
A Tool Support for Web Applications Adaptation using

Navigation History

Sergio Firmenich1, Marco Winckler

2
, Gustavo Rossi

1

1LIFIA, Facultad de Informática, Universidad Nacional de La Plata and Conicet Argentina

{sergio.firmenich, gustavo}@lifia.info.unlp.edu.ar
2ICS-IRIT, Université Paul Sabatier, France

winckler@irit.fr

Abstract. Currently the Web is a platform for performing complex tasks which

involve dealing with different Web applications. However users still have to

face these tasks in a handcrafted way. In this paper we present a novel approach

that combines concern-sensitive adaptation and navigation history to improve

the user experience while performing a task. We have developed some simple

though powerful tools for applying this approach to some typical tasks such as

trip planning and house rental. We illustrate the paper with a simple though

realistic case study and compare our work with others in the same field.

1 Introduction

One of the interesting facets of Web evolution is the end-users interaction with Web

content [2]. At first, users could only browse through contents provided by the web

site. Later, users could actively contribute with content by using tools (e.g. wikis)

embedded into the web site. Recent technologies provide users with tools for

changing the way Web content is displayed. For example, visual Mashups [7, 17],

support the integration of content hosted by diverse web sites and Greasemonkey

scripts [10] allow users to change third part web applications by adding content and/or

controls (e.g. to highlight search results in Amazon.com which refer to Kindle).

These tools follow the concept of Web augmentation [4] by extending what users

can do with Web content. However, they provided limited support to tasks requiring

navigation of many Web sites. For example, a user planning a holiday trip to Paris

might ultimately visit several web sites such as expedia.com for flights, booking.com

for hotels, wikipedia.org for general information about the city and parisinfo.fr for

points of interest, current events or expositions in Paris... From the users‟ point of

view, the navigation of all these web sites is part of the same task. The existing

augmentation techniques are of little help in this case. GreaseMonkey scripts can

adapt the content on a specific Web site but it will require much effort to make it

generic enough to integrate information provided by different applications. Mashup

for expedia.com will not necessarily integrate information from users‟ preferred web

sites (e.g. airfrance.fr, venere.com...). If Web sites provide public APIs, Mashups can

be extended but it does not prevent users to learn how to do it beforehand. Quite

often, users‟ tasks are associated with opportunistic navigation on different Web sites,

which is difficult to predict [14]. In this context, effective Web augmentation should

overcome to main barrier: i) to take into account the different web sites visited by

users; and ii) to adapt target web sites accordingly to unpredictable user needs.

This paper investigates the use of a tool support for creating flexible, light-weight

and effective adaptations to support users‟ tasks during the navigation of diverse Web

applications. Our goal is to support users‟ tasks by keeping his actual concern (and

related data) persistent through applications. For example, allow the reuse of dates

provided on expedia.com for booking a flight to search hotels at booking.com.

Another example, allow the inclusion of new links letting users to navigate from

parisinfo.fr to related articles at wikipedia.com whenever he needs further explanation

about a topic. Hereafter we present the tools we have developed to solve this kind of

problem. Section 2 shows a view at glance of our approach for Client-Side Adaptation

(CSA) of Web applications. Section 3 presents the tools we have developed. Section 4

presents how we have validated our approach with end-users. Section 5 discusses

related work and section 6 presents conclusions and future work.

2 The underlying approach

Our approach is based on concept of concern-sensitive navigation. We say that a Web

application (or specifically a Web page) is concern-sensitive (CS) when its contents,

operations and outgoing navigation links can change (or adapt) to follow the actual

situation (concern) in which it is accessed [9]. Concern-sensitive navigation is

different from context-aware navigation, where other contextual parameters (location,

time, preferences) are considered. The main difference is that concern-sensitive is

driven by a specific user goal, quite often volatile and difficult to generalize.

Figure 1 shows an example of concern-sensitive navigation across two

applications: Google Maps (as the source of navigation) and Wikipedia (as the target).

The left-side of Figure 1 displays Wikipedia links in the map of Paris; once selected,

these links trigger the exhibition at the right-side of Figure 1 the corresponding map

and a set of links to those Wikipedia articles in the surroundings of the current one.

