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Abstract. Reliability and security concerns have increased demand for Virtual
Private Networks (VPNs). Ideally, a VPN service should offer autonomous
overlay networks with guaranteed bandwidth allocations over a shared network.
Network providers seek an automated VPN creation and management process,
while users of a VPN would greatly benefit from secure control over the
handling of their traffic. Currently, network infrastructure does not support such
partitioning services and, due to its static nature, it cannot be adapted to meet
such new demands. Active and Programmable Network research has developed
a number of adaptable architectures. However, its current focus is on theoretical
service deployment rather than on applicability to large and shared networking
environments. This paper presents the application of a new programmable
architecture to enable on-demand VPN construction, bandwidth management,
and secure autonomous VPN control onto shared commercial infrastructure.

1 Introduction

There is constant demand for new and sophisticated network services such as
resource-assured networks for video conferencing. To support new services, network
elements must perform new and unsupported tasks. As a result, many task-oriented
devices have emerged such as web-switch, SSL, firewall modules, and new routers to
support new QoS models. As these devices are ‘closed’, network providers are
required to purchase new devices to support new services. However, an inspection of
the underlying hardware of these devices reveals that they can be combined and
reprogrammed to support new services.

Research in active and programmable networks has developed novel architectures
that ‘open up’ network devices to support user-defined services [1, 2]. Such
architectures enable users to modify network behaviour by placing software
components in the forwarding plane or customising specialised forwarding plane
hardware. These architectures are not designed to leverage current commercial
platforms because of their inflexibility. Yet, commercial platforms are essential for
the deployment of any service architecture into the real-life networking environments
of the Internet.



Recently, there have been increasing demands on ISPs to offer Virtual Private
Network (VPN) services across the Internet. Conceptually, each VPN represents an
autonomous, resource-assured, secure, and customisable network over shared
infrastructure for each user (i.e. VPN owner). Such a VPN requires partitioning
network bandwidth and providing users with the ability to secure and customise their
VPNs. These are features beyond the support of current Internet infrastructure and,
therefore, currently offered VPNs that fall short of expectation. A current VPN is
either: a simple point-to-point encrypted tunnel with best-effort delivery; or a static
overlay network of Service Level Agreements manually configured by ISP operators.
The former type only addresses the security requirement of a VPN, while the later has
a number of shortcomings. Firstly, an ISP cannot create or modify VPNs on-demand
due to the long and manual setup procedure. Secondly, at the core of a network,
bandwidth assurances can only be partially enforced for a large number of VPNs.
Thirdly, users cannot customise or deploy services in their VPNs.

This paper presents a new model to support VPNs and their on-demand
provisioning over shared commercial infrastructure. This model utilises a new
programmable architecture called Secure, Extensible, and Deployable-Programmable
Network Platform (SXD-PNP). SXD-PNP is used to deploy VPN support services
onto current commercial modules, and to partition network nodes into customisable
User Partitions for each VPN. VPN support services enable network providers to
construct and manage customisable and resource-assured VPNs on-demand. Each
VPN is allocated a series of SXD-PNP User Partitions, which enable VPN-owners
safe autonomous control and secure path construction by deploying their own services
within their partitions. To manage a number of VPNs across shared nodes, User
Partitions separate internal resources and use traffic classification mechanisms to
restrict their configurations to a permissible set of traffic. SXD-PNP employs a new
differentiated allocation model called Control-plane Quality of Service (C-QoS) that
manages internal node resources among competing partitions and among competing
services within a partition.

This paper is structured as follows. Section 2 provides an outline of SXD-PNP and
its implementation focusing on features that enable VPN provisioning. Section 3
presents the VPN support services. Section 4 describes an Edge-to-Edge QoS
mechanism that provides VPN resource guarantees across the network core. It also
discusses our experiences with its deployment onto current network devices. Section
5 gives a brief discussion of related works. The paper concludes in section 6.

2 SXD-PNP Overview

SXD-PNP is a flexible programmable router architecture that enables on-demand
service deployment. SXD-PNP services modify the handling of traffic. This is
achieved by configuring the forwarding hardware or by hosting the execution
environments found in active networks. SXD-PNP is an ideal service architecture to
deploy VPN support services and to facilitate VPN partition and customisation. This
is due to its features of: QoS guarantees on internal node resources, isolation of users,
traffic security enforcement, and commercial module utilisation.



Fig. 1. Hardware Base Abstraction.

