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Abstract. We introduce a new snapping technique, Oh Snap, designed 

specifically for users of direct touch interfaces. Oh Snap allows users to easily 

align digital objects with lines or other objects using 1-D or 2-D translation or 

rotation. Our technique addresses two major drawbacks of existing snapping 

techniques: they either cause objects to “jump” to snap locations, preventing 

placement very close to those locations, or they “expand” motor space so that 

on direct-touch interfaces objects lag behind the user‟s finger. Oh Snap 

addresses both of these problems using an asymmetric velocity profile similar 

to a technique for filtering degrees of freedom in multi-touch gestures that was 

introduced by Nacenta et al. (2009). Oh Snap applies the velocity profile to 

multiple “snapping” constraints. A user study revealed a 40% performance 

improvement over no snapping for 1-D translation, 2-D translation, and rotation 

tasks when snap lines or angles were targeted. We found that Oh Snap performs 

no worse than traditional snapping, while retaining its important functional 

benefits. The study also investigated optimal parameter settings and Oh Snap‟s 

accuracy in supporting the placement of objects near to, but not at, snap 

locations, which traditional snapping techniques do not support. Oh Snap was 

found to be competitive with non-snapping interfaces for these tasks. 

1 Introduction 

Touch interfaces, such as multi-touch tabletops, interactive wall displays and mobile 

devices, are growing in popularity. As a result, many researchers are investigating 

their usefulness for completing an increasingly diverse collection of tasks, including: 

the control of robots [19], the control of systems [8, 21], managing artifacts [2, 3, 13], 

and software engineering [9]. Most of these systems support the selection and 

manipulation of digital objects on the screen using direct touch, exploiting the 

naturalness of physical direct interaction. For example, users may touch and drag a 

digital robot to position its real-world counterpart, move and group digital documents, 

drag a 1-D slider, or rotate a dial. 

Unfortunately, touch interfaces are sometimes not well suited to precise 

manipulation. The “fat finger problem” [27] makes selection of specific targets or 

placement of digital objects at precise locations or orientations difficult. Shortcomings 



 

 

in current sensing technology and the difficulty inherent in resolving touch contacts 

also contribute to the problem. 

There have been several techniques developed that attempt to facilitate precise 

touch interactions on both large and small touch interfaces [2, 3, 5, 22, 23, 29, 34]. 

Work has also been done to develop better methods for manipulating digital objects 

[15, 17, 25]. However, the fundamental issue surrounding the fat-finger problem 

remains. Very little has been done to improve the alignment and precise positioning 

of digital objects in a touch environment. 

Alignment tasks in a computer interface are often assisted with “snapping” 

techniques [6, 7, 10, 24]. This dates back at least as far as Ivan Sutherland‟s 

groundbreaking Sketchpad system [28], which included snapping constraints. 

Snapping techniques are one of the most common object alignment methods, and are 

widely used in computer-aided design (CAD) and other drawing programs. 

Traditional snapping causes digital objects to instantaneously “jump” and then “stick” 

to a line or grid point that has snapping capabilities once the object is within some 

threshold distance from the snap location. 

While this technique is sometimes sufficient for use with relative input devices, it 

is less suited to direct touch interfaces.  Additionally, locations within the threshold 

area near snap locations may be inaccessible: if a user wishes to position a digital 

object within that area, the snapping functionality must be turned off. Toggling 

snapping functionality is onerous at best for single users, but it is even more of a 

problem on large collaborative displays, where the management of multiple widget 

sets and user states is a perennial problem [26]. 

More subtle snapping techniques have been developed, such as snap-and-go [4]. 

These permit digital object positioning near snap locations. Snap-and-go works by 

expanding motor space at a snap location, resulting in objects that stop, rather than 

jump. However, this method is not suitable for direct touch interfaces, because it can 

break the correspondence between finger and object. 

In this paper we describe a new snapping technique, Oh Snap, designed 

specifically for direct touch interfaces. We employ a technique first introduced by 

Nacenta et al. [20]. Our technique is designed to support quick snapping to any one of 

a set of lines, angular orientations, or other constraints, while still allowing objects to 

be positioned in close proximity to one another and while maintaining a close 

correspondence of the user‟s finger with the dragged object throughout. This set of 

benefits is unique to our technique. Oh Snap provides a subtle snapping effect that 

needn‟t be explicitly enabled or disabled. It avoids limitations in existing alternatives 

and thus facilitates placements that other techniques do not. We compare our work to 

the earlier work by Nacenta et al. [20] in more detail after describing the new 

technique and a two-phase user study that was conducted to assess our technique. 