Fig. 1. Inter-application CSN between Google Maps and Wikipedia

We assume that concern-sensitive navigation simplifies the user‟s tasks by

providing him sensitive information or options according to his current needs. For that

purpose, the adaptation of a page P requires that: (a) the actual user‟s navigation

concern (i.e. pages previously navigated, e.g. Google maps), (b) the set of relevant

information from previously visited pages that are needed for adaptation (e.g. the

current map), and (c) the capacity for enriching P with contents or links related with

(a) and (b) by intervening in P‟s DOM.

 3 Tool support

The tool presented hereafter was implemented as a Firefox plug-in that provides

components called augmenters. In our approach, users need to run adaptations (using

augmenters) on different Web sites they are visiting to perform their tasks. This

implies that users must to collect information during the Web sites navigation. A set

of tools called DataCollectors work as a memory for user data. The other augmenters

will then use information stored by DataCollectors to perform the adaptations.

3.1 Data collector and other augmenters

Two types of DataCollectors have been implemented: Untyped Pocket which

implements a copy & paste behaviour for simple text (e.g. “Paris”); and Typed Pocket

which allows users to label data (e.g. “Paris” is “City”). In both cases, selected

information is placed into a temporary memory called Pocket. Data collection is

supported via the contextual menu options “put it into pocket” (i.e. Typed Pocket) and

“put it into volatile pocket” (i.e. Untyped Pocket). Figure 2.a illustrates the collection

of a piece of information (i.e. Place de la Concorde”) using the option “put it into

pocket” which has been labelled “PointOfInterest”. Collected information become

available into the Pocket as shown by Figure 2.b (yellow box at the upper-left side).

Fig 2.a. Information collection from Wikipedia using

a DataCollector.

Fig 2.b. Resulting adaptation for the

Pocket memory.

The Pocket is more than just a simple post-it as the information it stores can be used

by augmenters to adapt Web sites. Currently available augmenters include:

 Highlight: it colors the occurrences of the data received by parameter.

 CopyIntoInput: it pastes the value received as parameter into an input form

field. Once executed, CoopyIntoInput adds a listener to the click event which

is removed after the first time that the target is an input.

 WikiLinkConvertion: it creates links to wikipedia.com pages using as input any

occurrences values received as parameter. For example if the parameters is

“Paris” then the link would be to the Wikipedia article about Paris.

An example of how the augmenters work is provided by Figure 2. At Figure 2.a

the user has used a DataCollector augmenter to capture information at the web site

wikipedia.org. When the user opens the Google Maps web site (Figure 2.b) the

information collected in previous Web site (i.e. wikipedia.org) is available at the

Pocket (the yellow box at left in Figure 2.b). Now, the contextual menu at Figure 2.b

offer new augmenters based on the previous collected information, CopyIntoInput,

Highlight and WikilinkConvertion. However which augmenters are available depend

on the current site because augmenters can be generic enough to be applied to any

page (e.g. highlight). These augmenters are illustrated by the scenarios below.

3.2 Scenario for performing adaptations

The scenario presented in this section aims at fulfilling users‟ needs described at

section 1. While booking flights to Paris, the user collects data (cf. Figure 3.a) which

will help him in the next steps to find a hotel. Relevant information in labelled by the

user as departDate, arriveDate and destination. Figure 3.b shows how the form field

destination is filled in with the information previously collected. This scenario is

executed once the user reaches the page booking.com (either by following a link or

entering a new URL). Notice that the scenario can be instantiated because the

information needed is available into de Pocket. So far, automatic form filling can only

be done for a particular Web application (in our case for booking.com) but this feature

can be extended using tools like Carbon [1]. This use of concern-sensitive information

improves the user experience by allowing him to “transport” critical data among Web

applications and use these data to adapt them.