SXD-PNP builds on an abstract node model called the Hardware Base Abstraction
(HBA). The HBA, depicted in figure 1, represents a switching platform composed of
a configurable realtime forwarding plane and separate extensible control plane. The
forwarding plane is composed of Network Interfaces (NIs) represent the realtime
hardware networking modules. These perform network traffic classification,
forwarding, manipulation, and scheduling operations. The control plane is composed
of Computational Elements (CEs) and a Control-CE. CEs accommodate User
Services that construct Active Flow Manipulation [3] Paths (AFMP) among NIs to
modify traffic handling behaviours. Operations beyond NIs capabilities are performed
in the control plane by redirecting AFMPs to User Services that can use FPGA
hardware to optimised packet processing. The Control-CE performs User Partition
setup, security and C-QoS configurations, service deployments, load monitoring, and
load balancing operations. All NI and CE components are interconnected by a high-
speed communication bus. Both planes can be expanding by adding components to
the bus.

Hosting a number of competing VPNs on shared network infrastructure requires all
network resources to be partitioned amongst the VPNs. This involves partitioning
network bandwidth and each customisable node along its control and forwarding
planes. To partition link bandwidth, SXD-PNP deploys and configures bandwidth
management services which enforce Edge-to-Edge Resource Discovery and
Admission Control mechanisms [4]. At each customisable node (SXD-PNPs), the
control plane is divided into separate, resource-assured, and secure User Partitions.
These nodes allocate a User Partition to each VPN. The forwarding plane is
partitioned among User Partition by restricting each partition from performing flow
manipulations on traffic outside of its allocated VPN. The next subsection describes
SXD-PNP control plane partitioning. Subsequent sections discuss the mechanisms
that enforce this traffic access restriction (2.2) and the bandwidth partitioning
mechanism (4).

2.1 User Partitions

A CE, depicted in figure 2, is composed of User Virtual Machines (UserVMs), a
System Process, and a Bus Management Process. Each VPN is allocated a UserVM
process with assured resources and access to AFM [3] on its traffic. This represents a
User Partition. A UserVM manages a number of Runtime Environments (REs) that
execute the User Services supplied by VPN owners. To ensure secure partitioning,
UserVMs are restricted from hardware access and communications with the exception
of through the System Process. The System Process guarantees to restrict UserVMs to
their partitions. Details on service interaction and AFMP construction are in 2.2.
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Fig. 2. Computational Element.

The division and allocation of all internal node (control plane) resources among
User Partitions are performed through C-QoS. User Partitions are classified into one
of four C-QoS classes - Gold, Silver, Bronze, or Best Effort. C-QoS performs
differentiated per-class allocation and fair allocation for partitions within each class.
Due to the difficulty of determining user resource requirements or their availability in
heterogenous infrastructure, C-QoS uses a dynamic allocation model - allocating
resources from lower classes to an upper class as its load increase. Dynamic
allocation is performed until a specified lower limit is reach. This limit is used to
ensure a minimum level of resource availability to partitions. To allocate and reclaim
resources, C-QoS utilises Resource Managers that interface with the Operation
System (OS) resource management mechanisms. C-QoS Load Monitors track
resource loads at CEs to balance UserVM load among CEs.

To maintain node integrity, a certain amount of resources is reserved before
allocating resources among User Partitions. The aggregate capacity of links is
reserved over the bus to ensure NI-to-NI (network) traffic is never delayed as a cause
of service activity. All SXD-PNP management tasks and their messages are classified
into a special Realtime class. Realtime resource requests are granted before the
requests of other classes. This ensures that congestion will not affect the security or
partitioning of a node.

C-QoS categorises resources as Computational or Internal Communication.
Computational resources are the traditional OS controlled resources of multi-user

systems namely CPU scheduling, memory heap restrictions, I/O scheduling, and
harddisk quotas. These resources are managed within each CE independently by its
OS. The OS allocates resources to UserVMs in proportion to C-QoS classification
and it restricts UserVMs to their allocation. The allocation details for each
computational resource for each class are specified by the Control-CE and
communicated via the C-QoS interface to the OS resource management mechanisms.
The implementation, in section 2.3, interfaces to a modified Linux kernel.

C-QoS extends its reach to differentiate services within a partition. UserVM
resources are divided among user-defined RE-subclasses into which REs are
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classified. REs further differentiate between User Services by classifying services into
Service-subclasses. This structure permits N3 levels of differentiations between
services, where N is the number of classes. As UserVM resources belong to the same
VPN, to avoid strict management overhead only ‘soft’ resource management
mechanisms are employed for service differentiation. A UserVM uses thread
priorities to differentiate REs and weighted thread slot scheduling in REs to
differentiate User Services. SXD-PNP provides three RE types, each with a different
scheduling model to cater for variations in service response time and allocation size
requirements.

Fig. 3. Dispatcher Hierarchy.