2 Related Work 

Many researchers have investigated approaches for supporting direct manipulation 

with objects on touch surfaces. Wobbrock et al. [33] investigated user-defined 

gestures for general interactions on multi-touch tabletops and found that touching-



 

 

and-dragging is the most natural method for translating digital objects, and that 

dragging by the corner is the most natural way to rotate objects. Similarly, Micire et 

al. [19] conducted an analysis of user-defined gestures for robot manipulation on a 

multi-touch tabletop. They too found that touch dragging was the most used gesture 

for positioning robots. Kruger et al. [15] and Liu et al. [17] developed additional 

methods for performing fluid rotation and translation of objects using direct touch. 

Many tasks designed for a touch interface can benefit from precise positioning of 

digital objects. Nóbrega et al. [21] created LIFE-SAVER, an interactive visualization 

system for a touch interface to analyze emergency flood situations. Studies by 

Bjørneseth et al. [8] used a touch table for dynamic positioning of maritime 

equipment. This safety-critical task requires careful translation and rotation for 

specifying vessel positioning and heading, respectively. 

2.1 The “Fat Finger” Problem 

Many touch devices capture a touch contact „point‟ that is actually a relatively large 

2-D region [27]. This is often converted into a single (x,y) pixel coordinate for 

compatibility with traditional pointing models that assume a single point of 

interaction. However, there is no guarantee that this single point is the true contact 

point intended by the user. Despite many advances in technology, this problem 

persists in part due to a lack of sophisticated sensing techniques, but also because the 

intended point of interaction is inherently ambiguous. Techniques such as 

“focus+context” lenses have been designed to help mitigate this problem within 

information visualization applications [30], but no general solution exists for all types 

of applications. 

Sensing limitations may give rise to a variety of issues when manipulating objects, 

such as unintentional movement of the object. For example, when a finger lifts up 

from the screen its contact area changes shape, which may result in a change to the 

calculated pixel coordinates. If a user were attempting to precisely place a digital 

object, this might cause the object to shift from the desired target. 

There has been work to resolve the fat finger problem by obtaining a more accurate 

touch contact point [12, 31], providing feedback to the user about the success/failure 

of the touches [32], and incorporating selective zooming [29]. Although these 

techniques can provide a more accurate touch contact location, they do not assist 

substantially in object alignment tasks. 

2.2 Existing Snapping Techniques 

Traditional snapping techniques, such as snap-dragging [7], cause objects to 

automatically jump to snap locations once they are within a predefined distance from 

the snap location. Basic snapping is highly effective in assisting alignment tasks; 

however, while it is sometimes sufficient for use with relative input devices, such as 

computer mice, it is less well suited to direct touch interfaces. It is highly unintuitive 

if an object a user is touching suddenly jumps around underneath the user‟s finger. 



 

 

Worse yet, traditional snapping does not support the placement of objects near to, 

but not exactly at, snap locations. Disabling snapping can address this problem, but 

explicitly toggling snapping is highly undesirable for a touch interface, especially in a 

collaborative environment. The snap toggling function would either have to be a 

global function, affecting all users, or a local function, which would require additional 

information to determine the identity of the activator. It might also have to be placed 

in one or more menus, accessible to all users, or activated with a possibly complex 

gesture, requiring at least some additional training of users [11]. 

Snap-and-go, introduced by Baudisch et al. [4], is a snapping technique that does 

not require toggling on or off. It functions by expanding motor space at snap lines, 

resulting in objects stopping at the desired location as opposed to automatically 

jumping there once they are within some threshold distance. This allows objects to be 

placed near snap lines as well as directly on them, unlike traditional snapping.  

Snap-and-go works well for relative input devices, such as mice. With relative 

devices, snap-and-go stops a dragged object at the snap line as the user keeps moving 

the mouse beyond the snap line. After a short distance, the object begins moving with 

the mouse again. Unfortunately, snap-and-go is not suitable for direct touch interfaces 

where the correspondence between a user‟s finger and an object under manipulation 

should ideally be maintained at all times. If a user were to drag an object across a 

snap-and-go line, the finger would permanently move out ahead of the object. Indeed, 

the more snap lines an object crosses, the farther the object would lag behind the 

finger that was dragging it, in effect “losing” any direct object-finger correspondence. 

There have been other attempts to solve these problems. Pseudo-haptic feedback 

has been used to improve interactions with graphical user interfaces, causing screen 

widgets to “feel” sticky, magnetic, or repulsive [16]. Researchers have developed 

sticky widgets [18] and “force fields” [1] to help with window alignment in mouse-

based environments. These ideas could be adapted to the translation and alignment of 

objects on touch tables; however, they would suffer from the same drawbacks as 

snap-and-go, because the finger could “lose” the object. The problem remains of 

maintaining a close correspondence between a user‟s finger and the object that is 

being manipulated. 

