
Secure, Customizable,
Many-to-One Communication

Kenneth L. Calvert, James Griffioen, Billy Mullins, Leon Poutievski, Amit Sehgal�

Laboratory for Advanced Networking, University of Kentucky, Lexington, KY

Abstract. Concast is a customizable many-to-one network-layer communication
service. Although programmable services like concast can improve the efficiency
of group applications, accompanying security concerns must be addressed be-
fore they are likely to be deployed. The problem of securing such services is
interesting because conventional end-to-end security mechanisms are not appli-
cable when messages are processed inside the network, and also because of the
potential for interaction among the various policies involved. In this paper we
describe our implementation of a secure concast service, which leverages exist-
ing network-level security mechanisms (IPsec) to provide secure distribution of
program code (merge specifications) as well as authentication of participating
nodes. We describe the various policies supported, how they interact, and how
our approach provides security against various attacks.

1 Introduction

The design of the Internet protocols has produced a remarkably flexible, robust, and
scalable system. Perhaps nowhere is the end-to-end design principle more evident than
in the area of security, where the best services and solutions are universally considered
to be those that are closest to the application. Over time, however, a number of network
services have appeared that involve, in one way or another, processing that occurs in
the shared infrastructure, away from the end systems on which the applications reside.
Many of these services depend on the ability to look beyond the information needed for
traditional forwarding (i.e. the packet header), into the packet payload. In some cases,
this processing is performed on the application’s behalf during forwarding [1–6].

The problem of securing applications that rely on this type of processing1 is inter-
esting because the conventional end-to-end security solutions preclude processing that
occurs apart from the endpoints, and thus are incompatible with such applications. In
addition, reliance on the infrastructure to perform processing on behalf of the applica-
tion implies the existence of multiple policies that need to be enforced.

The concast service is a good example of a service that performs processing on
the applications behalf during forwarding. Concast is a many-to-one communication
service that can be viewed as a companion service to multicast (i.e., the inverse of one-
to-many communication). In concast, multiple senders transmit data packets towards
a single receiver which results in a single packet, containing the combined (merged)

� Authors are listed in alphabetical order.
1 As opposed to securing applications against involuntary processing in the infrastructure.

data from the multiple senders, being delivered to the receiver. Because the merging
operation is application-dependent, concast allows end systems to define the merge pro-
cessing that is applied at internal network nodes. The benefit of concast is in reducing
the limiting factor on the scalability: from the total number of senders to the branching
factor at any node.

In this paper we consider the problem of securing scalable infrastructure-based ser-
vices, in particular the problem of creating a secure concast service. We outline a set
of security requirements for such services, and identify the relevant policies and trust
relationships involved. We then describe a new security approach based on the fun-
damental idea that the control plane can be secured using conventional point-to-point
security techniques for authentication, confidentiality, and integrity. Given a secure con-
trol plane, the responsibility for end-to-end security can then be distributed among the
participating nodes. We describe the application of our approach to implementing a se-
cure concast service. We report performance measurements taken from our prototype
implementation of the secure concast service.

2 Security Requirements

We assume a network environment in which network services are offered to users as a
business proposition by service providers. We believe that a customizable service will
only be deployed if it offers some benefit to the service provider. We assume this benefit
takes the form of money paid to the provider in return for access to the enhanced service.
Thus our first security requirement is:

Only authorized users can take advantage of the customizable service.

We assume that users will pay for a service only if they are assured of receiving
some benefit from it. In the case of concast, the main benefit to the user is scalability
through anonymity: by moving application-specific processing into the network infras-
tructure, the service hides the details of where the data is coming from and how much
processing is occurring. To put it another way: placing application-specific processing
in the infrastructure hides scale and complexity from the users. This leads to an addi-
tional requirement:

The scale and complexity of the processing should not be exposed at any single
point.

As a consequence, the user must rely on the network to carry out processing ac-
cording to user-supplied specifications. On one level, this is no different than any other
network service. However, in terms of security there is of course a profound difference
between relying on the network to forward data as opposed to examining and possibly
modifying it. In the former case, end-to-end security mechanisms exist that can pro-
vide assurance that (under standard assumptions) user data is not disclosed or tampered
with. In the latter case, the users not only have to trust the network to carry out the spec-
ified processing, but also to protect the confidentiality and integrity of the application’s
data. That is, the user/application has to rely on the network infrastructure to enforce its
security policies. This brings us to the third security requirement:

Integrity and confidentiality of application data are protected according to
user-supplied policies.

In other words, a user-supplied policy specifying the entities authorized to participate
in that instance is associated with each instance of the service.

This requirement is nontrivial for two reasons. First, because the infrastructure is a
key participant in the enhanced service, the application policy needs to cover not only
users, but also components of the infrastructure (nodes). In other words, each partici-
pant must be able to identify nodes that are not trusted to carry out processing on its
behalf, and the service provider must take steps to prevent such nodes from partici-
pating in providing service to that user. Second, and more importantly, the service is
designed so that the set of participating nodes grows incrementally, hop-by-hop toward
participating users. Participants are only aware of other participants (either users or in-
frastructure nodes) that are up to one hop away; this is a fundamental characteristic that
is required for scalability and indeed, even for practical deployment. As a consequence,
users cannot themselves ensure that only trusted nodes participate in the service; they
must rely on the infrastructure to enforce their policies on participation.

Our approach to satisfying the last two requirements is to state an invariant that is
to be maintained at all times by the service:

All participating nodes are trusted by the user to enforce user policies regard-
ing (i) processing, confidentiality and integrity of user data; and (ii) which
nodes are trusted to participate.

In other words, we rely on (an explicit form of) transitive trust. This seems to be an
unavoidable requirement for scalable services that rely on third parties for key func-
tionality.

