; and section 7 offers conclusions.

2 Background

2.1 OpenCOM

Lancaster’s OpenCOM [7] is a lightweight, efficient, flexible, and language-inde-
pendent component model that was originally developed as part of previous
research on configurable middleware [10]. OpenCOM is fine-grained in that its
scope is intra-capsule (see below for definition of “capsule”) and it imposes min-
imal overhead on cross-component invocation. It is currently implemented on
top of a subset of Mozilla’s XPCOM platform [16].

OpenCOM relies on five fundamental concepts:

Capsules: a capsule is a logical “component container” that may encompass
multiple address spaces (although capsules do not cross machine boundaries).
For example, a capsule could encapsulate multiple Linux processes, or differ-
ent hardware domains on a network processor-based router. Encapsulating
multiple address spaces offers a powerful means of abstracting over tightly-
coupled but heterogeneous hardware (e.g. the PC, StrongARM and micro-
engines of an Intel IXP1200 router platform; see section 2.3 and figure 1).
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Components: components serve as programming language-independent units
of deployable functionality. One builds systems by loading components into
capsules, and then composing these with other components (by binding
their interfaces and receptacles; see below).

Interfaces: interfaces of components are expressed in a language independent
interface definition language and express a unit of service provision; multiple
interfaces can be supported per component.

Receptacles: define a unit of service requirement on a component and are
used to make explicit the dependency of one component on others.

Bindings: are associations between receptacles and interfaces in the same
capsule: a binding represents a communication path between one receptacle
and one interface. Bindings in the original OpenCOM implementation [10]
were exclusively implemented in terms of vtables [3] (a vtable is essentially
a table containing pointers to virtual functions). Currently, however, we are
extending OpenCOM to support bindings implemented in a variety of ways
(see section 4).

Importantly, OpenCOM also supports a range of built-in reflective meta-
models which form the basis of configuration and reconfiguration in our approach.
In particular, it supports an architecture meta-model that represents composi-
tions of components as a graph, and allows the programmer to manipulate this
graph to effect corresponding changes on the underlying systems (e.g. in terms of
inserting/ deleting components and making/ breaking bindings). It also supports
an interception meta-model that enables the insertion of arbitrary code within
bindings that is executed when a call is made across the binding; and an inter-
face meta-model that allows the programmer to introspect on available interface
and receptacle types on a component. There is also a resources meta-model that
represents types and quantities of resources dedicated to various components or
sets of components. More details on the reflective meta-models are given in [10].

OpenCOM deploys a singleton per-capsule runtime, which manages a repos-
itory of component types and provides interfaces for the creation and deletion of
components and for binding/ unbinding. All create/delete/bind/unbind requests
are reflected in the above-mentioned architecture meta-model.

A crucial aspect of OpenCOM that is heavily exploited in our programmable
networking research is its support for plug-in loaders and plug-in binders. Essen-
tially, loading and binding are viewed as components frameworks (see below) in
the OpenCOM architecture, and it is possible to extend the architecture with
many and various implementations on loading and binding. We return to this
topic in section 4 below.

2.2 Component Frameworks

Although necessary, the component model’s explicit representation of depen-
dencies and its reflective meta-models are not in themselves sufficient for the
management of reconfiguration. In particular, their genericity precludes specific
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competencies in imposing and policing domain-imposed constraints on recon-
figuration. For example, they cannot prevent the nonsensical replacement of an
H.263 encoder with an MPEG encoder, or mandate that a packet scheduler must
always receive its input from a packet classifier. Such semantic constraints are
essential if we are to ensure meaningful configuration and reconfiguration, and
therefore the system must provide support for their expression and enforcement.

To add the necessary dimension of specificity and constraint, we apply the
notion of component frameworks. These were originally defined by Szyperski
[22] as “collections of rules and interfaces that govern the interaction of a set
of components ‘plugged into’ them” (see figure 4). More concretely, component
frameworks (hereafter, CFs) are targeted at a specific domain and embody ‘rules
and interfaces’ that make sense in that domain. For example, a packet-forwarding
CF might accept packet-scheduler components as plug-ins; or a media-stream
filtering CF might accept various media codecs as plug-ins [10]. (In the rest of
the paper we use the shorthand “plug-in” to refer to a component that is plugged
into a CF.)