3 The “Oh Snap” Technique 

Oh Snap is a snapping technique designed specifically for touch interfaces. It 

possesses several benefits, including: it eases alignment of objects with snap lines, it 

doesn‟t require toggling modes, it maintains the correspondence of finger to object, 

and objects can be placed close to snap lines or other objects without snapping 

interfering. 

The basic idea behind the Oh Snap technique is shown in Fig. 1. To begin, a user 

drags an object as she normally would until the object first touches a snap line, at 

which point the object stops moving even if the user does continue to drag her finger. 

The object remains stationary unless the user‟s finger travels a small distance (the 

snap-width) beyond where snapping has occurred. Once the finger travels beyond the 

snap-width, the object starts moving at a rate faster than the finger is moving. Once 



 

 

the finger travels further, beyond the catch-up width, the object will have caught up to 

the finger, and dragging continues as usual. Of course, if the user lifts her finger while 

the object is snapped to the line, the object remains in its aligned position. 

 

 
 

Fig. 1. As a finger moves an object downward to a snap line (a) the object “snaps” 

when its leading edge touches the snap line (b). As the finger continues downward, 

the object remains snapped to the line (c). When the finger is beyond the snap 

width, the object un-snaps and starts catching up to the finger (d). When the finger 

reaches snap width + catch-up width the object has returned to its original position 

relative to the finger (e). 

 

During the catch-up phase an object travels at a rate faster than the finger. The 

motion of an object in the catch-up phase is defined by a linear interpolation that 

calculates the object‟s position proportional to the finger‟s position within the catch-

up region. Pseudo code for the algorithm is shown in Fig. 2. The number of pixels the 

object travels for each pixel the finger travels is determined by the ratio calculated in 

Eqn. 1, which is shown on the left in Fig. 3. This is the rate at which an “un-snapped” 

object catches up to the finger. The ratio can also be considered to be the size of a 

super pixel relative to a real pixel, the distance moved by the object each time the 

user‟s finger moves one real pixel. 

 

linearInterpolation(fingerX, fingerOriginX, snapWidth,  

    catchUpWidth) 

{ 

    return fingerOriginX + (fingerX-fingerOriginX-snapWidth) *   

        (snapWidth + catchupWidth) / catchUpWidth; 

} 

 

Fig. 2. Code fragment for the linear interpolation function that returns the position 

of the object moving in the x direction if the object is snapped and the finger 

position is in the „catch-up‟ area.  In this code fingerX is the current finger 

position, and fingerOriginX is the position the finger was in when snapping 

occured. 

 

A temporal diagram of the Oh Snap technique is shown in Fig. 3. The graph shows 

how an object first travels normally, how it then snaps to a line while the user‟s finger 

is in the snap region, and how it eventually catches back up to the finger because it 

travels faster than the finger in the catch-up region. 



 

 

3.1 Snap width and catch-up width 

The ratio in Eqn. 1, and thus the size of the super pixels, must be carefully chosen. 

When the catch-up width is very large, the ratio approaches one so objects effectively 

never catch up. Conversely, when the catch-up width is close to zero, the ratio 

approaches infinity and objects jump to their original position underneath the user‟s 

finger as soon as they un-snap. This can make it difficult to position an object at a 

location closer than the snap width to a snap line. 

 

ratio = ((snap width) + (catch-up 

width)) / (catch-up width) 
(1) 

 
   

Fig. 3. The relationship of object translation relative to finger translation as an 

object moves, first normally, then snapped (stationary) in the snap region, and 

eventually catching up to the finger again as it leaves the catch-up region. 

 

Ideally, the magnitude of catch-up width + snap width should be less than the 

width of an average touch contact. Wang and Ren [31] found this to be 36 pixels 

(0.4mm/pixel) for an oblique touch from an index finger. The snap width should be 

large enough to accommodate users overshooting a target, otherwise objects un-snap 

before the user‟s finger has a chance to stop. A balance must be struck so that 

catching-up is imperceptible but still occurs quickly enough to be useful. If the ratio is 

too close to one, some positions near a snap line can be unreachable, due to 

quantization effects, unless the touch sensors provide sub-pixel resolution. For 

example, if the ratio (and super pixel size) is 2, a position 3 pixels away from a snap 

line is unreachable, because the object will be moving in steps of 2 pixels as the finger 

moves in steps of 1 pixel. This can be mitigated either by lifting the finger right after 

crossing the snap line, which flags the object as un-snapped, and then putting it down 

again and resuming with normal dragging, or dragging the object far enough away 

from, and then back towards, the snap line. Neither seems like a very good solution, 

which emphasizes the need for proper selection of catch-up and snap widths.  We 

discuss the selection of these parameters in section 5.2 and evaluate three different 

parameter sets in the second phase of our user study. 