Data Collection in Expedia.com Form filling in Booking.comwith data collected previously

depart

Date

arrive

Date

destination

Fig 3.a. Information extraction from

expedia.com

Fig 3.b. Form filling in booking.com with

information collected in previous web sites

Figure 4 exemplifies the use of the augmenter WikiLinkConvertion. In this

scenario, we assume the user has previously visited the web site Wikipedia.com and

selected his PointOfInterest. Then the user opens the web site Parisinfo.com. It is

worthy noting that the Pocket features all information previously collected at the web

site Wikipedia.com. Now, the user right clicks over PointOfInterest, a contextual

menu offer the option “Convert to Wiki Link” that, once selected by the user, will run

the augmenter WikiLingConvertion, thus creating new links on the current page of the

web site ParisInfo.com allowing the navigation to the web site Wikipedia.com to the

corresponding page associate to the information PointOfInterest. The augmenter

Highlight works in a similar way but it changes the colour of the text instead of

created links. Due to space reasons, the augmenter Highlight is not illustrated here.

Text converted into links to Wikipedia

Original Version

Adapted Version

Fig 4. Text plain converted into link to add personal navigation.

4 Evaluation of the approach

To validate our approach and actual usage of the tools, we have conducted a usability

study with end-users. The goal of this evaluation was to investigate if CSA is usable

for solving common tasks whilst navigating web. The adaptations investigated in this

study explored the following augmenters: Highlight for changing color of important

information, WikiLinkConvertion for creating new links to Wikipedia, DataCollect for

recording information for later usage, and CopyIntoInput for automating filling in

forms.

The study was run with 11 participants (6 males and 5 females, aged from 23 to 46

years old). All participants were experienced Web users (i.e. > 5 years using the web)

that browse the web as part of their daily activities (in average 4,1 hours of navigation

on the web per day, SD=2,4 h). We have focused on experienced users because we

assume that they are more likely to formulate special needs for adapting Web pages

than novices with the Web. Participants were asked to fill out a pre-questionnaire,

following they were introduced to the system (i.e. 2-5 minutes training) and asked to

conduct five tasks at their workplace, followed by a final interview and a System

Usability Scale questionnaire (i.e. SUS, [5]). The SUS has been as a complement to

user observation as it is widely used in comparative usability assessments in the

industry.

The five user’s tasks concern a trip planning to Paris for visiting the art exhibition

“De Stijl et Mondrian”. The initial setup was a Web page advertising that art

exhibition. The tasks were: 1) to collect required data for planning the trip including

dates, keywords and locations; 2) to book a hotel in Paris near the exposition for the

week-end of February 18
th

 2011; 3) to select a hotel in the neighborhood of “Les

Marais”; 4) to record information about the hotel; 5) to create a relationship between

the actual Web of the exhibition and the Web site wikipedia.com.

Usability was measured in terms of time to accomplish tasks, number of tasks

performed successfully, and user satisfaction (via a questionnaire). Users were also

asked to rate every task from 1 to 5 (from very easy to very difficult).

All participants used the tools presented during the training period to perform the

tasks. Users completed the tasks in approximately 37 minutes (SD=9 minutes). The

results show that, generally, participants appreciate the concept of CSA and the tool

support. In the pre-questionnaire, when asked if they would like to modify the web

pages they visit, 2 of 11 participants said no because “it could be very time

consuming”. Notwithstanding, all participants said that our tools for client-side

adaptation are useful and that they are willing to use it in the future. Adaption across

different web site was described as “natural” by 7 participants and a “real need” by 5

of them. The tool DataCollector was the most successful applied by all participants; it

was considered the very useful and a “good substitute for post-its”. However, success

rate varied according the augmenter employed: CopyIntoInput was considered very

easy to use by participants and employed successfully by 10 of them (90,9%). The

augmenter highlight (72% of success rate, 8 participants) was considered easy to use

but 5 users blamed it because they only can be applied to the exact word previously

selected and users cannot choose the color and/or the policy used to highlight

different pieces of information. Participants were very impressed by the augmenter

allowing links to Wikipedia from concepts, i.e. WikiLinkConvertion; despite the fact it

was considered extremely useful, the success rate with this augmenter was the lowest

in the study, i.e. 18%, due to two main issues: the fact that links can only be created

from typed information; lack of visual feedback (i.e. an icon) indicating where that

action was possible. Nine participants (81,8%) mentioned that using the augmenters

improve their performance with tasks, one user said it could be faster without the

augmenters and the other one didn’t see any difference. This user perception has been

confirmed by the time recorded during task execution using augmenters

WikiLinkConvertion and CopyIntoInput.