3 Securing a Programmable Service

The first step in securing a programmable service is establishing trust relationships
between the participating entities (senders, receivers, and network nodes).

Trust relationships can be represented as the set of principals (nodes) that are al-
lowed to perform certain actions (e.g., join the concast group, receive the merge specifi-
cation, or be given an encryption key). We say a policy defines the set of nodes that can
perform a certain action. For example, a concast receiver will define the list of sender
nodes that are allowed to join the group (called the join policy). At the same time, each
local node in the provider’s network will define the list of end-systems that are allowed
to use the concast service (e.g., have paid for the service). Clearly, both policies must
be met before a sender is allowed to join a concast group.

The most important policy is the one that defines the nodes that can be trusted to
enforce the policies of others. This type of transitive trust is critical for network-level
services where processing occurs hop-by-hop. Because the user’s data does not remain
encrypted end-to-end, intermediate nodes that handle the user’s data must enforce the
user’s policies on the user’s behalf. If a node cannot be trusted to enforce the user’s
policies, that node cannot be allowed to participate in the service. For example, a con-
cast receiver must rely on routers in the network to enforce the receiver’s join policy. If

unauthorized senders were allowed to send data along the concast flow and the member-
ship check did not occur until the merged packet reached the receiver, it would be too
late. The damage (corruption of authorized sender data) would already have occurred
at intermediate nodes in the network.

The key to achieving a scalable yet secure service is the ability to incrementally add
nodes to the service such that the invariant is not violated. To initiate a secure service,
the user’s policies must be propagated, hop-by-hop through the network, checking the
integrity of each node along the path before adding them to the flow.

Note the above description assumes that policies are themselves propagated se-
curely. At each hop along the propagation path, the adjacent nodes must authenticate
one another and verify policy compliance before proceeding. Once authenticity and au-
thorization have been established, the policies can be sent over a confidential channel.
Because the trust relationships are established hop-by-hop, existing point-to-point secu-
rity techniques can be used. In particular, protocols such as IPsec can be used to perform
both the authentication check and create the confidential tunnel over which policies can
be sent.

Once a path of trusted network hops has been established, this path can be used
for control plane messages; in particular, control messages that enable service-specific
processing at each trusted node along the path. Given a secure (programmable) control
plane, end-systems can take on the responsibility for security in the data plane, pro-
viding modules that offer as much or as little security as desired. In other words, by
supporting a secure, authenticated, hop-by-hop signaling protocol in the control plane,
applications can implement end-to-end security in the data plane, thereby maintaining
the end-to-end principle.

In the next section, we present a specific approach for implementing a secure control
plane, and show how it can be applied to the concast service. The approach is novel
in the sense that it leverages existing point-to-point secure communication protocols
(i.e., IPsec) to create a secure path and distribute policies and user-specified processing
modules. Given this basic infrastructure, end-systems then define and control security
in the data plane by programming the service appropriately.

3.1 The Concast Service

Before we describe how a secure concast service can be implemented using our ap-
proach, we need to take a moment and briefly review the basic (non-secure) con-
cast service. Additional details of the concast service can be found in our earlier pa-
pers [7] and [1].

Concast is a many-to-one communication service that provides the symmetric in-
verse of multicast: a group of senders belonging to a concast flow transmit messages
that are merged by the network en route to a common receiver R. Like multicast, con-
cast provides a scalable abstraction: an arbitrary number of group members (senders)
are treated as a single entity by R. A concast flow is identified by its receiver R and a
group identifier G; senders “join” the flow before they begin sending.

The packets delivered to R on a concast flow are derived from the packets sent by
the group members according to a merge specification (MS) supplied by the receiving
application. The concast service allows a limited amount of network programmability,

where the desired processing semantics are defined within the framework of a merge
specification. The merge specification defines (1) how datagrams delivered to the re-
ceiver are derived from datagrams transmitted by different senders (2) the timing of
datagram forwarding and delivery; and (3) which datagrams are combined with each
other (e.g. only packets containing the same sequence number are merged with each
other). The merge specification is supplied by the receiver at flow creation time (e.g.
in the form of bytecodes for a collection of Java classes conforming to a certain type
specification), and is executed by a merge daemon (Merged) at each network node.

Concast merge specification deployment is accomplished via the Concast Signal-
ing Protocol (CSP), implemented using a receiver-side CSP daemon (RCSPd) and a
server-side CSP daemon (SCSPd). The CSP protocol creates the flow and establishes
concast-related state, called the flow state block (FSB), in network nodes (i.e. at all
concast-capable nodes on the paths from group members to the receiver.) The flow state
block records the merge specification describing how packets are to be merged, and an
upstream neighbor list (UNL) that records the next concast-capable nodes “upstream”
(towards the senders) for this flow. The UNL is maintained using soft-state techniques
similar to RSVP [8].

IPSEC

N SR
Receiver (X):

YX Sender (Y):

RCSPd:

0.
2. Join Group

1.

RCSPd RCSPd SCSPd

SCSPd:RCSPd:
3.

4.

5.

6.

7. 10.

12. MS

SI Ack
SecInfo
RMS

8. 13.

tunnel
Setup IPSEC

UNL = {S}
Create FSB

Create Flow

Update UNL

UNL = {}
Create FSB

UNL = {N}

Spawn MERGEd Spawn MERGEd

Create FSB

9.
11.

JFR
SecInfo
SI Ack

PMS

IPSEC

14.

15. Setup

16.

17.

18. Spawn

IPSEC

PMERGEd

PMergedMergedMerged

8. 13. 18.

2.0.

Fig. 1. The Secure Concast Signaling Protocol.

