
Unifying Events from Multiple Devices for Interpreting
User Intentions through Natural Gestures

Pablo Llinás, Manuel García-Herranz, Pablo A. Haya, and Germán Montoro

Dept. Ingeniería Informática, Universidad Autónoma de Madrid

C. Fco. Tomás y Valiente, 11, 28049 Madrid, Spain
{Pablo.Llinas, Manuel.GarciaHerranz, Pablo.Haya, German.Montoro}@uam.es

Abstract. As technology evolves (e.g. 3D cameras, accelerometers, multitouch
surfaces, etc.) new gestural interaction methods are becoming part of the
everyday use of computational devices. This trend forces practitioners to
develop applications for each interaction method individually. This paper
tackles the problem of interpreting gestures in a multiple ways of interaction
scenario, by focusing on the abstract gesture rather than on the technology or
technologies used to generate it. This article describes the Flash Library for
Interpreting Natural Gestures (FLING), a framework for developing multi-
gestural applications integrated and running in different gestural-platforms. By
offering an architecture for the integration and unification of different types of
interaction, FLING eases scalability while presenting an environment for rapid
prototyping by novice multi-gestural programmers. Throughout the article we
analyse the benefits of this approach, comparing it with state of the art
technologies, describe the framework architecture, and present several
examples of applications and experiences of use.

Keywords: FLING framework, Multi-touch interface, multiple input
peripherals, application development

1 Introduction

The evolving progression of HCI interfaces promises a brilliant future to seamless
control and handling of intelligent devices. New ways of interaction are invented and
integrated in the search for the best and most natural method of interaction between
humans and computers. Their goal is to allow for a more intuitive and natural way of
expression when communicating with computers. An immediate consequence of this
evolution is the creation of new input devices with which we can operate. Today,
intelligent homes can be fitted with all sorts of sensors (temperature, movement,
pressure, fingerprint…). Also, existing devices are enhanced with extra sensing
capabilities [1], such as multi-touch screens, accelerometers and voice recognition in
smartphones like Apple’s iPhone or Google’s Nexus S.

As computers integrate deeper into our daily lives, the most natural way to use
them becomes dependent to each particular scenario. A single application will have to
allow different interaction methods across different settings in order to offer the most

suitable experience each time. For example, for talking to a friend, video conferencing
will be suitable at home, where you can give visual and hearing attention to the other
person, while text chatting will be more adequate in a football stadium during a
match, where being heard can be very difficult.

From a programmer’s point of view, more input devices entail a higher complexity
when treating input. Different peripherals offer different interaction possibilities,
which generate input events that need to be processed in order to interact with the
applications. To reduce the difficulty of dealing with a large (and sometimes
unknown) number of input devices, cross-platform frameworks are used to take care
of these devices, and for developing applications using a set of abstract input events.

The difficulty of programming for cross-platform ubiquitous control has been
shifted from treating each input device, to learning how to work with cross-platform
frameworks. In a world of constant upgrades in hardware gadgets and increasing
intelligent sensing devices, developers need unification and standardization of user
intention recognition regardless of the technology employed.

2 Related work

The advantages of allowing the user to choose the most adequate input device for
interaction with applications are therefore being studied and proven profitable.
Multimodal interaction frameworks [2, 3, 4] pose valuable precedents of frameworks
for using different input devices for human-computer interaction, using input events
either independently or combined. However, we lack a higher degree of flexibility
when translating device actions (fixed for each input peripheral) into application
actions (which trigger the available operations on the computer). One programmer
could require a sequence of device events to carry out an operation, while another
would be looking for a different one. Moreover, different users using the same
application may require different responses to similar input patterns.