Internal communication resources are represented by a hierarchy of dispatchers,
depicted in figure 3, which handle all internal communication. Scheduling
mechanisms within dispatchers are used to divide and allocate internal
communication resources among partitions. Computational and bus resources are
allocated to dispatchers and dispatcher time is then divided into slots which are
allocated to partitions or child dispatchers according to a dynamic class ratio. The bus
is divided into channels or time slots, depending on the technology in use. For
identification (used in traffic access restriction) and bus resource management, each
partition is restricted by System Level Dispatchers to an allocated channel or
timeslot(s).

Fig. 4. Dispatcher Structure.

Dispatchers share a common structure, depicted in figure 4. However, dispatchers
differ in their verification scope and routing destinations depending on the hierarchy
level. Each incoming message is placed in a limited queue allocated to its source.
Source queues of the same class are serviced by the same fair scheduler that moves
messages to the corresponding class queue. Messages in class queues are serviced by
a scheduler weighted with the C-QoS class allocation parameters. Each serviced
message is removed from the queue, verified as in figure 5, and routed to its next hop.
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2.2 Network Abstraction and Traffic Partitioning

User Services construct AFMPs to configure new routing and manipulation
operations on their traffic. An AFMP is composed of combination manipulation
points, typically NPUs and CE specialised hardware modules, but may also include
User Services for control flows. Each manipulation point along an AFMP is
configured to filter ingress traffic into flows, perform specified manipulation
operations on flows, and route flows to other manipulation points or onto the network.

User Services construct AFMPs by sending configuration messages to System
Services. System Services are located at CEs to abstract the NPU configuration
interfaces from User Services. System Services then send NI specific commands on
the User Services behalf to each NI manipulation point. These commands are sent to
the system dispatcher as message originating from the User Services partition.

Fig. 5. NI Structure.

An NI is divided into two logical components, depicted in figure 5, the Access
Data Module (ADM) and the Network Processing Unit (NPU). NPUs represent the
configurable traffic forwarding and manipulation hardware. These NPUs operate at
wire-speed with no modification by SXD-PNP. ADMs ensure partitions only perform
operations that affect their VPNs by verifying all user configuration commands to
NPUs. This model partitions the forwarding plane without placing VPN classification
or security checking in the path of network traffic.

At an ADM, each message arrives at the Source Classifier that identifies the type
of each message by its source. This is established by the bus channel on which the
message arrived. NI messages are traffic packets and are immediately passed to the
NPU. Control-CE messages are configuration messages that update source
classifications, User Partition-to-VPN associations, or the bus scheduling details.
UserVM messages are verified by a Command Verifier before being forwarded to the
NPU. The Command Verifier ensures that the flow filter of any forwarded
configuration command falls within the Access Control List of its source partition’s
VPN.



2.3 Implementation

Fig. 6. SXD-PNP Implementation.

Figure 6 show the implementation of SXD-PNP a Passport 8600, an Alteon Web
Switch Module, and a number of PCs. The Control-CE and ADM have been
implemented in the Management Module’s Java Virtual Machine. System Services
have been implemented to interface with the manufacturer’s Oplet Runtime
Environment (ORE) [5] that configures AFM on its hardware modules. UserVMs are
implemented as JavaVMs that initiate a specialised Java Security Manager and
UserVM thread to manage control requests. UserVMs are hosted across a number of
CEs that are implemented on PCs running a Linux kernel 2.6.7 patched with the
Class-base Kernel Resource Management (CKRM) [6]. CKRM enables differentiated
class-based resource management on CPU, memory pages, and I/O. A C-QoS
interface to the CKRM file-system was implemented to enable the Control-CE to
create classes, configure their allocation size, and to classify UserVMs into classes.

3 VPN Construction and Management

Fig. 7. SXD-PNP VPN Structure.

This section presents the SXD-PNP VPN Construction and Management services
depicted in figure 7. They consist are of sets of services. The first, VPN Activation &
Management Services, construct and manage VPNs. The second, VPN Internal
Management Services, enable user autonomous control over their VPN.
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3.1 VPN Activation & Management Services

VPN Activation & Management Services are SXD-PNP System Services that enable
administrators to create, monitor, and modify VPNs across a network. These are
composed of a distributed Network Division Service (NDS), and three local node
services: a VPN Classification Service; a Bandwidth Management Service; and, a
User Environment Service. These services are placed in Control-CEs and a NDS is
placed at each node along VPN paths. NDSs collectively utilise the three local
services to perform VPN activation and management.

Inter-NDS communication is achieved via an activated flow that spans all NDSs,
called a VPN Management Protocol (VPN-MP) channel. A network administrator
uses the VPN-MP channel to setup, monitor, and modify VPNs. VPN-MP employs
security mechanisms to restrict NDS access to network administrators.