Figure 1 shows the secure version of the CSP protocol, but the basic idea is the
same as the original CSP protocol. First, the receiver initiates the flows (step 0,1). The
senders then attempt to join the flow by Join Flow Requests (JFR) messages toward the
receiver which CSP intercepts and propagates toward the receiver as Request for Merge

Spec (RMS) messages (steps 2-8). The merge specification is then “pulled” from the
receiver towards the senders (steps 9-18).

3.2 Securing Concast

Because the receiver is responsible for initiating the concast flow, the receiver should
also be responsible for defining the flow’s membership (i.e., join policy). As we saw ear-
lier, the policy must propagate through the network toward the senders so that routers
can decide whether a sender is allowed to join or not. Unfortunately, the concast re-
ceiver does not know (in fact never learns) the identity, or the location, of the senders.
Obviously the join policy cannot be pushed into the network toward the senders until
the location of the senders is known (i.e., the senders issue join requests).

Because senders must identify themselves before the policies can be sent out, the
secure version of the CSP protocol begins just like the original CSP protocol (see Fig-
ure 1). A new sender issues a join request message that propagates (in the clear) to the
receiver (steps 2-8). At this point the path from the sender to the receiver is known and
the user’s join policy can be “pulled” toward the sender. This is accomplished by cre-
ating a set of secure tunnels back to the sender (steps 9-18). The secure path is created
hop-by-hop, each time authenticating the next hop (and verifying its integrity) and then
passing it the user’s join policy and merge specification across the secure tunnel (e.g.,
steps 9-12).

Because the merge specification is sent across a secure control channel and executes
on trusted nodes, the responsibility for end-to-end data path security can be placed in
the hands of the end-systems. To achieve this objective, the concast merge specification
itself implements the code for decrypting, processing, and then re-encrypting the data
packet before forwarding it on. Because the control channel is secure, the decryption
and encryption key can be distributed along with the merge specification.

3.3 Merge Framework Modifications

In addition to securing the CSP protocol (i.e., securing the control plane), changes
were also needed in the merging framework in order to support user-defined encryp-
tion/decryption in the data plane.

First, we enhanced the merge specification to carry a user-defined encryption func-
tion and decryption function as well as the secret keys to be used for encryption, de-
cryption and authentication. These may be actually byte codes, or they may be pointers
to predefined encryption and decryption functions we added into the merge framework
(MergeD). As part of the encryption specification, the framework allows the user to
specify whether a MAC (message authentication code) should be include in the en-
crypted message. If so, the MAC will be checked when the packet is decrypted to verify
its integrity.

The second change to the framework creates different forms of the merge daemon
(MergeD) to be deployed at senders, merging nodes, and the receiver. Merge daemons
executing on sender nodes receive packets over a local socket. Because these incoming
packets are unencrypted, the decryption function does not need to be invoked; only the
encryption is called, on outgoing packets. On receiver nodes the situation is reversed:

incoming packets need to be decrypted, but outgoing packets go straight to the receiver
application and do not need to be encrypted. On intermediate nodes, all incoming pack-
ets are decrypted and all outoing packets are encrypted (as long as merging is occurring,
i.e. there is more than one upstream neighbor—otherwise, the packets are simply for-
warded). Because we trust sender nodes only to transmit data, not merge packets, the
signalling protocol transfers only a partial merge specification to the sender, containing
an encryption function and the secret key (that is, the merge routine is not passed).

4 Secure Concast Signaling Protocol

This section describes the Secure Concast Signaling Protocol, which is based on the
original Concast Signaling Protocol [1]. Together with IPsec Secure CSP provides a
foundation for the secure concast service. We begin by defining notational conventions,
data types, and cryptographic primitives used. Next we describe the protocol messages
and their contents. Finally, we give a high-level operational description of the (normal)
process of setting up a concast flow.

4.1 Basic Types and Cryptographic Primitives

Our protocol uses the following types:

– appident: Identifier of an application-level principal, i.e. a participant in the con-
cast flow (receiver or sender). E.g., if X.509 certificates are used, this could be an
OSI Relative Distinguished Name (RDN).

– nodeident: Identifier of a network-level principal, i.e. a node. We use IP addresses
as network identifiers.

– flowspec: A pair (R, G) identifying a concast flow, where R is the receiver’s IP
address (a nodeident) and G is the group identifier.

– mergespec: A collection of data and function definitions that defines the merge
processing to be carried out by intermediate nodes, and that conforms to the re-
quirements of the concast merging framework.

– pmergespec: A partial or “thinned” mergespec, containing only the security-related
portions of the merge specification. End systems receive partial mergespecs because
they need to do security-related processing but may not be trusted to apply policies
or perform merging.

– policy: A specification of a set of principals that are authorized in some way. We
consider a policy to be a predicate on identifiers (appidents or nodeidents) and
credentials; if the predicate has the value “true” for a given identifier and credential,
it means that (i) the identified principal is authorized, and (ii) the given credential
is an acceptable witness for evaluating authenticity of information to be provided
by the principal.

– signature: A digital signature, essentially a cryptographic digest of message data
encrypted with some principal’s private key, computed and formatted according to
accepted cryptographic standards (e.g. SHA-1 [9] and PKCS #1 [10]). The notation
{h(a|b|c)}k denotes the result of concatenating messages or fields a, b and c and

signing the digest (created using a well-known cryptographic algorithm such as
SHA-1) of the resulting bit string with private key k. Unless otherwise specified,
signature fields in messages cover the entire contents of the message preceding the
field.

– cert: A public-key certificate, which binds an identifier (of type appident or nodei-
dent) to a public key.

– ipsecinfo: A structure containing IPsec information of a host needed by another
host to create an IPsec tunnel to the former host.

– timestamp: A timestamp.
– ccasthdr: the first field of every secure CSP message. Indicates the version of the

protocol and the type of the message.