3.2 Benefits of the Oh Snap technique 

The benefits of Oh Snap are summarized in Table 1. First, Oh Snap preserves the 

position of the user‟s touch point on a digital object relative to that object. This 

feature is especially useful if users drag objects across snap lines when they have no 



 

 

intention of aligning the object to those lines. Although the object will temporarily 

snap to those lines as it crosses them, the object will eventually catch up with the 

user‟s finger and return to its original relative position underneath it. This is crucial 

for touch tables or other direct touch interfaces. Second, Oh Snap allows users to 

place digital objects near snap lines as well as align them with snap lines without 

having to toggle the snap capabilities on and off. This is important in collaborative 

environments where toolbars that may hold the snap toggle might not be accessible 

(reachable) by some users. Lastly, because Oh Snap supports all object positioning 

tasks, there is no need to incorporate mode switching functionality into the interface. 

 

Table 1. Comparison of snapping techniques. 
    

Technique Fast snapping Mapping maintained Close placement 

Oh Snap Yes Yes Yes 

snap-and-go Yes No Yes 

traditional Yes Yes No 

no snapping N/A Yes Yes 

4 Implementation 

 

OhSnap(objectBorder, snapLineX, snapWidth, catchUp){ 

   if (objectBorder.rightX == snapLineX && !isSnapped){ 

      isSnapped = true; 

      fingerPositionSnapped.x = currentFingerPosition.x; 

   } 

 if (isSnapped){ 

      fingerDiff = currentFingerPosition.x - 

                   fingerPositionSnapped.x; 

  if (fingerDiff <= snapWidth) 

   return snapLineX; 

  else if (fingerDiff > snapWidth &&  

         fingerDiff <= snapWidth + catchUp) 

   return linearInterpolation( 

      fingerPositionSnapped.x, currentFingerPosition.x,  

            snapWidth, catchUp); 

  else 

     isSnapped = false;  

   } 

 return objectBorder.rightX; 

} 

 

Fig. 4. Code fragment for the 1-D Oh Snap function for the case when the object is 

moved from left to right (lower to higher X coordinate).  In this code 

objectBorder is a variable that references the boundary of the object and rightX is 

the x position of its rightmost edge.  Additional cases are implemented similarly. 

 



 

 

We implemented Oh Snap in C#, running on a SMART Table. We implemented three 

object movement types that are frequently performed on touch tables: 1-D translation, 

2-D translation, and rotation. Rotation has been shown to be very useful on touch 

tables, especially in collaborative situations [14]. For translation, the position of each 

edge of an object is checked against the position of all environment lines it is parallel 

to. Orthogonal edges in the 2-D environment can be snapped independently. For 

rotation, the snap width is measured as an angle rather than as a pixel count. 

If a user snaps an object to a line and then lifts her finger from the screen, the 

object is no longer flagged as being snapped, whether it is aligned with the line or is 

within the (snap width) + (catch-up width) region. This is primarily useful if a user 

wishes to place an object near a snap line but has snapped the object and is having 

difficulty reaching the destination due to the object moving along super pixels. A 

code snippet for the 1-D Oh Snap function that handles an object moving from left to 

right is presented in Fig. 4. This uses the linear interpolation function in Fig. 2. 

5. User Study 

In order to objectively evaluate the performance of the Oh Snap technique, we 

performed a user study. The first phase focused on comparing the performance of Oh 

Snap to traditional snapping and to no-snapping for alignment tasks. The second 

phase investigated participants‟ ability to drag an object close to but not onto a line 

(i.e. to not snap the object to the line) when the Oh Snap feature is turned on. 

5.1 Comparison of Snapping Techniques – Phase 1 of the User Study 

The purpose of this phase of the user study was to evaluate the Oh Snap technique 

and compare its performance to traditional snapping as well as to no snapping. We 

investigated performance with three object movement types: 1-D translation, 2-D 

translation, and rotation. 

Task. A participant‟s task was to use a single finger on the right hand to move a 

digital blue square, as quickly as possible, so that its edge(s) were aligned with the 

desired target line(s). The target lines were indicated with a black arrow, which turned 

green when the object was aligned with the indicated line. When all edges were 

aligned correctly (1 edge for the 1-D and rotation tasks, 2 edges for the 2-D task), the 

square also turned green, indicating success. Screenshots of the start and end of 

successfully completed 1-D, 2-D, and rotation tasks are shown in Fig. 5. 