To perform VPN activation and management operations, network administrators
construct a single VPN-MP Request and send it to the ingress edge SXD-PNP. This
request is sent across the network and captured by NDSs along the Paths parameter.
Each NDS fulfils the request, tightens the filters, and propagates it to nodes along the
Paths. Filters are tightened using routing table information and subnet masks to
eliminate filter ranges inapplicable to the current node or to nodes remaining in the
propagation path. The VPN-MP Request structure is as follows:

1. Paths - Source and Destination network address combinations of all paths of the
VPN.

2. Instruction Type – 0/setup 1/modify 3/remove 4/list details
3. VPN Number – 0 for new VPNs or operation on all VPNs
4. Credentials - User ID and Encrypted Password
5. VPN ACL (Access Control List) - List of Traffic Filters
6. Network QoS class
7. C-QoS class
8. Signature – MD5 hash encrypted using admin private key

To fulfil a VPN-MP Request each NDS uses the three localised services. The User
Environment Service sets up a SXD-PNP User Partition according to C-QoS class.
The VPN Classification Service configures the appropriate NIs to classify traffic into
a VPN and configures their ADMs to restrict configuration access to the associated
User Partition. The Bandwidth Management Service configures the link bandwidth for
the VPN according to Network QoS class.

The User Environment Service uses C-QoS Load Monitors to locate the least
loaded CE for new UserVM deployment. This service then sends a Control-CE
request to Management Processes of the least load CE. This request creates a new
UserVM with the C-QoS class specified. Once the UserVM is started, it is instructed
to deploy the VPN Internal Management Services. These services are configured to
restrict access according to the Credentials specified in the request.

The VPN Classification Service utilises ORE System Services to configure
appropriate ingress NPUs to classify traffic according to the VPN ACL and mark its
traffic with the VPN number. It also configures ADMs to allow the newly created
UserVM to configure operations on traffic marked with VPN number.



The Bandwidth Management Service partitions network link resource among VPNs
by configuring the Edge-to-Edge QoS Services, which are presented in section 4.

3.2 VPN Internal Management Services

VPN Internal Management Services are User Service running within each User
Partition to provide users with a configuration interface to the routing and
manipulation operations on their VPN traffic. They are composed of a VPN Command
Interface Service, an AFMP Construction and Management Service that is used by
two specialised services providing VPN specific features: a VPN Overlay
Management Service and a Secure Path Construction and Management Service.

The VPN Command Interface Service provides a remote interface for users to
interact with their User Services. It provides a command-line interface with username
and password authentication (the Credential in VPN-MP request). It parses user
instructions and parameters, calls the appropriate service, and displays the results. We
plan to develop this service to be accessible via an active path similar to VPN-MP,
enabling users to configure all nodes in a VPN with one request.

The AFMP Construction and Management Service provides the user and other
VPN Internal Management Services with the capability to construct, monitor, modify,
and remove AFMPs. It allows users to specify an AFMP Number, flow classification
filters, and a sequence of actions to be performed on the flow. To construct a AFMP,
this service uses the ORE System Service. Firstly, it locates a NI that is capable of
performing the specified action and configures it. It then configures redirection and
classification operations, to direct the path from the ingress NI, to the action NI, and
finally to the egress NI. It also maintains a database to track AFMPs and their
associated filters and actions, facilitating quick removable or modification of paths.

The VPN Overlay Management Service enables users to modify routes within their
VPN by adding or removing route entries. For a new entry, it constructs an AFMP to
redirect VPN flows to new destinations. It maintains a viewable table of routes, and
their AFMPs. To remove a route, this service removes its table entry and AFMP.

The Secure Path Construction and Management Service enables users to secure
sensitive flows in their VPN. As selective encryption at user hosts leads to security
holes, this service allows VPN users to guarantee security encryption mechanisms on
critical traffic at the network layer. It also allows the sharing of costly and specialised
equipment that guarantees high-speed encryption and decryption. This service sets up
AFMPs to redirect sensitive flows to encryption accelerators at ingress edge nodes,
and to decryption accelerators at egress edge nodes.

4 Bandwidth Management

Networks must enforce bandwidth management mechanisms to partition link
resources among VPNs. Current bandwidth management is performed by a DiffServ
[ref] model that employs proprietary QoS mechanisms locally at each router. These
mechanisms classify traffic at ingress into QoS classes by placing packets into a



queue for each class. A Weighted Round-Robin algorithm services these queues,
spending more link resources on higher-class queues than lower queues.