The notation verify(m, a, c) denotes the result of verifying the authenticity and in-
tegrity of (some part of) a message m using signature a and certificate c. This function
returns true if digesting the information in m results in a value consistent with that ob-
tained by decrypting a with the public key contained in c. For brevity, we sometimes
abuse notation by indicating that the entire message m is being verified even though the
authenticator covers only a portion of it.

The notation p(u, c) denotes the result of applying policy p to identifier u with
credential c. The value “true” means that u, presenting credential c, is authorized. The
notation time-check(t) denotes the result of verifying that a timestamp t is within some
δ of the current time as known locally. We assume that δ is configured appropriately at
every node for the degree of clock synchronization achievable in the network. (As usual
when timestamps are used to ensure freshness, if δ is too small the protocol may fail
between nodes whose clocks are not well-synchronized; setting δ too large increases
the window of vulnerablility to replay attack.)

4.2 Policies and Principals

As described earler, the signaling protocol makes use of various policies. Per-flow poli-
cies are supplied by the receiver, and specify the principals—nodes and applications—
that are allowed to participate in the flow. Per-node policies are supplied by service
providers (ISPs), and specify the nodes that are allowed to perform various functions in
a flow. Per-node policies are only applied to nodeidents.

The supported policies include:

– fp.j: per-flow join policy. Specifies application entities (appidents) authorized to
join the flow. This policy is specified by the concast receiver along with the merge
specification.

– fp.u: per-flow upstream node policy. Specifies nodes (nodeidents) that are autho-
rized to participate in the flow either as host of an application-level sender or as a
merging node. This policy is specified by the concast receiver along with the merge
specification.

– np.r: per-node receiver policy. Specifies nodes (nodeidents) that are authorized to
be the terminal points of concast flows. This implies that the node is authorized
to supply merge specifications. This policy would typically characterize nodes that

either have had a fee paid on their behalf, or are part of some trusted nonlocal
domain.

– np.d: per-node downstream policy. Specifies nodes (nodeidents) that are authorized
to relay a merge specification from a downstream receiver.

– np.s: per-node sender policy. Specifies the set of nodes (nodeidents) authorized to
be the source of requests to join a concast flow. Again, typically characterizes the
set of nodes in this domain that have paid for service, and nodes trusted by virtue
of the other domain to which they belong.

– np.u: per-node upstream policy. Specifies the set of nodes authorized to be upstream
of this node in a flow. Note that such nodes are trusted not only to handle (merge)
user data, but also to apply this node’s policies.

The protocol description involves the following principals and their associated in-
formation: X is the receiver (application), which has private key kX and certificate CX ;
it is running on node R, which has private key kR and certificate CR. Y is a sender (ap-
plication), which has private key kY and certificate CY . Y is running on node S, which
has kS and CS . Finally, N is a merging node with private key kN and certificate CN .

4.3 Protocol Messages

Message contents are given in terms of the structured types shown in Figure 2, which
in turn use the basic types defined above. Note that the CREATEREQ structure contains
two signatures; the first covers the MERGETOKEN, while the second covers the same
data except that mergespec is replaced by the subset of its information that constitutes
a pmergespec. Also, the PCREATEREQ structure contains only the fields of a CRE-
ATEREQ that are relevant to the reduced mergespec, i.e. the subset of mt that constitutes
a reduced mergespec, the pMTSig, and the userCert; given a valid CREATEREQ, a
PCREATEREQ can be derived from it.

JOINREQ

flowspec flowID;
appident user;
signature userSig;
cert userCert;

MERGETOKEN

flowspec flowID;
mergespec ms;
policy PFUpstreamP;
policy PFJoinP;
appident user;

CREATEREQ

MERGETOKEN mt;
signature MTSig;
signature pMTSig;
cert userCert;

Fig. 2. Structures used in concast messages

The contents of the protocol messages are shown in Figure 3.

4.4 Protocol Operation

With the help of Figure 1 we describe the normal sequence of steps for a secure concast
flow establishment. In the interest of clarity we omit steps related to error processing,
and assume that the flow in question is not currently present on any node involved.

Join Flow Request (JFR)
ccasthdr flowInfo;
JOINREQ userReq;
nodeident sNode;
timestamp ts;
ipsecinfo sinfo;
signature msgSig;
cert sNodeCert;

Request for Merge Specification (RMS)
ccasthdr flowInfo;
JOINREQ userReq;
nodeident upNode;
timestamp ts;
ipsecinfo sinfo;
signature msgSig;
cert upNodeCert;

Security Information (SecInfo)
ccasthdr flowInfo;
JOINREQ userReq;
nodeident downNode;
timestamp ts;
ipsecinfo sinfo;
signature msgSig;
cert downNodeCert;

Sec. Info. Acknowledgement (SIAck)
ccasthdr flowInfo;
JOINREQ userReq;
nodeident upNode;
timestamp ts;
signature msgSig;
cert upNodeCert;

Merge Specification (MS)
ccasthdr flowInfo;
CREATEREQ userSpec;
nodeident downNode;
timestamp ts;
policy nodeP;
signature msgSig;
cert downNodeCert;

Concast Join Succeeded (CJS)
ccasthdr flowInfo;
PCREATEREQ pUserSpec;
nodeident downNode;
timestamp ts;
signature msgSig;
cert downNodeCert;

Fig. 3. Secure CSP Messages

Step 0 : To create a flow (R, G), the receiver application X generates the secure merge
specification (ms) and per-flow policies (PFUpstreamP and PFJoinP), formats
the requisite information as a MERGETOKEN, and generates a signature (MTSig)
using its private key kX . It also generates a signature (pMTSig) for the partial
MERGETOKEN(the MERGETOKEN minus ms). X finally bundles the MERGETO-
KEN, the signatures MTSig an pMTSig, and its certificate userCert=CX into a
CREATEREQ and hands it over to the local CSP module.

