
Software Support for
User Interface Description Language

Adrien Coyette1, David Faure2, Juan González-Calleros3, Jean Vanderdonckt1

1 Université catholique de Louvain, Louvain School of Management
Louvain Interaction Laboratory, Place des Doyens 1 - 1348 Louvain la Neuve, Belgium

{adrien.coyette,jean.vanderdonckt}@uclouvain.be
2Thales Research & Technology France - Campus de Polytechnique

F-91767 Palaiseau Cedex (France) - david.faure@thalesgroup.com
3University of Puebla, Faculty of Computer Science

Avenida San claudio y 14 sur, Puebla, Pue. (Mexico) – juan.gonzalez@cs.buap.mx

Abstract. A User Interface Description Language (UIDL) is a formal language
used in Human-Computer Interaction (HCI) in order to describe a particular us-
er interface independently of any implementation. Considerable research effort
has been devoted to defining various meta-models in order to define rigorously
the semantics of a UIDL. These meta-models adhere to the principle of separa-
tion of concerns. Any aspect of concern should univocally fall into one of the
following meta-models: context of use (user, platform, environment), task, do-
main, abstract user interface, concrete user interface, usability (including acces-
sibility), workflow, organization, evolution, program, transformation, and map-
ping. Not all these meta-models should be used concurrently, but may be ma-
nipulated during different steps of a user interface development method. In or-
der to support this kind of development method, software is required throughout
the user interface development life cycle in order to create, edit, check models
that are compliant with these meta-models and to produce user interfaces out of
these methods. This workshop is aimed at reviewing the state of the art of soft-
ware support for a UIDL in the context of any development method (e.g., for-
mal method, model-based, model-driven). From this review, a taxonomy of
software support for UIDLs will emerge that will serve for describing, compar-
ing, and exploring software support for UIDLs.
Keywords: Context of use, Model-driven architecture (MDA), Model-driven
engineering (MDE), Service Oriented Architecture (SOA), situation engineer-
ing, user interface description language (UIDL).

Theme, Goals, and Relevance

A User Interface Description Language (UIDL) is a formal language used in Hu-
man-Computer Interaction (HCI) in order to describe a particular User Interface (UI)
independently of any implementation technology. As such, a UI may involve different
interaction modalities (e.g., graphical, vocal, tactile, haptic, multimodal), interaction
techniques (e.g., drag and drop) or interaction styles (e.g., direct manipulation, form
filling, virtual reality). A common fundamental assumption of most UIDLs is that UIs
are modeled as algebraic or model-theoretic structures that include a collection of sets

of interaction objects together with behaviors over those sets. Significant examples of
UIDLs include: UIML (www.uiml.org) [5], useML (http://www.uni-
kl.de/pak/useML/), MariaXML, UsiXML (www.usixml.org), and XIML
(www.ximl.org). Various UIDLs have been subject to discussion, understanding their
common ground and their subsumed approach, comparative analysis, and their con-
sideration for standard. Sometimes, alternative approaches have been considered and
compared within a same UIDL such as UsiXML. A UIDL can be used during:
• Requirements analysis: in order to gather and elicit requirements.
• Systems analysis: in order to express specifications those address the aforemen-

tioned requirements.
• System design: in order to refine specifications depending on the context of use.
• Run-time: in order to realize a UI via a rendering engine.

The design process for a UIDL encompasses defining the following artefacts:
• Semantics. They express the context, meaning and intention of each abstraction

captured by the underlying meta-models on which the UIDL is based on. Meta-
Models are normally represented by means of UML Class Diagrams, OWL or
other conceptual schemas. Semantics are usually conveyed using natural language.

• Abstract Syntax. It is a syntax that makes it possible to define UI models (in ac-
cordance with the UIDL semantics) independently of any formalism.

• Concrete Syntax/es. They are (one or more) concrete representation formalisms
intended to express syntactically UI Models. Many UIDLs has an XML-based
concrete syntax. In fact XML has been proven to be extremely useful in describing
UIs according to the different levels of the Cameleon Reference Framework
(CRF) [1] and for adapting UIs according to adaptation dimensions of the Similar
Adaptation Space (SAS) [2].

• Stylistics. They are graphical and textual representations of the UIDL abstractions
that maximize their representativity and meaningfulness in order to facilitate un-
derstanding and communication among different people. Stylistics are typically
used by models editors and authoring tools.

Many UIDLs reveal themselves as a markup language that renders and describes
graphical user interfaces and controls. But a UIDL is not necessarily a markup lan-
guage (albeit most UIDLs are) and does not necessarily describe a graphical user
interface (albeit most UIDLs abstract only graphical user interfaces). Figure 1 shows a
general software architecture depicting typical software support for a UIDL. The
workshop is aimed at defining a taxonomy for such a software support so that it can
be used widely to refer to the same base. It is expected to review existing software
support in the light of this taxonomy.

References
1. Calvary, G., Coutaz, J., Thevenin, D., Limbourg, Q., Bouillon, L., and Vanderdonckt, J. A

Unifying Reference Framework for Multi-Target User Interfaces. Interacting with Comput-
ers 15, 3 (2003) pp. 289–308.

2. Vanderdonckt, J., Coutaz, J., Calvary, G., and Stanciulescu, A. Multimodality for Plastic
User Interfaces: Models, Methods, and Principles. In: D. Tzovaras (ed.), Multimodal user
interfaces: signals and communication technology, Lecture Notes in Electrical Engineering,
Springer, 2007, pp. 61-84.

Workshop web site at: http://itea.defimedia.be/node/130