To provide bandwidth resource partitioning among VPNs, traffic of each VPN is
classified into a single flow that is placed in a QoS class. However, this partitioning
cannot be mapped to the DiffServ model for two reasons:

1. Per-flow fairness – In DiffServ, same class flows are placed in the same queue
where packets are randomly dropped as the queue reaches its limit size. This model
does not treat all flows within the same class fairly. Therefore, it cannot be applied
to VPNs, as VPNs of the same class do not get equal treatment.

2. Congestion Control – DiffServ does not employ admission control mechanisms to
prevent uncontrolled flows from causing congestion. Therefore, a VPN can affect
the resources of others by causing congestion.

Fig. 10. Bandwidth Management Services.

SXD-PNP uses Edge-to-Edge QoS Services to partition bandwidth fairly among
VPNs and prevent congestion. These services configure existing QoS router
mechanisms to enforce a Fair Intelligent Admission Control (FIAC) [4] scheme, as
depicted in figure 10. It uses a Resource Discovery (RD) feedback loop to gather the
congestion state information of the network. At each ingress node, an Admission
Control Module (ACM) reconciles with available resources via the RD loop, and
admits traffic intelligently according to the FIAC algorithm. The FIAC algorithm
guarantees to admit traffic according to class weights while providing fairness among
flows, and, based on the RD state report, prevent congestion by dropping packets at
ingress intelligently.

Two services implement the RD feedback. At edge nodes, we implement an RD
Service, which sends and receives “RD packets” along the feedback loop of VPN
paths. These packets are captured by a RD State Service at each node in the path
where the packets are updated with the congestion report. A demonstration of the RD
loop implementation can be found in [7].
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At edge nodes, the ACM is implemented through a FIAC Service. This service
configures ingress NI to classify VPN traffic into flows and to classify the flows into
its appropriate QoS class. It periodically uses state information supplied by RD State
Service to configure NI queue lengths and drop rates to prevent congestion.

FIAC required per-flow fairness mechanisms at NIs. Unfortunately, most
networking modules manufactured today are DiffServ compliant and do not provide a
scalable per-flow management model. To achieve per-flow fairness in our
implementation, presented in 2.3, we construct a static AFMP to redirect flows to the
Web Switch Module where Load Balancing mechanisms perform flow management.
However, this approach is still in initial design and testing stages.

The Bandwidth Management Service presented is section 3.1 uses the Edge-to-
Edge QoS Services to partition the network link resources among VPNs. It instructs
the RD Service to initiates feedback loops along VPN paths, if loops do not already
exist. The FIAC Service is updated to treat the VPN traffic as a separate flow and
classify the flow into the network QoS class specified in the VPN-MP Request.

5 Related Work

The extensive research in the field of Programmable and Active Networks has
developed a number of flexible and relatively secure network service architectures [1,
2]. These architectures have not addressed the partitioning of access to traffic among
users/VPNs, while few addressed the allocation and management of internal node
resources.

Architectures [8-10] provide mechanisms to explicitly allocate each resource to
services, collection of services, or paths according to a specified or estimated
requirement. However, this fine-grained model is it is not scalable to a large number
of heterogeneous users and is impractical as it depends on prior knowledge of
resource requirements.

Due to these deficiencies, separate projects have been conducted to address active
node resource management [11-13]. These projects throttle the input of packets to
services to control their resource consumption. Their models hinge on the difficult
task of pre-determining or estimating the resources consumed by each packet.
Furthermore, these projects do not manage memory or internal communication
resources. They also do not account for services resource consumption outside of
packet input influence.

6 Conclusion

We have presented a new platform programmability architecture, SXD-PNP, that
allows practical, secured, and true partitioning of network resources on commercial
devices. We deployed this architecture to construct programmable VPNs, address
difficult issues such as VPN traffic classification, bandwidth management, user
service deployment, and secure path construction. We described a solution that
enables a VPN on shared infrastructure as close as ever to a privately owned WAN.



Currently, VPN support service and bandwidth management services are partially
implemented on our SXD-PNP testbed. Performance evaluation and VPN separation
analysis on a complete implementation will be presented in future publications.

It is anticipated that the SXD-PNP will be deployed both in the network core and at
the network edge. As a core router, it can be used to partition network resources into
separate and secured user domains (such as VPNs), and allow operators to introduce
services for the timely resolution of various traffic-engineering problems.

SXD-PNP is most useful when used in an edge device where all designed features
can be deployed. A service provider can rapidly introduce new services to address the
mismatches between domains in terms of network boundary, technology, and
administration. Our next step is to deploy the platform for constructing overlay
networks where network resources can be safely partitioned and shared in Grid
service environments.
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