Step 1 : Upon receiving the CREATEREQ cr, the CSP at R verifies the signatures2 cr.MTSig
and cr.pMTSig using the public key in the certificate cr.userCert; that the prin-
cipal of certificate cr.userCertmatches identity cr.user; and that cr.userCert
is a valid certificate generated by a trusted certificate authority. If the verification
succeeds then the CSP creates the local flow state for the flow (R, G) and returns a
success indication to X .

Step 2 : To join the flow (R, G), the sending application Y creates a JOINREQ by including
its identity user=Y , certificate userCert=CY , and a signature userSig gen-
erated by signing the request using its private key kY . The JOINREQ is then passed
to the local CSP.

Step 3,4 : Upon receiving JOINREQ jr from Y , the CSP at S verifies (i) the join request sig-
nature jr.userSig using the public key in certificate jr.userCert, (ii) that the
principal of certificate jr.userCert matches application identifier jr.user and
(iii) that jr.userCert is a valid certificate. The CSP at S next checks (i) if Y is
allowed by local policy to act as a concast sender, and (ii) if R is an acceptable con-
cast receiver node according to local policy, i.e. that S:np.r(R,⊥) is true3. If so, a
flow state block is created for the flow (R, G) and its state is marked “pending”. A
JFR message containing the user’s join request userReq, the current timestamp
ts, S’s identifier sNode=S and certificate sNodeCert=CS, ipsec information
sinfoto connect to S and a signature msgSig obtained by signing the JFR mes-
sage using kS is generated and forwarded toward R.

Step 5,6 : Upon intercepting a JFR message jm on its way to R, the CSP at N first ver-
ifies the signatures jm.userReq.userSig and jm.msgSig to ensure the au-
thenticity and integrity of the user request and the JFR message respectively. It also
checks the validity of the timestamp time-check(jm.ts). Next, the CSP verifies
that N :np.r(jm.userReq.user,⊥), and N :np.u(jm.sNode, m.sNodeCert)
are all true. If so, it creates a temporary flow state block for the flow (R, G), adds
the pair (m.sNode, m.sNodeCert) to the upstream neighbor list, and marks the
flow “pending”. It also constructs a RMS message containing the user’s join re-
quest userReq, a fresh timestamp ts, N ’s identifier upNode=Nand certificate
upNodeCert=CN , IPsec information sinfo needed to connect to node N and a
signature msgSigobtained by signing the RMS message using kN . It forwards the
RMS message toward R.

2 While the channel between the receiver application and the local CSP is probably trusted, this
verification is a good idea because other nodes are going to perform it. If there is a problem, it
is better to detect it locally. (Similarly for the JOINREQ passed by Y .)

3 Note that this check should “tentatively succeed” at this stage without a certificate for R. The
purpose is to prevent wasted effort in case R is unacceptable regardless of what credentials are
presented.

(This process will be repeated at each concast-capable node along the path to R:
the node intercepts the RMS message, validates the signatures, checks that the mes-
sage sender is acceptable to its local upstream node policy, and then constructs and
forwards toward R a signed RMS message containing the original JOINREQ and
its own identifier and certificate. For brevity, we assume here that N is the last
concast-capable node on the path toward R.)

Step 7,8 : Upon receiving an RMS message rm, the CSP at R, the destination node, the CSP
verifies the signatures rm.userReq.userSigand rm.msgSig. It also checks
that time-check(rm.ts) ∧
fp.j(rm.req.user, rm.req.userCert) ∧
fp.u(rm.sNode, rm.sNodeCert) ∧
R:np.u(rm.sNode, rm.sNodeCert) are true, i.e. the flow policy admits the join-
ing sender Y and both flow and node policies admit the upstream neighbor who sent
the message. If so then it spawns the Merge daemon for the flow, if not, it sends
a signed error message upstream, indicating that the connection failed for policy
reasons.

Step 9 : Before the CSP can send the merge specification to the upstream node it must cre-
ate an IPsec tunnel to the upstream node. To do this the CSP first sets up all neces-
sary IPsec connection information using rm.sinfoat its own end. It then creates
a SECINFO (Security Information) message that contains the userReq=rm., a
fresh timestamp ts, R’s identifier downNode and certificate downNodeCert,
R’s IPsec information sinfoand a signature obtined by signing SECINFO with
kR. It then sends the SECINFO message to the upstream node.

Step 10,11 : Upon receiving the SECINFO message sm, the CSP at the upstream node N checks
that the flow identifier sm.userReq.flowID referes to a legitimate pending flow,
and verifies (i) the sigantures sm.userReq.userSig and sm.msgSig, (ii) and
also verifies that certificate sm.downNodeCert is valid. Next the CSP checks if
time-check(sm.ts) is true. It then applies its local downstream node policy, i.e.
verifies that N :np.d(sm.downNode, sm.downNodeCert) is true. If so, it sets
up its local IPsec connection files using sm.sinfo and establishes a security asso-
ciation with sm.downNode. Upon successful creation of the IPsec tunnel the CSP
creates a SIACK message that includes the userReq=sm.userReq, the node’s
identity upNode=N and certificate upNodeCert=CN , a timestamp ts and a sig-
nature msgSig obtained by signing the SIACK message with kS . CSP then sends
the SIACK message downstream toward R.

Step 12 : When the tunnel is established, the CSP at R adds the pair (N ,CN) to the flow’s
upstream neighbor list (UNL) and then constructs a MERGESPEC (Merge Specifi-
cation) message containing the flow’s create request userSpec, a fresh timestamp
ts, its identity downNode=R and certificate downNodeCert=CR. R also adds
its upstream policy np.u to nodeP in the MERGESPEC message, signs the message
with kR and sends it to N .