At the start of a trial, a button at the bottom of the screen labeled „GO‟ became 

active after one second. When the active button was touched, the button disappeared, 

the square became active (indicated by its changing color from grey to blue), and the 

participant could then begin the trial. The timer began when the participant first 

touched the square and it stopped when the participant lifted the finger from the 

screen with the appropriate edge(s) of the square aligned to the target line(s). Each 

trial required successful alignment. If a participant lifted the finger when the square 



 

 

was not fully aligned, the participant would have to touch the square and move it 

again to complete the trial. 

The layouts of the three tasks were designed so that their components occupied the 

lower portion of the screen. This allowed participants to sit at the table and 

comfortably reach the digital objects. For the 1-D translation task, participants moved 

the square so that its right edge was aligned with a single target line. The right edge of 

the square began at a distance 305 pixels (17cm) to the left of the target line. In the 2-

D translation task, the square was to be aligned so that its top edge and left edge were 

aligned to horizontal and vertical target lines, respectively. At the start of a trial, the 

top left corner of the square was 490 pixels (27cm) from the intersection corner of the 

target lines. In the rotation task, participants rotated a rectangle, anchored at one end, 

so that the central line protruding from it was parallel to the target line. The target line 

was horizontal and the anchored rectangle began vertical at the start of a trial, rotated 

90 degrees from the target line. A pilot study showed that crossing multiple distracter 

snap lines did not affect performance time. To simplify instructions to participants we 

did not use distracter lines in the final version of the study. 

 

   
(a) 1-D translation start (b) 2-D translation start (c) rotation start 

   
(d) 1-D translation end (e) 2-D translation end (f) rotation end 

 

Fig. 5. Screenshots of the three Phase 1 tasks at the start and end of a trial. 

 

Interface techniques. There were three snapping interface conditions: no snapping, 

Oh Snap, and traditional snapping. Trial tasks were identical across conditions, but 

the snapping behaviour of the target lines differed. In the no snapping condition, the 

target line did not cause objects to snap, and the edge of the square had to be placed 

within +2 pixels of the appropriate target line(s). Pilot testing revealed that the no 

snapping tasks were nearly impossible to complete without a small tolerance due to 

the touch sensing limitations of the SMART Table and the fat finger problem. 

In the traditional snapping condition, the target lines had the traditional snapping 

behaviour with a snapping threshold of 10 pixels so that if the appropriate square edge 

was within that threshold of the target line, it would automatically be translated to the 

target line position. In the Oh Snap condition, the target lines had the Oh Snap 



 

 

behaviour with a snap width set to 10 pixels and the catch-up width set to 10 pixels. 

To conduct a fair comparison, we gave Oh Snap and traditional snapping the same 

threshold to make them as equivalent as possible. 

Experimental Design. The study was a fully counter-balanced, within subjects 33 

(Snapping Technique  Movement Task) design with 20 trials for each treatment. For 

every trial, we recorded the task completion time and the number of times participants 

lifted a finger from the table (referred to as a touch up). 

Participants were given training and the opportunity to practice each movement 

task (with no snapping) at the start of a session. For data analysis, we discarded the 

first 5 trials of each treatment of 20 trials to reduce learning effects. 

Participants. Eighteen right-handed participants (2 female) between the ages of 21 

and 40 ( = 26.7) with normal color vision were recruited from our institution. Six 

participants had previously used a tabletop display, but only briefly during demos or 

to play games. Each participant received $10 for participating. Prior ethical approval 

was obtained from our university‟s behavioral research ethics board. 

Apparatus. The user study was conducted on a SMART Table from SMART 

Technologies. The table had a 57.2cm × 42.9cm screen, with a resolution of 1024 × 

768 pixels, and a 70Hz refresh rate. The application used for this user study was 

written in C# using the SMART Table SDK. 

Hypotheses. We had two hypotheses: (1) Participants would perform faster with Oh 

Snap than with no snapping, and (2) participants would not perform slower with Oh 

Snap compared to traditional snapping. We were also interested in seeing how 

snapping technique would impact touch ups, the number of times users lift a finger 

from the table during a task. 

Results for Phase 1. We performed a repeated measures ANOVA on the dependent 

variable trial time. A Bonferroni adjustment was applied to all pair-wise comparisons. 

Mean trial times for all snapping techniques across all movement types are shown in 

Table 2. 

 

Table 2. Mean trial time (in seconds) for each of the snapping techniques across 

all movement types. 
     

Snapping Technique 
Movement Type 

All 1-D 2-D Rotation 

No snapping 2.507 2.301 3.517 1.703 

Oh Snap 1.513 1.582 1.667 1.287 

Traditional snapping 1.387 1.362 1.651 1.147 

 



 

 

Performance. As shown in Table 2, the average trial time in seconds was 2.507 for no 

snapping, 1.513 for Oh Snap, and 1.387 for traditional snapping. There was a 

significant main effect of snapping technique (F(2,34)=30.062, p<.0005, 
2
=.639) and 

movement type (F(2,24)=27.529, p<.0005, 
2
=.618). There was a significant 

interaction effect of snapping technique  movement type (F(4,68)=9.493, p<.007). 