Essentially, CFs serve as “life-support environments” for components in a
particular domain of application. They contain arbitrary CF-specific state, em-
body shared services for plug-ins, and actively police their plug-ins to ensure
that they conform to their domain-specific rules and interfaces (e.g. interfaces
can be inspected at run-time using the interface meta-model). CFs can support
multiple instances of multiple types of plug-in, and plug-ins can either be inde-
pendent of each other or can be bound together in arbitrary configurations (as
long as these conform to the rules imposed by the host CF).

Overall, our component-based approach is strongly predicated on the bene-
fits of reflection and CFs: reflection provides an open and flexible architecture by
supporting the inspection, adaptation and extension of underlying component
topologies, while CFs provide runtime structure for domain-specific configura-
tions of components and encapsulate domain-specific rules and constraints.

In our programmable networking research we have designed a generic “Router
CF” on top of OpenCOM that enables the flexible configuration and reconfigu-
ration of software routers. This is described in detail in [9]. The use of the Router
CF is illustrated in section 5.

2.3 The Radisys Intel IXP1200-Based Router

The Radisys Development Platform, on which we are basing the bulk of our
router implementation work, is based on the Intel IXP1200 network processor.
This is an Intel-proprietary architecture that conforms to the Intel IXA architec-
ture [12]. It is attached to a host PC and combines a StrongARM processor (run-
ning Linux) with six independent 32-bit RISC processors called microengines,
which have hardware multithread support, and are used for fast-path processing.
There are also various types of memories, buses, and specialised hardware assists
available on the processor. The outline architecture is illustrated in 1.

Programming support on the router is very primitive, especially in the micro-
engine environment. This environment does not run an operating system and all
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IXP1200
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Fig. 1. Testbed–PC and IXP1200 router

resource allocation and inter-process communication has to be manually man-
aged. The current Intel-provided programming environment has no support for
dynamic reconfiguration.

3 Our Approach to Building Programmable Networking
Software

3.1 The Design-Space of Programmable Networking

We conceptually partition the global design space of programmable networking
[9] into four layers or strata. We use the term “stratum” rather than “layer” to
avoid confusion with layered protocol architectures. The four strata are illus-
trated in figure 2.

1: hardware abstraction

2: in-band functions

3: application services

4:coordination

Fig. 2. Stratification of the Programmable Networking Design Space

The hardware abstraction stratum contains necessary hardware and operating
system functionality such as threads, memory, I/O, and library loading. Services
in this stratum are often implemented as wrappers around underlying native
facilities in order to support heterogeneous platforms. The in-band functions
stratum consists of packet processing functions like packet filters, checksum val-
idators, classifiers, diffserv schedulers, and traffic shapers. Given that these are
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low-level, in-band and fine-grained (and therefore highly performance critical)
performance is a key concern in this stratum. The application services stratum
encompasses coarser-grained functions (in the active networking execution envi-
ronment sense [1]). These are less performance critical as they act on pre-selected
packet flows in application specific ways (e.g. per-flow media filters). Finally, the
coordination stratum supports out-of-band signalling protocols which carry out
distributed coordination, including configuration and reconfiguration of the lower
strata. It includes, for example, routing protocols, signalling protocols such as
RSVP, or architectures that allow resource allocation in dynamic private virtual
networks (e.g. Genesis [4], Draco [13], or Darwin [6]).

3.2 Benefits of a Globally-Applied Component-Based Approach

We argue that our proposed approach of uniformly applying the same compo-
nent model, supported by the notions of reflection and CFs, yields the following
potential benefits:

– a simple and uniform model (based on OpenCOM)–we provide a simple and
uniform programming model for thecreation of services in all strata, and also
a uniform run-time environment for deployment, and (re)configuration; a key
aspect here is the separation of concerns between building systems (using
the basic component model) and managing/ reconfiguring them (using a
combination of reflective meta-models and CFs).

– enables bespoke software configurations–according to the composition of CFs
in each stratum, desired functionality can be achieved while minimising
memory footprint; trade-offs will vary for different system types (e.g. em-
bedded, wireless devices; large-scale core routers);

– facilitates ad-hoc interaction–e.g. application or transport layer components
can directly access (subject to access policies) “layer-violating” information
from, e.g., the link layer; this kind of “layer-breaking” is of growing interest
in the research community [2].