This study also revealed some usability problems that motivate further

development in the tool. For example, users requested to have a visual indicator

allowing them to distinguish where augmenters have been applied (ex. links on the

web site x links created with the augmenter WikiLinkConvertion). Users intuitively

tried to activate some of the augmenters using Drag & Drop which is an indicator for

further research of more natural interaction with augmenters. The most frequent

suggestions for new augmenters include “automatic filling forms”, “create links to

other web sites than Wikipedia”, and “automatic highlight at the web page of

information previously collected”. This positive analysis is confirmed by a SUS score

of 84,9 points (SD = 5,5), which is a good indicator of general usability of the system.

5 Related work

The field of Web applications adaptation is broad; therefore, for the sake of

conciseness we will concentrate on those research works which are close to our intent.

The interested reader can find more material on the general subject in [6]. As stated in

the introduction we can identify two coarse-grained approaches for end-user

development in Web applications: i) mashing up contents or services in a new

application and ii) adapting the augmented application, generally by running

adaptation scripts in the client side.

Mashups are an interesting alternative for final users to combine existing resources

and services in a new specialized application. Visual and intuitive tools such as [16]

simplify the development of these applications. Since most Web applications do not

provide Web services to access their functionality or information, [11] proposes a

novel approach to integrate contents of third party applications by describing and

extracting these contents at the client side and to use these contents later by

generating virtual Web services that allow accessing them.

The second alternative to build support for their tasks is Web augmentation [4],

where applications are adapted instead of “integrated” in a new one. This approach, as

indicated in [2] is very popular since it is an excellent vehicle for crowdsourcing.

Many popular Web applications such as Gmail have incorporated some of these user-

programmed adaptations into their applications like the mail delete button (See

http://userscripts.org/scripts/show/1345). GreaseMonkey [10] is the most popular tool

for Web augmentation, and its scripts are written in JavaScript. The problem with

these scripts is their dependence on the Document Object Model (DOM) used to

organize the Web page; if the DOM changes the script can stop working. In [8] the

authors propose a way to make GreaseMonkey scripts more robust, by using a

conceptual layer (provided by the Web application developer) over the DOM.

While we share the philosophy behind these works, we believe that it is necessary

to go a step further in the kind of supported adaptations. In [9] we showed how to use

the actual user concern (expressed in his navigational history) as an additional

parameter to adapt the target application. By using the scripting interface we managed

to make the process more modular and by defining adaptations for application

families (e.g. social networks) we improved the reuse of adaptation scripts. In the

following sections we show how to broaden the approach allowing end users to select

which concrete information can be used to perform the adaptation, therefore

improving the support for his task and providing support for building more complex

adaptations. Some tasks are repeated several times and then users make the same

process each time. This problem has been tackled in [3,13] with the CoScripter tool.

CoScripter is a Firefox Plug-in which allows users to record his interactions with a

Web Site, and then, they can repeat the process automatically later. The approach is a

bit flexible, for example, the whole process can be repeated with other information in

form inputs that those used in the original recorded execution, but always using the

same fixed Web sites. In this way, CoScripter is not useful when users need to change

slightly the process, for example by changing which is the target Web application.

However, both CoScripter‟s goals and our approach‟s goals are different, because

with CoScripter Web applications are not adapted (not further that fill forms with

values) and volatile requirements are not contemplated.

Other near work is [15], which is other Firefox plug-in addressed to improve user

experience by empowering his browser with commands with different goals. With

MozillaUbiquity users execute commands (developed by themselves) for specific

operation, for example to publish some text from the current Web page in a social

network. Anyway, these commands are executed under user demand, and adaptations

are not made automatically. Although MozillaUbiquity makes short the distance

between two distinct Web Applications, to move information from one of them to

another is not fully exploited.