We ran pair-wise comparisons between techniques and found that both Oh Snap 

(p<.0005) and traditional snapping (p<.0005) were faster than no snapping, but 

traditional snapping was not significantly faster than Oh Snap. We also ran pair-wise 

comparisons on movement types and found significant differences between all pairs: 

1-D and 2-D (p<.005), 1-D and rotation (p<.0005), and 2-D and rotation (p<.0005). 

To understand how snapping technique impacted performance for each movement 

type, we ran a repeated measures ANOVA for each of the three movement types. 

There was a significant effect of snapping technique for rotation (F(2,16)=17.634, 

p<.0005, 
2
=.688), 1-D translation (F(2,16)=14.411, p<.0005, 

2
=.643), and 2-D 

translation (F(2,16)=10.128, p<.001, 
2
=.559). Both Oh Snap and traditional snapping 

were significantly faster than no snapping for all movement types (p<.0005). 

Traditional snapping was significantly faster than Oh Snap only in the 1-D task 

(p<.01); however, it was only 14% faster whereas Oh Snap was 31% faster than no 

snapping in the 1-D task.  A chart showing the mean trial times for each movement 

type grouped by snapping technique is in Fig. 6. 

 

 

 
Fig. 6. Mean trial time by movement type grouped by snapping technique. Error 

bars represent standard error. 

 

Number of touch-ups. We also conducted a 3×3 (Snapping Technique × Movement 

Task) repeated measures ANOVA for the average number of touch ups in a set of 

trials. There was a significant main effect of both snapping technique 

(F(2,34)=21.427, p<.0005, 
2
=.558) and movement task (F(2,34)=9.45, p<.001, 


2
=.357). Pair-wise comparisons showed that participants lifted their finger up 



 

 

significantly more in the no snapping condition (μ=1.438) compared to either Oh 

Snap (μ=1.19) or traditional snapping (μ=1.185) with p<.0005 for both. There was no 

significant difference in the number of touch ups between Oh Snap and traditional 

snapping. There was a significant interaction effect for snapping technique × 

movement type (F(4,68)=6.274, p<.023). 

Questionnaire data. Questionnaires were administered after each snapping technique 

to collect subjective ratings and receive comments using TLX-based Likert-style 

questions. Pair-wise comparisons using Wilcoxon Signed Ranks Tests for each of the 

questionnaire questions are presented in Table 3. 

Participants ranked the three snapping techniques from best to worse in terms of 

preference. A Friedman test showed that technique significantly impacted rankings 


2

(2,N=18)=10.371, p<.006). Both Oh Snap and traditional snapping had a mean rank of 

1.67 while no snapping had a mean rank of 2.56 (lower is better).  

Discussion of Phase 1. Both the Oh Snap and the traditional snapping techniques 

were significantly faster than no snapping, supporting hypothesis (1). On average, Oh 

Snap was 40% faster than no snapping. Because traditional snapping was not 

significantly faster than Oh Snap on average, hypothesis (2) is also supported. As 

reported in the results, although traditional snapping was significantly faster than Oh 

Snap in the 1-D tasks, it was only 14% faster, but Oh Snap was 31% faster than no 

snapping for such tasks. This small degradation suggests that Oh Snap is a reasonable 

alternative to traditional snapping for alignment tasks on touch interfaces, and it has 

the very important added benefit that users can place objects in close proximity to 

snap locations. 

 

Table 3. Summary of significance differences between snapping techniques for 

each post-condition questionnaire question. A=Oh Snap, B=No snapping, and 

C=Traditional snapping. Non-significant comparisons are labeled n.s. 
    

Significant differences between snapping techniques in subjective answers 
 

Question 
Snapping Technique 

A better than B C better than A C better than B 

Mental demand .013 n.s. .003 

Physical demand .033 n.s. n.s. 

Task difficulty .005 .021 .001 

Success .03 n.s. .007 

Hard work .003 n.s. .003 

Fulfilled .001 n.s. .0005 

 

Although this phase of the user study showed that Oh Snap performs well for 

alignment tasks, it did not investigate how Oh Snap might benefit proximity 

placement. To properly assess this feature, we conducted a second phase of the user 

study to compare several variations of the snap width and catch-up width parameters 

to find the best values for each. 



 

 

5.2 Parameters for Snap Line Proximity – Phase 2 of the User Study 

This phase investigated the variation of the Oh Snap parameters snap width and 

catch-up width, and measured their effect on user performance for positioning digital 

objects in close proximity with (but not aligned to) a snap line. We compared Oh 

Snap variants to the no snapping technique. We hoped to find a balance between a 

small ratio (Eq. 1) to reduce super pixel size, and minimizing the sum catch-up width 

+ snap width so that it was not much larger than the average touch contact width. 