We are applying our approach in PC-based routers as well as the Intel
IXP1200 environment discussed above. This heterogeneity is fundamental to
validate our claim of a generic model. We also strive to implement this model
without compromising performance so that we can reasonably apply the ap-
proach in the lower as well as the higher strata (see section 4).

4 Implementation

To pursue the approach, we are extending OpenCOM to enable highly config-
urable loading and binding of components in all strata of the programmable
networking design space. As mentioned in section 2.1, the core architecture sup-
ports these two functions, loading and binding, as CFs.
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The API for loading and binding is as follows (capsule id specifies the cap-
sule where the component will be loaded or already resides–see figure 3; Com-
ponent guid, interface guid and receptacle guid are globally unique IDs for com-
ponents, interfaces and receptacles respectively):

– load(capsule id, component guid);
– unload(capsule id, component guid);
– bind(receptacle guid, interface guid);
– unbind(receptacle guid, interface guid);

These API calls are IDL-specified for language independence, and the CFs
underlying them are system-independent. However, underlying these CFs are
system-dependent plug-in loader and binder components which are dynamically
installed/ removed by means of a meta-interface on the CFs. As explained below,
the ability to transparently access this system-dependent functionality from a
system-independent API is key to the power and generality of our design.

IXP1200
StrongARM

ComponentInterfaceReceptacleAddress SpaceCapsule

PC

Bus

PCI

Microengines (no OS)

Fig. 3. Multi-address-space capsules

We have implemented plug-in loader components (or loaders) that load com-
ponents into Windows address spaces, Linux address spaces, and IXP1200 micro-
engines. In the general case, the programmer may either select a specific loader
manually, or (more commonly) elect for transparency and let the CF make the
choice. In the former case, the programmer would use the architecture meta-
model to make the alternatives visible, and then interact with a specific loader.
In the latter case, the selection is made on the basis of attributes attached to
both components and loaders (e.g. a “CPU-type” or “OS-type” attribute). Load-
ers themselves may espouse a further level of choice (which may also be attribute
driven) of which address space to load into. For example, a microengine loader
might make a choice of which microengine to use for a particular load request by
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taking into account factors such as resource usage, QoS, and security/ safety con-
straints. Furthermore, it is possible, using a “placement” meta-model supported
by the loader, to manually control this placement if desired.

In addition, we have implemented the following set of plug-in binding com-
ponents (or binders):

– vtable-based – This binder was implemented as part of the original OpenCOM
platform. It operates only in the Linux environment (on the host PC or
StrongARM) and enables the binding of any component generated by a
compiler whose binaries employ the vtable function-call convention.

– shared memory – We have developed a microengine-specific binder that uses
shared memory (i.e., scratch memory, static and dynamic RAM - SRAM
and SDRAM; see figure 1), to bind components that reside in different mi-
croengines. We also have a shared memory binder that binds a microengine-
based component to a Linux-based component; and another that binds two
components running in different Linux processes.

– branch instruction – This binder enables bindings between components on
the same microengine. Essentially, a component is bound to another (cf.
Netbind [5]) by rewriting a branch instruction so that execution jumps to
the desired target.

As with the loader CF, the programmer may either select a binder manually,
or elect for transparency and let the binder CF make the choice on the basis of
attributes and heuristics.

Importantly, it is not necessary in our architecture to execute the OpenCOM
runtime on the microengines (which would, in any case, be infeasible). Instead,
the pluggable loader/ binder frameworks running in a Linux process on the
StrongARM control processor subsume all the microengine specifics. These are
then encapsulated within specific plug-in loaders/ binders. The end result is
that the programmer has the benefit of full transparency while retaining the full
generality of the programming model regardless of which environment his/her
code is running in.

