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Abstract. As climate change appears, strategies and actions will be
necessary to cope with its effects on environment and society in the
coming decades. Current climate conditions can be observed everywhere
in the world but future climate conditions can only be estimated through
climate simulations which produce huge amounts of quantitative data.
This data leads to statements like “temperature increase is expected to
exceed 2.6◦C” or similar and remain fuzzy to non-experts in climate
research. The Climate Twins application is designed to communicate cli-
mate changes in an intuitive and understandable way by showing regions
which have now similar climate conditions according to a given Point of
Interest (POI) in the future. This paper explains how the application
seeks for locations with similar climatological patterns according to the
POI. To achieve this goal a method has been developed to quantify sim-
ilarity between two locations’ climate data.
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1 Introduction

To allow “real world insights” about future climate impact and appropriate adap-
tation, one can look at model regions, where the current climate appears similar
to an expected future climate of a POI. We call such region pairs with similar
climate conditions (at different times) “Climate Twins”. From these (remote)
current Climate Twin region parts we can learn “hands on” how future climate
impacts may be experienced in the POI and how to adapt there to the changing
climate conditions, expected in the future.

The idea of Climate Twins is to identify regions whose current climate con-
ditions show high similarity to the expected future climate in the POI. The Cli-
mate Twins search tool is a web-based graphical user interface (GUI) allowing
to explore climate change effects based on maps of current and future climate.

To identify climatological similarity seems to be a simple exercise but the
accuracy and validity of the result strongly depends on the indicators used and
the similarity thresholds defined. A huge number of indicators in combination
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with narrow threshold ranges will reduce the number of matching regions signif-
icantly as well as few indicators combined with wide thresholds will show a big
number of matching regions.

The climate indicators used here are daily mean temperatures and daily pre-
cipitation because they are seen as the most important ones and provide sufficient
input for proving the concept’s applicability. The most important part was to
find a suitable matching method which strongly depends on the quantification
of similarity between any two data vectors.

This matching method now provides

– a “unit-less” similarity value able to be combined with similarity values of
other indicators,

– information of the degree of similarity to derive statements like “more similar
than” or “less similar than”, and

– a consideration of many statistical properties because whole statistical dis-
tributions are being compared.

2 Theory and Methodology

2.1 Climate Data

Climate can be seen as a statistical collection of various climate variables. These
variables are either measured or modeled in various time steps and therefore
come as a list of values. A statistical distribution of these values can be described
by three main attributes: dispersion (measure of variability), skewness (measure
of asymmetry) and kurtosis (measure of peakedness) or by aggregations like
mean, median or range.

There are various ways to quantify these properties but especially measuring
skewness and kurtosis is challenging and the results are not always satisfactory.
By using conventional methods major problems have to be faced as climate data
is rather not normally distributed. Furthermore the results have to be combined
to a single attribute afterwards which also leads to problems in weighting them
in an appropriate manner.

Figure 1 shows frequency distributions of modelled daily temperature means.
A quick visual interpretation shows that the more values are located on the
right hand side, the warmer the location (e.g. Rome). The annual temperature
amplitude equals the value range. As Vienna and Munich have a higher value
range, the annual temperature range is wider due to their rather continental
location. On the other hand Rome and Copenhagen, wich are located in maritime
locations, show a narrow value range. Bipolar distributions indicate strong and
distinct seasons like winter and summer with short and alternating changeovers
in spring and autumn (Rome) whereas Gauss-like distributions indicate a more
homogeneous climate (Vienna, Copenhagen, Munich) and so on.
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Fig. 1. Frequency distributions of daily mean temperatures 2001 to 2010

2.2 Similarity Measures

A similarity measure in this context should define and quantify the similarity
between two statistical distributions—i.e. the numerical attributes we used to
describe climate. Vegelius et al. [6] did a comparative analysis on various sim-
ilarity measures. His research group tested measures according to predefined
criteria. The three main criteria being:

1. The result of the measurement (r) has to be a value between 0 and 1,

2. between two identical distributions r has to be 1 and

3. r has to be equal when measuring in both directions.

After the analysis the group pointed out two measures which fit to all criterias
given. These two were the Proportional Similarity (PD, 1) and the Hellinger

Coefficient (rH, 2).

PD(U, V ) =

C
∑

i=1

min(fUi, fVi) (1)

rH(U, V ) =
C
∑

i=1

√

fUi ∗ fVi (2)
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U , V are two distributions, r similarity value, C being “category”. Both
measures use relative frequencies to measure similarity. Having data on a cate-
gorical or ordinal scale these categories are already defined. Given for examples
two farms with cattle, chickens and sheep it is possible to quantify the relative
similarity by using the frequencies of the three species living in each farm. In
this example each species is a category.

2.3 Application

Problem: Climate data though occurs on an interval (temperature) or ratio (pre-
cipitation) scale where the borders—value ranges—that enclose the categories
have to be defined manually in order to use these similarity measures.

Solution: The number of categories a distribution is split into determines the
resolution of the measure (and therefore the accuracy of the measurement). If
there is only one category describing each distribution, this category contains
100% of the values which leads to a r value of 1. The more categories are intro-
duced, the more convincing the similarity measurement gets but for the Climate
Twins application a meaningful number of categories had to be found where
on the one hand the r value provides a valid similarity indicator and computer
ressources are used effectively on the other hand.
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Fig. 3. Logical structure of combining r-values while define similarity between two
locations. The structure is scalable, i.e. any number of indicators can be implemented
as long as respective similarity thresholds are applied.