 

Apparatus and Participants. The apparatus and the participants were the same as in 

Phase 1. Participants started Phase 2 shortly after they completed Phase 1. 

Task. The task was very similar to the 1-D alignment task from Phase 1. Participants 

were asked to translate a square so that it was close to, but not quite aligned with, a 

snap line. A dotted target line, with an arrow pointing to it, was placed 5 pixels before 

or 5 pixels after the Oh Snap line. Participants were asked to drag the square so that 

its right edge was aligned with the dotted target line. As in Phase 1, once the square 

was aligned with the target line, both the arrow and the square turned green to 

indicate successful alignment. 

A screenshot of the start of each of the tasks (after the „GO‟ button had been 

pressed) is shown in Fig. 7. 

Interfaces. There were four sets of snapping parameters. 

 no snapping 

 a 4/3 ratio with 15px catch-up width and 5px snap width 

 a 3/2 ratio with 20px catch-up width and 10px snap width 

 a 4/3 ratio with 30px catch-up width and 10px snap width 

 

  
(a) Target line is before snapping line. (b) Target line is after snapping line. 

 

Fig. 7. Screenshots of each of the two tasks at the start of a trial in Phase 2. 

 

Traditional snapping was not used because the target lines were within the 

traditional snapping threshold area and thus impossible to reach with that technique. 

We chose these parameter sets based primarily on our findings during pilot testing, 

when we found that ratios of less than 3/2 made it difficult to accomplish proximity 

tasks. We chose 40 pixels, or 2.24cm on the SMART Table, as the largest catch-up 

width + snap width to investigate if a width larger than the average touch contact 

width of 1.44cm [31] would yield positive results. A large value for catch-up width + 

snap width allows for tenacious snapping of an object‟s position while also 

maintaining imperceptibility, both of which are desirable. If that size gave good 

results, future Oh Snap implementations would have to take great care not to overlap 

the snap and catch-up regions of different snappable lines. 



 

 

Experimental Design. The study was a partially counter-balanced, within subjects 

4×2 (Snapping Parameter Set × Proximity Task) design with 20 trials for each 

treatment. For each trial, we recorded the task completion time. As in Phase 1, 

participants were given training and the opportunity to practice each movement task 

(with no snapping) at the start of a session. For the purposes of data analysis, we 

discarded the first 5 trials of each treatment of 20 trials to reduce learning effects. 

Hypotheses. We had two hypotheses: (3) The Oh Snap conditions would be no 

slower than the no snapping condition, and (4) participants would perform fastest with 

the largest catch-up-size-to-snap-width-ratio and the largest snap-width. When the 

ratio is large (i.e. the catch-up size is 3 times larger than the snap width) the size of 

super pixels is decreased so it should be easier to perform fine-grained movement of a 

digital object that has been snapped. We expected that participants would perform 

better placing objects just before the snap line than just after it. Because objects could 

avoid being snapped when placing them before the snap line, this proximity task 

would be less difficult. 

Results for Phase 2. We ran a repeated measures ANOVA on the dependent variable 

trial time. A Bonferroni adjustment was applied to all pair-wise comparisons. Mean 

trial times for all Oh Snap parameter sets across both proximity tasks are presented in 

Table 4. 

Performance. There was a significant main effect of Oh Snap parameter set 

(F(3,51)=12.702, p<.0005, 
2
=.428) and proximity task (F(1,17)=6.626, p<.02, 


2
=.28). Mean trial times for all parameter sets are presented in Fig. 8. 

 

Table 4. Mean trial time (seconds) for each of the Oh Snap parameter sets across 

both proximity types (just before and just after a snap line). 
      

snap width catch-up width Ratio 
Proximity Type 

Both Before After 

No snap No snap N/A 2.309 2.236 2.382 

5px 15px 4/3 3.350 3.689 3.012 

10px 20px 3/2 3.559 3.919 3.198 

10px 30px 4/3 3.662 4.128 3.196 

 

Pair-wise comparisons revealed that the no snapping condition was significantly 

faster than all parameter sets (p<.0005 for the first, p<.002 for the second, p<.0005 for 

the third). Participants did not complete trials significantly faster with any Oh Snap 

parameter set compared to any other. There was a significant interaction effect of 

parameter set × proximity task (F(3,15)=3.884, p<.031). Mean trial times for each 

proximity task type grouped by Oh Snap parameter set are shown in Fig. 8. 