We have not yet carried out a comprehensive performance evaluation of the
IXP1200-specific loaders and binders. We observe, however, that the overhead
of establishing and reconfiguring bindings is entirely “out-of-band” and does
not impact data flowing between components. The major factor impacting the
overhead of in-band inter-component communication is the choice of binding
mechanism involved. As we are using essentially the same mechanisms as other
well-evaluated systems (i.e. Netbind and MicroACE [12]) there is no reason to
expect that performance should suffer. The one OpenCOM-specific feature that
might significantly impact performance is the number of inter-component bind-
ings involved – which is a function of the granularity of components. Again,
based on evaluations of previous fine-grained systems such as Click [15] we have
no a-priori reason to believe that fine-grained componentisation is necessarily
problematic.
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5 Application Scenario

To demonstrate our approach, we present a configuration of our recently-
implemented Router CF (that was mentioned in 2.1) which covers strata 2,
3, and 4 (the OpenCOM runtime itself deals with statum 1 by wrapping the
underlying OS with CFs for thread management, buffer pool management etc.).
The below scenario demonstrates how OpenCOM’s (re)configuration capabilities
can be used to extend the network services on a router at run-time. In addition,
the scenario emphasizes the benefits of a single, uniformly-applied, component
model, which allows configuration and reconfiguration of service components
across several strata of the programmable network design space and across dif-
ferent hardware environments (i.e., a PC and an IXP1200-based router). It also
shows how reconfiguration can be carried out in dimensions that have not been
foreseen when the system was designed.

The Router CF configuration illustrated in Figure 4 (minus the dotted box) is
a typical configuration for IP forwarding. It consists of several low-level, in-band
components (stratum 2) on the “fast-path” of the router, namely a classifier
and a forwarder, as well as scheduling components, an application service-level
component (stratum 3) for the processing of IP options on the “slow-path”, and
a “routing protocol” CF in the control plane of the router (stratum 4).

Receptacle Interface Component

classifier forwarder

translator
v6v4 prot. slow-path

processor

PC environment

microengine environment

fast-path

Router CF

sched.

sched.
output
receptacles...

...

RIP OSPF

BGP

input
interface

Managmt

v6
v4

 T
ra

ns
la

to
r

environment
StrongARM

Routing Protocol CF

Fig. 4. IPv6v4 translator application scenario

To best exploit the capabilities of the different hardware elements of the
IXP1200, we target the above functions at the hardware best suited to them.
Thus, we deploy the “fast-path” components on the microengines, the IP op-
tions component on the StrongARM, and the routing protocol CF on the PC.
Note that we can additionally exploit the multi-address-space capsule feature
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of OpenCOM to address security/ safety issues. For example, we can load un-
trusted components into separate address spaces (within the same capsule) so
that they cannot maliciously or accidentally disrupt or crash the whole system.

To illustrate run-time reconfigurability, we dynamically install IPv6-to-IPv4
protocol translation functionality (collectively called a “translator”), into the ini-
tial configuration (note that, like the Router CF itself, the translator is spread
across different layers of the router architecture: while the actual protocol trans-
lation takes place on the StrongARM, management is performed on the PC).
Such dynamic extensibility might be required to adapt to a network environ-
ment providing IPv6 support without needing to restart the network device. For
example, if our system was running on a mobile PDA, we would only require
IPv6 functionality when we become attached to a fixed network. When oper-
ating in a wireless network environment, we can save memory by omitting this
functionality.

To integrate the translator we first attempt to load its two consituent compo-
nents into the appropriate address spaces. This is achieved transparently (based
on a “CPU-type” attribute attached to the components) by the loader CF. Fur-
thermore, the CF checks that the components being loaded conform to its rules
(e.g. the interface meta-model is used to ensure that they support appropriate
interfaces/ receptacles). We then obtain a new receptacle on the classifier, and,
by manipulating the architecture meta-model, arrange for this to be bound to
the translator. An appropriate binder is selected transparently (by the binding
CF). We could also use the resources meta-model to ensure that the translator
has adequate resources (e.g. in terms of its thread priorities, and buffer pool
availability) to perform with a required level of QoS. And, we could additionally
add an interceptor to the binding to count the number of IPv6 packets actually
forwarded. Note that none of these steps need to have been foreseen when the
initial configuration was defined, and that they are entirely decoupled from the
basic functionality of the components involved.