Step 13,14 : Upon receiving an MS message mm (through the tunnel), the upstream node N ver-
ifies signatures mm.userSpec.MTSig, mm.userSpec.pMTSig and mm.msgSig,
checks the timestamp mm.ts (allowing for travel and processing time to get to the
receiver node and back), unpacks and installs the merge specification and policies,

and then performs the following steps for each node q (with certificate Cq) in the
flow’s upstream neighbor list.4

1. Verify that q is acceptable according to the node upstream policy received in
the merge specification: mm.nodeP(q, Cq).

2. Verify that q is acceptable according to the flow’s upstream neighbor policy:
fp.u(q, Cq).

3. Spawn a MERGEd and send the MERGEd an update of the upstream neighbor
list. (Note that this step happens once for all upstream neighbors at intermedi-
ate and receiver nodes. At senders, however, for technical reasons a separate
MERGEd is spawned for each sending application program.)

Step 14,15,16 : N checks whether an IPsec tunnel to q already exists. If not, it sets up IPsec to es-
tablish a tunnel, and constructs, signs and sends to q a SECINFO message. SECINFO

contains the original JOINREQ for the flow, its identity downNode=Nand certifi-
cate downNodeCert=CN , and IPsec information sinfoto enable establishing a
tunnel. The upstream node, similar to the previous steps, prepares its end for the
creation of an IPsec tunnel and if successful sends a SIACK message to the down-
stream node.

Step 17 : The downstream node after receiving the SIACK message from S sends the merge
specification to the upstream node. But since the upstream node S was added after
the receipt of a JFR message and not a RMS message, a partial merge specifica-
tion instead of a full merge specification is sent upstream. N thus creates a pms
message that includes the original userSpec=mm.userSpec, the partial merge
specification pmergespec, a timestamp ts, N ’s identity downNode=N and cer-
tificate downNodeCert=CN , and a signature msgSig obtained by signing the
pms message using kN . The CSP then sends the pms message upstream to S.

Step 18 : Upon receiving a PMS message pm, the CSP at the sender node S verifies (i) the
signatures pm.userSpec.pMTSigand pm.msgSig, (ii) the timestamp pm.ts,
and (iii) the certificate pm.downNodeCert. If the verification is successful S sp-
wans a partial merge daemon and notifies Y that the join operation has completed,
and data transfer can begin.

5 Security Analysis

The Security Architecture for Active Networks [11] enumerates the various attacks that
can be mounted against an active network framework. Given this threat model, we
briefly describe how our secure concast service fares under these various attack sce-
narios.

Attacks resulting in usurpation: Theft of service attacks are prevented by concast’s
authentication mechanisms. As described earlier, the concast service is based on
well-defined trust relationships that must be met before any node, sender or in-
termediate merge node, will be added to the flow. Because the flow is established
hop-by-hop, each node’s authenticity and integrity can be verified individually and

4 Note that at this point it has already been established that the originating user satisfies fp.j, and
that the downstream node satisfies N :np.d, the local downstream node policy.

compared against the receiver’s and provider’s security policies before being in-
cluded in the flow. As a result, only nodes with the proper certification are allowed
to access the service.

Attacks resulting in unauthorized disclosure: Outside of breaking into an end-system
or router, packet snooping is the most common technique for obtaining access
to content. In secure concast, all traffic is encrypted. Merge specification are ex-
changed via encrypted IPsec tunnels and the data packets are exchanged using a
shared key that is only disclosed to authenticated group members.

Attacks resulting in deception: Secure concast prevents masquerading by spoofing
attacks via two methods. First, all control messages are sent over IPsec tunnels
whose endpoints have been authenticated. The only exception are the initial JFR
and RMS messages which are transmitted in the clear. However, these message
carry a digital signature that can help identify spoofed addresses. Even if these
messages are not identified as spoofed messages, they are simply used to trigger the
initiation of fully authenticated IPsec tunnel where their identity will be checked.
Second, all data packets are encrypted and carry a message authentication code.
Packets can be spoofed, but without the correct encryption key, the merge daemon
will discard them. At best, such packets result in a denial of service attack (see
below).

Replay attacks are another form of deception. Because all control packets are car-
ried over the IPsec tunnel, replay attacks are automatically detected by IPsec. Only
the initial JFR and RMS travel outside the tunnel. Both carry an authenticated
timestamp that is used to detect packets that are outside the acceptable delivery
time window. Packets replayed during the window while the tunnel exists are au-
tomatically discarded. In regards to the data channel, all packets are encrypted and
can carry a sequence number that can be used to detect duplicates if the user desires.

Substitution attacks, which represent another form of deception, are prevented via
the use of cryptographic integrity checks. All packets are digitally signed to guar-
antee the packets integrity.

Attacks resulting in disruption/Denial of Service: These types of attacks present the
biggest problem for the secure concast service. Although secure concast prevents
some of the attacks, there are several different attacks that could be launched to
consume packet processing cycles at network nodes, the receiver, or senders.

An example of a disruption attack that secure concast prevents is the join circum-
vention attack. In this case a malicious node circumvents the join process and
simply sends data to a merge daemon for merging. Because the data cannot be
decrypted, the merge daemon does not merge the packet into the stream, thereby
preventing disruption of the stream with bogus data. However, the time spent pro-
cessing the packet still represents a DoS attack that is difficult to prevent.

DoS attacks can also be mounted via false requests. Every time a bogus join request
is received, the network nodes expends resources trying to setup the IPsec tunnel,
only to find that the sender is not responding.

Fig. 4. Concast video application containing four merged streams.