This issue is of particular importance in multitouch environments in which events
are usually composed of several device inputs (e.g. multiple fingers touching a
display) that have to be, furthermore, interpreted from complex raw data, such as blob
identification and analysis. In order to ease the process of interpreting device inputs in
camera-based multitouch systems, several low-level frameworks such as TouchLib
[5], reacTIVision [6], Community Core Vision (CCV) [7] or Touchè [8] are available
to identify significant blobs as screen touches ready to process. This interpretation
results, in most cases, in TUIO messages codifying each finger and its evolution on
the surface. This kind of frameworks provides a first level of abstraction, allowing
applications to listen from a single channel to every finger interaction in a unified
manner. Advanced examples of these are BBTouch [9] and LightTracker [10], which
improve the aforementioned frameworks by allowing an advance tunning of the
recognition parameters, or VVVV [11], which allows associating blob input with
different visualization methods using a visual programming paradigm.

Nevertheless, multitouch interactions are most of the times composed of several
fingers and, therefore, multiple events have to be reinterpreted, according to the
element of the UI over which they are acting, to form a high level global gesture (e.g.

two fingers moving are interpreted as moving apart from each other). Finally, the
interpreted gestures have to be associated with a particular action. Some systems such
as PyMT [12] or Grafiti [13] provide a transparent mechanism to distribute events
among the elements of the UI as well as basic interpreters for the most common
gestures such as move, resize or rotate.

However, the number of different gestures in multitouch systems can grow far
beyond the basic ones and the actions associated with each of them may vary among
applications or, in a single application, from component to component. Thus, a higher
degree of abstraction, modularization and composition is needed. Systems such as
Surface SDK [14] or DiamondTouch SDK [15] provide this kind of flexibility to a
reasonable degree but are constrained to a particular platform, limiting their
extensibility and scalability in an ever-increasing world of multitouch hardware
solutions. Similarly, proprietary frameworks such as GestureWorks [16] constrain
their extensibility, compared to their open source counterparts, in an ever-increasing
world of gestures.

Nonetheless, while multitouch systems are gaining popularity, they are far from
being an alternative to the standard mouse-keyboard paradigm and will have to
further cohabitate with new interaction devices such as the Wii remote or Kinect.
Thus, systems such as Squidy [17] provide a low-level alternative to unify various
device drivers, frameworks, and tracking toolkits in one common library, overcoming
the limitations of higher level solutions such as GestureWorks [16] or Grafiti [13]
designed to work just with multitouch events.

From the high level open source alternatives designed to support different input
mechanisms, define new gestures and dynamically associate actions with them, we
can distinguish between language dependent and language independent frameworks.
Those that rely on a separated event system, allowing to program in the language of
our choice, force the programmer to provide a description of the UI and its
components to the event interpreter layer. This is done either explicitly, therefore,
adding an extra complexity to the programming process that prevents a rapid
prototyping, as in SparshUI [18] and Midas [19], or implicitly through a widget
library, as in libTISCH [20], simplifying the communication channel but making very
difficult to interpret events outside the boundaries of the widget.

MT4j [21] (MultiTouch for Java) is, on the other hand, a language dependent
framework designed for rapid prototyping and gesture extension. Making use of the
well-known event-listener java architecture, it allows components to listen to
particular gestures without modifying or adding complexity to the UI design and
coding.

FLING, the framework described in this article, falls into this last category but
relies on Adobe’s Flash, instead, as a well-known platform to graphical designers.
Thus, graphic design and program logic can be easily separated and distributed among
designers and programmers, allowing for good-looking rapid prototyping. In addition,
contrary to systems such as MT4j, FLING provides a double distribution mechanism.
Through one channel, interpreted gestures are propagated to every component,
allowing them to know what is happening to themselves as well as to the rest of the
components. Through the second one, raw events are propagated too, allowing to
program global or partial interpretations in any component of the UI, whether they
fall in or outside its boundaries.

3 The FLING Framework

FLING (Flash Library for Interpreting Natural Gestures) is a cross-platform multi-
gesture framework for developing Adobe Air and Flash applications using the
ActionScript 3.0 programming language.

FLING has been developed under the following principles:

3.1 Platform-independent

FLING shares the “write once, run anywhere” philosophy. In order to run on the
highest number of computing devices, a platform-independent programming language
is a must. ActionScript 3.0, the language behind Adobe Flash and Air applications,
was chosen for this purpose. Applications run on any desktop operating system
(Windows, Mac and Linux) and also on Android smartphones. A special version,
Flash Lite, can even be used on more basic mobile phones [22].

