
Improving the Flexibility of Model Transformations

in the Model-Based Development of Interactive Systems

Christian Wiehr1, Nathalie Aquino2, Kai Breiner1, Marc Seissler3, Gerrit Meixner4

1University of Kaiserslautern, Software Engineering Research Group,

Gottlieb-Daimler Str. 42, 67663 Kaiserslautern, Germany, {c_wiehr, Breiner}@cs.uni-kl.de
2Research Center on Software Production Methods, Universitat Politècnica de València,

Camino de Vera s/n, 46022 Valencia, Spain, naquino@pros.upv.es
3University of Kaiserslautern, Center for Human-Machine-Interaction,

Gottlieb-Daimler Str. 42, 67663 Kaiserslautern, Germany, Marc.Seissler@mv.uni-kl.de
4German Research Center for Artificial Intelligence (DFKI),

Trippstadter Str. 122, 67663 Kaiserslautern, Germany, Gerrit.Meixner@dfki.de

Abstract. This paper presents an approach that adds flexibility in the varieties

of user interfaces that can be generated by processes of model-based user

interface development. This approach is used at design time. Ideas from this

approach have been extended for use at runtime and have been applied to

SmartMote, a universal interaction device for industrial environments.

1 Introduction

Developers are faced with the problem of having to build user interfaces (UIs) for a

plethora of target devices and usage situations. Model-based user interface

development (MBUID) methodologies promise to reduce the complexity of this

problem by leveraging different layers of abstraction, the respective models for

expressing aspects of UIs on these levels, and transformation tools for the

development and semi-automatic generation of UIs. Frameworks, such as the

Cameleon Reference Framework (CRF) [6], have been proposed, which define the

different abstraction layers and models to be used for the systematic, user-centered

design of multi-target and context-aware UIs.

However, the model-based development of context-aware and runtime adaptive

UIs still presents relevant challenges regarding model transformations. When an

approach uses a transformation language/model to specify transformations, we say

that it has explicit transformation logic. In concepts like DynaMo-AID [7] and MASP

[4], model transformations and adaptations during runtime are implemented in the

underlying renderers, that is, using implicit transformation logic. While the MARIA

language [9] uses XSLT for the model transformations, it is unclear how the model

adaptation during runtime is specified in this concept.

Approaches with implicit transformation logic have limitations regarding the

diversity of user interfaces that can be generated and they might require manual

modifications on the generated code in order to deal with UI requirements that are not

supported by the automated transformation process. Approaches with explicit

transformation logic can be considered complex to be used by UI designers and there

is a lack of suitable support for manipulation of models at runtime. Therefore, new

transformation mechanisms are needed that support the explicit specification of model

transformations and manipulations in order to increase the flexibility of today’s

engineering processes for context-aware UIs.

In Section 2, we present the Transformation Templates approach, which serves as

the initial mapping concept for our transformation approach. In Section 3, we extend

our runtime generation approach to improve the flexibility of its transformation

process. In Section 4, we discuss results and conclude.

2 Flexibility at Design Time: Transformation Templates

A Transformation Template (TT) [2] aims to explicitly specify the structure, layout,

and style of a UI according to the preferences and requirements of the end users as

well as in line with the different hardware and software computing platforms and

environments in which the UI will be used, i.e., different contexts of use.

A parameter type represents a design or presentation option. Defining a parameter

type subsumes specifying the types of elements of a UI model that are affected by it,

as well as its value type, which refers to a specific data type or to an enumeration of

possible values. A parameter type can be implemented for different contexts of use

and usability guidelines are provided in order to support the selection of suitable

values by UI designers in different situations. A TT gathers a set of parameters for a

specific context of use. Each parameter corresponds to a parameter type and has both

a value and a selector. The value of a parameter corresponds to a possible value of the

corresponding parameter type. A selector delimits the set of UI elements that are

affected by the value of a parameter. We have defined different types of selectors that

allow the designer to choose different sets of UI elements.

TTs are used to parameterize model-to-model or model-to-code transformations. A

model compiler takes the source UI model and a TT as input. The values and selectors

of the parameters of the TT specify how to transform the source UI model into the

target UI model. It is important to note that TTs do not replace any implicit

transformation logic or explicit transformation languages; instead, they provide a

higher-level tier for UI designers to easily specify UI transformations at design time.

TTs add flexibility in MBUID approaches because they externalize the design

knowledge and presentation guidelines and make them customizable according to the

characteristics of the project being carried out. TTs can then be reused in other

projects with similar characteristics. Furthermore, TTs aim to diversify the kinds of

UIs that a MBUID approach can generate.

3 Using TTs to Increase Flexibility at Runtime

In our MBUID approach for runtime adaptive systems, three core models can be

identified (see Fig. 1): 1) the Useware Markup Language (useML) [8], which is used

to structure the user’s tasks; 2) the Dialog and Interface Specification Language

(DISL) [3], which is used for describing the dialog behavior of the UI; and 3) the User

Interface Markup Language (UIML) [1], which is used to define how the content is

presented to the user in terms of concrete interaction objects and their layout.