Surprisingly, the proximity task that required participants to position the square 

just before the snap line took significantly longer than positioning the square just after 

the line (p<.02). We anticipated that because the objects could avoid being snapped 

when placing them before the snap line, this proximity task would be less difficult and 



 

 

faster as a result. In sharp contrast, squares positioned after the snap line must be 

snapped and therefore we thought they would take longer. 

 

 

 
 

Fig. 9. Mean trial time by proximity type grouped by Oh Snap parameter set. Error 

bars represent standard error. 

 

Perhaps participants knew that snapping would occur in the „after‟ task and learned 

how to adjust their movements to accommodate it. Conversely, in the „before‟ task, 

participants may have worked slower so that they did not snap to the line. Participants 

may have occasionally overshot the target position, though not always, resulting in 

inconsistent behaviour preventing them from mastering the task. 

Number of touch ups. We conducted a 4 × 2 (Parameter Set × Proximity Task) 

repeated measures ANOVA for the number of touch ups in each treatment. There was 

a significant main effect of both parameter set (F(3,51) = 6.79, p<.001, 
2
=.285) and 

proximity task (F(1,17)=5.236, p<.035, 
2
=.235). Pair-wise comparisons of Oh Snap 

parameters revealed the no-snapping condition had significantly fewer touch ups than 

the second (p<.002) and fourth (p<.008) parameter sets, but not the third. 

Discussion of Phase 2. Hypotheses (3) and (4) were not supported: the no snapping 

condition was faster than the three Oh Snap conditions and there were no significant 

differences in mean trial time between the parameter sets. While this means that there 

is a price, in terms of raw speed, for using Oh Snap, if snapping is desired the no-

snapping condition is not a viable option. Oh Snap‟s real competitors are other 

snapping techniques. The advantage it has is that it permits placement of objects at 

any location, including right near a snap line. There is very little penalty for doing this 

compared to no snapping, and it cannot be done at all with other techniques. 



 

 

There was no difference between the number of touch ups in the no snapping 

condition and in the condition using the third Oh Snap parameter set (3/2 ratio, 10px 

snap width). We recommend those parameters for future Oh Snap implementations. 

6 Conclusions & Future Work 

We introduced and evaluated a novel snapping technique supporting the alignment of 

digital objects on a touch interface. Oh Snap maintains the position of objects 

underneath the user‟s finger. It allows placement of objects close to snap lines, 

without having to toggle the snap capabilities off and on. This feature is especially 

important for collaborative environments. Oh Snap offers a mean 40% performance 

improvement over no snapping for 1-D, 2-D and rotation tasks, and it does not 

perform significantly worse than traditional snapping for those tasks on a touch table. 

We investigated three parameter sets for Oh Snap in two proximity placement 

tasks. The no snapping condition performed better than the parameter sets, but the 

differences were not very large. Placing objects near a snap line is an infrequent task 

compared to snapping objects or placing objects in open space, both of which are 

tasks at which Oh Snap excels. We argue that, for direct touch surfaces, Oh Snap is 

superior to no snapping or traditional techniques because of its unique combination of 

attributes (Table 1). Furthermore, the lack of a significant difference between 

parameter sets for Oh Snap indicates that there is probably a wide range of suitable 

values, meaning that developers can choose values that best suit their users‟ needs. 

6.1 Comparison to Nacenta et al.’s prior work 

The Oh Snap velocity profile is similar to the “magnitude filtering” used by Nacenta 

et al. [20] to block selected degrees of freedom. In their approach velocity profiles are 

used to determine whether motion is the beginning of a constrained gesture or if it is 

“noise” in the current gesture. In contrast to this, Oh Snap employs the profile not just 

when movement is initiated, but whenever a snap line is encountered. Oh Snap uses 

the velocity profile within a chosen degree of freedom (1-D or 2-D translation, or 

rotation) to decide when to stop, whereas Nacenta et al. use it to change or start a 

chosen degree of freedom. 

Nacenta et al. use symmetric constraint regions. Our regions are asymmetric; no 

snapping occurs approaching a snap line, only after it is passed. This makes it less 

likely a target just ahead of a snap line will be “missed.” If a target just after a snap 

line is missed, “backing up” will not be handicapped because the asymmetry means 

that no snapping is applied in the reverse direction once the object becomes un-

snapped. 

6.2 Extensions to Oh Snap 

Oh Snap works equally well on a traditional single-touch table or on a multi-touch 

table. If multi-touch is available, the number of touches could be used as a mode 



 

 

switch, which would allow seamless transitions between snapping and no-snapping. 

Future work for these and other snapping techniques will involve a new bimanual Oh 

Snap interaction that does not require explicit implementation of system-defined snap 

lines. An Oh Snap user will touch the interface with two fingers of the same hand and 

which define a temporary snap line to which they can align an object. 
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