6 Performance evaluation

In order to measure the performance of our secured concast service, we used a concast
video-merging application[12]. Some video applications require the ability to receive
video feeds from multiple sources simultaneously; examples include distance learning
and video monitoring/surveillance. The objective is to receive the best possible video
quality from all sources. For our concast video merging application, a concast session
is established that transcodes the incoming streams into lower-quality streams, thereby
reducing the network bandwidth requirements. The idea is to replace uncontrolled loss
due to congestion with controlled loss due to transcoding. To support this type of appli-
cation, we designed a simple merge function that scales the incoming video stream by
down-sampling the pixels that comprise each frame of the video, and combining all in-
coming streams into a single outgoing stream. In other words, each network link should
carry no more than one video steam. To achieve this, the merge specification keeps track
of the number of incoming video streams and the number of original video streams en-
coded in each incoming stream. It then assigns a region of each outgoing frame to each
incoming video stream and down-samples the stream appropriately to fit in the assigned
region. The assignment of streams to regions takes into account the relative sizes of the
(possibly already down-sampled) incoming streams. As new streams “join” the concast
session, the existing images are adjusted to make room for the stream. Each composite
stream carries information about how many original streams it contains and how they
have last been combined so that each node can determine how to combine its incoming
streams. This ensures that even if an unbalanced merge tree was built by all the concast
senders, the final video stream delivered to the concast receiver will have a roughly
proportional display area for each of the constituent video streams.

Our test topology is shown in Figure 5. We used four video senders, each transmit-
ting an uncompressed black-and-white 320x240 video stream at a given frame rate. At
each merging hop in the network the frames were merged into a single sub-sampled
image. Figure 4 is a resulting frame captured at the receiver node. We ran with both
a ’NULL’ cipher specification as well as using AES (128-bit) encryption with a SHA1

message digest for 4, 6, and 8 frames per second (fps). In each case, we measured the to-
tal system and user level CPU utilization. The data was taken from merge node 3 in the

Sender 3 Sender 4Sender 2Sender 1

Merge 2 Merge 3

Merge 1

100Mbs
Receiver

10Mbs

Fig. 5. Experimental Network - Secure Concast Video Merging

experimental topology. All nodes in the network were 1.5Ghz Pentiums with 128MB
of RAM, resulting in similar results for the remaining merge nodes. Our concast merge
specification was written in Java and runs in a user-level JVM, which accounts for the
majority of the load. The results of our experiments are presented in figure 6. As can be
seen from the graphs, in each case encryption/decryption of the video streams imposed
an overhead of roughly 20 percent. We found 8 frames per second to be the maximum
speed we could attain while maintaining video quality. As can be seen from the results
for AES/SHA1 with 8 fps, the merge nodes were running at maximum CPU utilization
(system + user). When trying to go beyond 8 fps the nodes were overloaded which re-
sulted in packet loss. The initial high load in each case is measurement taken during
JVM startup.

Our results demonstrate that the presented security mechanism (in particular, per
packet data security) is feasible and can be implemented with a reasonable overhead.
Note that our implementation of the secure merge specification has been done in Java
only with the intention to show feasibility and not optimality.

7 Related Work

The DARPA Active Network community has defined an architecture for an active
nodes [13] that comprises a NodeOS and one or more Execution Environments (EE). A
security architecture has been proposed for the architectural framework, with particular
attention paid to capsule-based EEs (i.e. those that expect code to be included in each
packet). An important observation by the authors is that some part of the active packet is
dynamic (changes at intermediate hops) and the rest of it is static. Digital signatures are
used to provide end-to-end authentication and integrity protection to the static part of
the packet. HMAC-SHA-1 integrity protection is used between two neighboring nodes
to provide integrity protection. Certificates are stored in DNS CERT records and ev-
ery packet carries references to the appropriate certificates. Authorization to execute

0

20

40

60

80

100

0 50 100 150 200 250

C
P

U
 U

til
iz

at
io

n
(P

er
ce

nt
ag

e)

Time (Seconds)

CPU Utilization (4 FPS) (AES/SHA1)

User CPU Utilization
System CPU Utilization

0

20

40

60

80

100

0 50 100 150 200 250

C
P

U
 U

til
iz

at
io

n
(P

er
ce

nt
ag

e)

Time (Seconds)

CPU Utilization (4 FPS) (NULL)

User CPU Utilization
System CPU Utilization

0

20

40

60

80

100

0 50 100 150 200 250

C
P

U
 U

til
iz

at
io

n
(P

er
ce

nt
ag

e)

Time (Seconds)

CPU Utilization (6 FPS) (AES/SHA1)

User CPU Utilization
System CPU Utilization

0

20

40

60

80

100

0 50 100 150 200 250

C
P

U
 U

til
iz

at
io

n
(P

er
ce

nt
ag

e)

Time (Seconds)

CPU Utilization (6 FPS) (NULL)

User CPU Utilization
System CPU Utilization

0

20

40

60

80

100

0 50 100 150 200 250

C
P

U
 U

til
iz

at
io

n
(P

er
ce

nt
ag

e)

Time (Seconds)

CPU Utilization (8 FPS) (AES/SHA1)

User CPU Utilization
System CPU Utilization

0

20

40

60

80

100

0 50 100 150 200 250

C
P

U
 U

til
iz

at
io

n
(P

er
ce

nt
ag

e)

Time (Seconds)

CPU Utilization (8 FPS) (NULL)

User CPU Utilization
System CPU Utilization

Fig. 6. Secure Merge Processing Overhead

code is based on the Java 2 security architecture with modifications to support multiple
policies, a feature often needed in active networks.