6 Related Work

The various NodeOS implementations (e.g. the Scout-based implementation re-
ported in [17]) address generic system support for active and programmable
networking. However, they do not focus primarily on building programmability
in terms of componentisation – rather they are targeted at the support of coarse-
grained execution environments (mainly strata 2 and 3) which themselves may
or may not internally support componentisation.

Recent work at FOKUS, Berlin [21] discusses a flexible component-based
architecture for programmable routers. Like our work, this aims at language in-
dependence and system heterogeneity. However, the initial implementation work
has been in a Java environment which has to date precluded applying the ap-
proach in the fast-path, and in network processor-based routers. In addition, the
work focuses of the managment of dynamic deployment rather than unplanned
reconfiguration.
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VERA [14] is a strata 2 and 3 extensible router architecture that explicitly
supports adding new components, such as packet forwarders, to routers. VERA
is also deployed on network processor-based routers (specifically, Intel IXP1200-
based). However, VERA’s architecture is limited in its flexibility: extensions can
only be added at pre-defined “hooks” provided by the system. In addition, key
elements of the architecture itself (e.g. the router and hardware abstractions, as
well as the distributed router OS) can not be removed or changed. Furthermore,
VERA’s component model does not address the provision of services belonging
to all strata of the networking design space.

NetBind [5] proposes an approach to construct in-band packet-forwarding
paths on a network processor-based router (again, based on the IXP1200), and
to reconfigure forwarding paths dynamically. Low latency in these paths, despite
the possibility of changing them at run-time, is one of the outstanding features of
NetBind. This is achieved by patching branch instructions at the machine code
level which involves minimal overhead (we borrow this technique from Netbind;
see section 4). Nevertheless, NetBind is not a generic framework for adding new
services on network processor-based routers; e.g., it does not address strata 3 or
4. Instead, it aims to tackle solely the construction of dynamic data paths. In
addition, like VERA, there are many parts of the architecture which can neither
be configured at deploy-time, nor reconfigured at run-time.

Click [15] is an extensible component-based router targeted at PC-based envi-
ronments. A Click router is constructed by selecting from a library of components
called “elements” that carry out fine-grained tasks, and which are aggregated
into a graph structure. Click offers extensibility by providing a straightforward
and flexible means of defining new configurations; but, crucially, it does not
support dynamic reconfiguration. Although Click was not initially deployed on
network processor based routers, NP-Click [20] is a recent implementation for
such environments (but this still suffers from the same lack of dynamic recon-
figuration).

Villazón [23] introduces the use of reflection to support flexible configuration
in active networks, but this work only addresses an architecture in which active
nodes use reflection better to structure services. Essentially, the work defines a
reflective architecture for configuration rather than (re-)configuration.

Overall, while there has been substantial research addressing the need for
configurability in active and programmable networks, few approaches address
both configuration and reconfiguration in a fully general and comprehensive
manner. For example, some systems, like VERA, support reconfiguration, but
only in pre-determined ways. Furthermore, most of these systems are partial,
addressing either high-level concerns (e.g. the Villazón work) or low-level con-
cerns (e.g. Netbind). None of them proposes an integrated architecture allowing
configuration and reconfiguration of services running in all strata.
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7 Conclusions

In this paper we have proposed a generic component-based model for pro-
grammable networking systems that enables (re)configuration of systems using
reflective techniques and CFs. A key strength of this model is that it is based
on a platform and language-independent approach, which can be applied across
different network processing hardware. Furthermore, we argue that the proposed
framework can be applied to configure and reconfigure component-based services
on all levels (strata) of the design space of a programmable network system.

We believe that such a globally-applied component model has the potential
to greatly facilitate the (re)configuration of services, as a single, unified program-
ming model is used to compose and adapt services across the different strata of
the design space.

Furthermore, we expect our framework to considerably facilitate the pro-
grammability and reconfigurability of network processor-based systems. These
architectures are widely acknowledged to be very difficult to program [8] and,
as a consequence, reconfiguration is hardly considered on these “primitive” plat-
forms. However, the provision of an OpenCOM-based programming model for
these architectures gives the programmer a friendly interface (abstraction) with
which to orchestrate low-level functions in a uniform manner, and also facili-
tates the imposition, via the CF concept, of domain-specific constraints on these
routers.
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