6 Conclusions and future work

In this work we have presented a novel approach of CSA driven by the integration of

information through the navigation of several web applications. The underlying idea

is to support concern-sensitive adaptations on Client-Side in order to improve users

experience while they are doing tasks in many web sites. The tools presented in this

paper are based on a framework (not presented here) that allows the development of

augmenters beyond those presented. The present study allows us to investigate new

strategies of Web augmentation with end users. A user testing experiment was

performed to demonstrate the feasibility of the strategy of CSA. Despite some

usability problems found with the actual tools, the preliminary results show that

approach is very promising and can indeed help users to solve complex tasks that

require information exchange between different web sites. We observe an increasing

interest in the development of tools that can make users more active with respect the

way they access content provided by Web applications. Notwithstanding, there is a

few empirical studies that investigate the user experience of user driven CSA, in

particular when adapting third-party web sites. As far as the adaptation across

different web sites is a concern, we haven‟t found in the literature any other tool

allowing users to freely adapt web pages accordingly to previously navigation of web

pages. The results presented here remains preliminary but it provides many insights

for discussions, including: users‟ needs for performing complex tasks among different

web sites, development of new strategies of end-user programming of the web, impact

of user-driven adaptation of web site. Our next steps include the investigation of CSA

beyond a single user session, for example, when navigation of different web sites

occurs in a long period of time.

References

1. Araújo, S., Gao, Q., Leonardi, E., Houben, G. Carbon: Domain-Independent

Automatic Web Form Filling. In: Proc. of ICWE2010, (Vienna, 2010), Springer.

2. Arellano, C., Díaz, O., Iturrioz, J. Script Programmers as Value Co-creators. In

Proceeding of ICWE Workshops, (Vienna, 2010), Springer, 417-420.

3. Bogart, C., Burnett, M., Cypher, A., Scaffidi, C. End-user programming in the

wild: A field study of CoScripter scripts. In.: Proceeding of EEE Symposium on

Visual Languages and Human-Centric Computing, (Germany, 2008), 39-46.

4. Bouvin, N. O.. Unifying Strategies for Web Augmentation. In: Proc. of the 10
th

ACM Conference on Hypertext and Hypermedia, 1999.

5. Brooke, J. (1996) “SUS: a „quick and dirty‟ usability scale”. In: Usability

Evaluation in Industry. London: Taylor and Francis.

6. Brusilovsky, P. Adaptive Navigation Support. in The Adaptive Web: Methods

and Strategies of Web Personalization, Springer, 2007, 263-290.

7. Daniel, F., Casati, F., Soi, S., Fox, J., Zancarli, D., Shan, M. Hosted Universal

Integration on the Web: The mashArt Platform. In Proceeding of

ICSOC/ServiceWave (Stockholm, 2009), 647-648.

8. Diaz, O., Arellano, C., Iturrioz, J. Layman tuning of websites: facing change

resilience. In.: Proc. of WWW2008 Conference, (Beijing, 2008), 127-1128.

9. Firmenich, S., Rossi, G., Urbieta, M., Gordillo, S., Challiol, C., Nanard, J.,

Nanard, M., Araujo, J. Engineering Concern-Sensitive Navigation Structures.

Concepts, tools and examples. JWE 2010, 157-185.

10. Greasemonkey, At: http://www.greasespot.net/ (last visit on Jun. 7, 2011).

11. Han, H., Tokuda, T. A Method for Integration of Web Applications Based on

Information Extraction. in Proceeding of ICWE (New York, 2008), Springer.

12. Ikeda, S., Nagamine, T., and Kamada, T. Application framework with demand-

driven mashup for selective browsing. In: Proc. of the 10
th

 Int. Conf. on

Information Integration and Web-based Applications & Services (iiWAS 2008).

ACM, New York, NY, USA, 33-40.

13. Leshed, G., Haber, E., Matthews, T., Lau, T. CoScripter: automating & sharing

how-to knowledge in the enterprise. In.: Proc. of the twenty-sixth annual SIGCHI

conference on Human factors in computing systems (Italy, 2008), 1719-1728.

14. Miller, C. S., and Remington, R. W. Modeling an Opportunistic Strategy for

Information Navigation. In: 23th Conf. of the Cognitive Science Society, 2001.

15. MozillaUbiquity, At: http://mozillalabs.com/ubiquity/ (last visit on Jun. 7, 2011)

16. Yu, J., Benatallah, B., Casati, F., and Daniel, F. Understanding Mashup

Development. IEEE Internet Computing, 12:44–52, 2008.

17. Wong, J. and Hong, J. I. Making Mashups wit Marmite: Towards End-User

Programming for the Web. ACM, City, 2007.