Like the AN security architecture, SANTS [11] differs from the approach described
in this paper mainly in its focus on a capsule-based processing model. Every packet
is singly responsible from its own authentication, integrity and authorization. In our
approach, however, packets belong to a flow. Initial efforts are required to authorize all
the members belonging to the flow. But once achieved, the problem of confidentiality
and integrity is simplified due to the use of a shared secret by all members of the flow.

The Switchware project [14] included one of the first attempts to deal with security
in active networks. Like concast, the Switchware architecture allowed for flow-based
programmability. The Secure Active Networks Environment (SANE) [15] also allowed
an end-system control over the nodes participating in its flow, by setting up nested
tunnels hop-by-hop. Unlike our approach, however, the SANE approach exposes the
identity of every node being programmed to the originating end system. While this
avoids the need for transitive trust, it limits scalability.

A framework to provide hop-by-hop security in an active networking environment
for unicast and multicast applications was proposed by Krishnaswamy et.al [16]. Their
approach makes use of a centralized Keying Server (KSV) which provides an interface
to accept a secure topology in the form of “links” or “groups” for unicast and multicast
respectively. Every node that is a part of the secure topology sets up an IKE SA with
the KSV. The KSV uses this SA to securely convey to the each “node” in the topology
all information that it needs to reliably setup a security association with its peer(s).
They use Linux IPChains to enforce a policy on which packets can be accepted into the
node, and they use the DNS service to retrieve the public keys associated with nodes.
However, in their approach all flows seem to share the same hop-by-hop channel for
security. Also, there does not seem to be a concept of node-level or flow-level policies
that would enable nodes to control the membership in the flow.

8 Conclusion

A number of security challenges are associated with active networking applications
that process data on a per hop basis. Some of the requirements of such applications
are secure distribution of the processing code and shared secrets, authentication and
authorization of the members, confidentiality and integrity of application data. Standard
end-to-end mechanisms cannot be used to solve these problems.

In this paper we have attempted to solve the security challenges specific to concast,
a many-to-one communication service. A fundamental feature of our solution is the
use of IPsec which provides us confidentiality, authentication and integrity on a point-
to-point link. We combine IPsec with a rich set of policies and this lets us identify
legitimate members of a flow, define trust relationships among the various members,
and outline the type of protection required by each node and the service as a whole.
The availability of a secure control plane helps us provide a platform to applications
to securely distribute shared secrets and thereby achieve confidentiality and integrity of
application data.

References

1. Kenneth L. Calvert, James Griffioen, Billy C. Mullins, Amit Sehgal, and Su Wen, “Concast
: Design and implementaion of an active network service,” IEEE Journal on Selected Areas
in Communications (2001), pp. 19(3):426–437, March 2001.

2. Sneha Kumar Kasera, Supratik Bhattacharyya, Mark Keaton, Diane Kiwior, Jim Kurose,
Don Towsley, and Steve Zabele, “Scalable Fair Reliable Multicast Using Active Services,”
IEEE Network Magazine, February 2000.

3. I. Kouvelas, V. Hardman, and J. Crowcroft, “Network Adaptive Continuous-Media Ap-
plications Through Self Organised Transcoding,” in the Proceedings of the Network and
Operating Systems Support for Digital Audio and Video Conference (NOSSDAV 98), July
1998.

4. E. Amir, W. McCanne, and H. Zhang, “An application level video gateway,” in ACM Multi-
media ’95, 1995.

5. D. Wetherall, J. Guttag, and D. L. Tennenhouse, “ANTS: A toolkit for building and dynam-
ically deploying network protocols,” in IEEE OPENARCH’98, San Francisco, CA, April
1998.

6. S. Merugu, S. Bhattacharjee, Y. Chae, M. Sanders, K. Calvert, and E. Zegura, “Bowman and
canes: Implementation of an active network,” 1999.

7. K. Calvert, J. Griffioen, A. Sehgal, and S. Wen, “Concast: Design and implementation of a
new network service,” in Proceedings of 1999 International Conference on Network Proto-
cols, Toronto, Ontario, November 1999.

8. Bob Braden, Lixia Zhang, Steve Berson, and Shai Herzog Sugih Jamin, “Resource ReSer-
Vation Protocol (RSVP),” September 1997, RFC 2205.

9. Donald E. Eastlake 3rd and Paul E. Jones, “US Secure Hash Algorithm 1 (SHA1),” Septem-
ber 2001, RFC 3174.

10. Burt Kaliski and Jessica Staddon, “PKCS #1: RSA Cryptography Specifications. Version
2.0,” October 1998, RFC 2437.

11. S. Murphy, E. Lewis, R. Puga, R. Watson, and R. Yee, “Strong security for active networks,”
in The Fourth IEEE Conference on Open Architectures and Network Programming, April
2001.

12. Kenneth L. Calvert, James Griffioen, Billy Mullins, Swaminathan Natarajan, Leon
Poutievski, Amit Sehgal, and Su Wen, “Leveraging emerging network services to scale
multimedia applications,” Software - Practice and Experience (SPE), vol. 33, no. 14, pp.
1377–1397, November 2003.

13. AN Architecture Working Group, “Architectural framework for active networks ver 1.0,”
July 1999.

14. D. Alexander, W. Arbaugh, M. Hicks, P. Kakkar, A. Keromytis, J. Moore, C. Gunder, S. Net-
tles, and J. Smith, “The switchware active network architecture,” IEEE Network, May 1998.

15. D. Alexander, W. Arbaugh, A. Keromytis, and J. Smith, “Safety and security of pro-
grammable network infrastructures,” IEEE Communications Magazine, Special issue on
Programmable Networks, 1998.

16. Suresh Krishnamswamy, Joseph B. Evans, and Gary J. Minden, “A prototype framework for
providing hop-by-hop security in an experimentally deployed active network,” in DANCE:
Darpa Active Networks Conference and Exposition, 2002.