Fig. 1. Transformation process in our MBUID approach for runtime adaptive systems

These models together with runtime transformation specifications coded in the

generator software (implicit transformations) were enough to obtain functional but

basic UIs for runtime adaptive systems. In order to improve the flexibility of model

transformations in our approach, we took the idea of the TTs as an initial mapping

concept and we extended it to refer to dynamic, runtime model data, so the UI can be

automatically generated and react to adjusted models.

Therefore, a context model has been integrated to provide access to static context

information (such as information about the user or environment that may have a direct

influence on the interaction) (see Fig. 1). A mapping model with mapping rules was

also integrated as an extension to TTs (see Fig. 1) to refer to model data in addition to

the fixed values of the TTs. It is composed of layout mappings, which allow the

structure of the UI to be defined according to a hierarchical structure of UI containers

and widgets; and widget mappings, which allow the mappings from abstract

interaction objects to concrete widgets to be described. Further, in order to support the

transformation process in terms of reuse and performance, a repository containing

frequently occurring widgets (widget repository) and container-widget configurations

(layout repository) was integrated (see Fig. 1), that can be extended easily. Both, the

containers and the widgets are specified using UIML – featuring parameters to

customize their presentation. At runtime, these parameters are set according to the

mapping rules, using either fixed values or references to model data. All of the

transformation specification previously coded in the generator software can be

formalized using the mappings, which guarantee by definition that the generation will

be successful. In order to demonstrate the feasibility of our approach, we developed a

functional prototype as an extension to the SmartMote approach [5].

4 Discussion and Conclusion

In this paper, we presented a new mapping concept for improving the flexibility of an

approach for developing context-aware UIs on the basis of UI models according to the

levels of abstraction in the CRF.

Use Model
(useML)

Dialog Model
(DISL)

Core Models

Context
Model

Concrete UI
(UIML)

Reasoner

Presentation
Model (UIML)

Widget
Repository

Layout
Repository

CUI

Context

Mapping
Model

Sensors

Situation Description

Adaptation Description

1

2

4

1 2 Situation Detection

3 4 UI Adaptation

Widget
Mapping

Layout
Mapping

3

For the development of such UIs, the underlying models have to be automatically

manipulated during runtime. The TT approach can serve as the underlying concept,

but it had to be extended. An extended TT concept was developed that supports the

interlinking and mapping of different models during runtime. Mapping rules can use

model values as input and manipulate the UI generation process during runtime. To

test the feasibility of this concept, a first prototype was developed.

Acknowledgments. This work has been developed with the support of MICINN

under the project PROS-Req (TIN2010-19130-C02-02), and GVA under the project

ORCA (PROMETEO/2009/015) and the BFPI/2008/209 grant, and co-financed with

ERDF. We also acknowledge the support of the ITEA2 Call 3 UsiXML project under

reference 20080026. Parts of the presented work are result of the GaBi project funded

by the German Research Foundation (DFG) which is part of the AmSys research

focus at the University of Kaiserslautern funded by the Research Initiate Rhineland-

Palatinate.

References

1. Abrams, M., Phanouriou, C., Batongbacal, A.L., Williams, S.M., Shuster, J.E. UIML: An

Appliance-Independent XML User Interface Language. 31, 1695-1708 (1999).

2. Aquino N, Vanderdonckt J, Pastor O (2010) Transformation templates: adding flexibility to

model-driven engineering of user interfaces. Proceedings of the 25th ACM symposium on

applied computing, SAC 2010, Sierre, March 2010. ACM Press, New York, pp. 1195–1202.

3. Bleul, S., Schäfer, R., Müller, W.: Multimodal Dialog Description for Mobile Devices.

Gehalten auf der Workshop on XML-based User Interface Description Languages at AVI

2004 , Gallipoli, Italy (2004).

4. Blumendorf, M., Feuerstack, S., Albayrak, S. Multimodal user interfaces for smart

environments: the multi-access service platform. Proceedings of the working conference on

Advanced visual interfaces. pp. 478-479 ACM, Napoli, Italy (2008).

5. Breiner, K., et al., 2011. Automatic adaptation of user workflows within model-based user

interface generation during runtime on the example of the SmartMote. In Proceedings of the

15th International Conference on Human-Computer Interaction (HCII 2010), Orlando, FL.

6. Calvary G, et. al. (2003) A unifying reference framework for multi-target user interfaces.

Interact Comput 15(3):289–308.

7. Clerckx, T., Luyten, K., Coninx, K. DynaMo-AID: a Design Process and a Runtime

Architecture for Dynamic Model-Based User Interface Development. In The 9th IFIP

Working Conference on Engineering for Human-Computer Interaction Jointly with the 11th

International Workshop on Design, Specification and Verification of Interactive Systems.

pp. 11–13 Springer-Verlag (2004).

8. Meixner, G., Seissler, M., Breiner, K. Model-Driven Useware Engineering. In Hußmann,

H., Meixner, G., Zühlke, D. (eds.): Model-Driven Development of Advanced User

Interfaces. 1-26 Springer, Heidelberg (2011).

9. Paternó, F., Santoro, C., Spano, L.D. MARIA: A universal, declarative, multiple abstraction-

level language for service-oriented applications in ubiquitous environments. ACM Trans.

Comput.-Hum. Interact. 16, 1-30 (2009).