In Figure 2 the behaviour of Proportional Similarity values when increasing
the category number is shown. Visually the resulting curve can be divided into
three parts: (1) when having one category the r values have—as expected—
a value of 1. When increasing the number the curve shows major fluctuations
until it (2) stabilizes after approximately 30 categories. The r values stay (3)
constant when having approximately 700 categories and more.

It is important to specify an amount of categories where valid results are
possible on the one hand and the computing effort is as low as possible on the
other hand. Therefore the number of categories should be a lower value of part
two of the curve. Due to other reasons like the total possible value range, the
categories for the Climate Twins application were set to 37 for temperature
(every 2◦C between −30◦C and 40◦C and one category each below and above
that range) and 29 categories for precipitation (1 mm width each category from
0 to 10 mm, 5 mm width from 10 to 100 mm and one category for 100 mm and
more).

Problem: A major problem in applying this method on climate data was los-
ing all temporal information. A pure frequency distribution does not contain
the chronological information of the distribution values anymore. Therefore two
locations where the precipitation peaks occur at location A in spring and at
location B in autumn will show erroniously high similarity.
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Solution: The data is split up in seasonal data by aggregating to spring (MAM),
summer (JJA), autumn (SON) and winter (DJF). After computing the respective
seasonal r values they are recombined by averaging to an annual value.

Recombination can be done easily at least in combining seasonal r values to
an annual value as the r value is “unit-less”. To asses the problem in combining
the similarity values of two different indicators a slider was implemented in
the web application to interactively change the weighting. However, the results
showed no significant change in Climate Twin result regions whilst variing the
indicator weighting.

Figure 3 shows the logic behind the combination of single r values to an
overall simlarity value. The most important part is that every single seasonal r
value has to exeed a certain similarity threshold so that every overall similarity
is mapped. If two locations match perfectly in three of four seasons but not in
the fourth season, there is no point in declaring the two locations similar to each
other.

Problem: As the declaration of similarity is a subjective one and up to some
point an arbitrary process, so is the definition of the similarity thresholds. The
thresholds should of course be tight eneough to provide a reliable result but
on the other hand wide enough so that an acceptable amount of Climate Twin
regions can be found. Furthermore an applicable threshold also depends on the
indicator used and the category number as it can be seen in Figure 2.

Solution: Until now no satisfying validation method or data could be found
to compare the Climate Twin results with. Therefore the fictive line between
“good” and “bad” results can only be drawn subjectively by visual interpreta-
tions of result maps while variing the thresholds. In the web application the user
is enabled and encouraged to influence this parameter interactively through a
slider. The problem of thresholds has to be faced in order to further development
of this method.

3 Technical Infrastructure

3.1 Input Data

The input data is from the COSMO-CLM (COnsortium for Small-scale MOd-
elling - Climate Local Model) model 2.4.11 which is embedded into the
ECHAM5/MPIOM global model. The model results are climate data on an
hourly basis from 1960 to 2100 in a raster with a resolution of 0.165◦ (approx.
18 to 20 km)[2].

The input data for the Climate Twins exploration have to be prepared and
“condensed” in advance for fast data retrieval and comparison. The data actually
stored in the data base are the absolute frequencies of daily data aggregated
seasonally and in fourteen blocks of ten years each.



Climate Twins - An Attempt to Quantify Climatological Similarities 7

Fig. 4. Screenshot of the current version Climate Twins Viewer 3 beta
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3.2 Interactive Map Application

The Climate Twins map functions have been built on open source software
making use of UMN map server’s [11] capabilities of displaying file based ge-
ographical data and spatially enabled data through PostGIS [9] layers stored
in a PostGreSQL [10] database while using JSP (Java Server Pages) technol-
ogy to conduct the grid cell queries. On the client side the highly configurable
Flamingo Viewer [8] is used to display the maps served by the map server and
to communicate with the Climate Twins data cube.

Each click on a location in the interactive map triggers a database query and
array comparison of future with current climate indicators from the selected grid
cell related to the respective municipality. The comparison results of the query
are stored in a 2nd map view of the database, displayed in the application’s
second window.

4 Summary and Outlook

This paper showed the advanced matching method of Climate Twins v3 to iden-
tify locations or regions with similar climate conditions. By applying a similarity
measure and configuring it for a use on interval and ratio scaled data, it was pos-
sible to build this prototype with a completely new matching method. The main
advantages of this method is its scalability towards adding any number of further
climate indicators and the representation of similarity’s spatial fuzziness. The
definition and quantification of similarity thresholds still is a challenge and not
solved, yet.

The current Climate Twins application’s climate data is based on the “busi-
ness as usual” green house gas (GHG) increase scenario IS92b [1]. For the future,
a set of climate scenarios of different GHG increase rates will be applied in or-
der to show the “movement” of the Climate Twins areas over Europe (to be
expected in south and southeast direction) with respect to larger time steps into
future climate.

Semantic web technologies (developed in the EU FP7 project TaToo) may
allow direct access to web sites related to Climate Twins areas in order to identify
adaptation measures to cope better with further climate conditions.
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