We chose this way of deploying cross-platform applications instead of using
adapted interfaces because we believe that technologies such as Java, HTML and
Adobe Flash, which in the past have been secluded to being used on standard PCs,
will soon be running with the same capabilities on even the most basic portable
devices. The processing gap between different computing architectures is closing-in,
and today we can find smartphones1, tablets2, notebooks3 and desktop computers
sharing very similar dual-core processing computational power.

The Adobe family of products provides a very powerful and robust set of tools for
the visual design of graphical interfaces. Also, when integrating these graphical
elements into the Flash platform for adding programming logic, there is full
compatibility and interoperability between multimedia contents. A drawing made in
Photoshop can be imported into Illustrator to get a vector graphic that then can be
inserted into Flash and get animated. The final symbol can be accessed and
manipulated from code using the ActionScript language. And finally, the result will
be an Adobe Air or Flash multi-platform application.

3.2 Useful for rapid prototyping

For first-time cross-platform multi-gesture application developers, FLING provides a
basic manipulation of visual objects using the traditional mouse and keyboard, and
multi-touch surfaces. Extending from the base FLING object class, object movement,
rotation, resizing and physics engine (inertia, collisions, gravity…) can be enabled
with a single line of code, as seen below.

1 http://www.pcworld.com/article/204947/lg_announces_smartphones_with_dualcore_processor.html
2 http://www.tgdaily.com/mobility-features/49854-nvidia-showcases-dual-core-tegra-2-tablet
3 http://liliputing.com/2010/10/samsung-launches-nf310-dual-core-netbook-with-hd-display.html

Example of extending from the base FLING object class

public class NewObject extends FlingObj{
 public function NewObject():void{
 movable = resizable = rotatable = physics = true;
 }
}

The visual symbol of class “NewObject” will respond according to the activated
capabilities upon standard input events. In the case of the mouse and keyboard, the
object will respond as shown on Table 1. Using a multi-touch surface, the object will
respond as shown on Table 2.

This initial functionality allows for basic application interaction without getting
into event interpretation or gesture handling. It is oriented towards Adobe Flash and
Air developers with minimal knowledge in device input processing, and allows them
to create cross-platform multi-gesture applications which can run on multi-touch
surfaces and standard computers without making the effort of learning a complex new
framework.

FLING requires little adaptation for first-time programmers. One of the basic
fundaments of its operation is a tree-structured hierarchy of symbols or visual objects
(Figure 1). A unique FLING root object, representing the application itself, contains
all device parsers and gesture interpreters. All symbols used in an application must be
children to this root object (either directly, or further down in the tree of child
objects). This is required because it represents the order in which visual objects are
layered in an application. The root object is the background of the application, and it
represents the lower-most layer. The next level in the hierarchy of children objects
represents the layer on-top of the background layer, and so on.

Table 1. Default actions triggered by mouse and keyboard input events.

Input device gesture Action performed on object
Drag with mouse Object moves under mouse pointer
Control key + Drag with mouse Object resizes in regard to its center and the mouse pointer
Shift key + Drag with mouse Object rotates in regard to its center and the mouse pointer

Table 2. Default actions triggered by multi-touch finger input events.

Input device gesture Action performed on object
Slide one finger over the object Object moves according to the finger movement
Pose two fingers over object and
separate or join them

Object resizes according to distance variation between
fingers

Pose two fingers over object and
move one around the other

Object rotates acording to angle variation of line joining
fingers

The FLING framework relies on Flash’s native visual hierarchy of objects for target
identification, allowing disambiguating when objects overlap. As all Flash objects
have one (and only one) parent and their insertion order decides among siblings, no
inconsistencies can occur between FLING’s object targeting and Flash’s visual

representation. Using the native structure for object nesting presents a logical way to
navigate through objects and can, therefore, be already found in most applications.

Fig. 1. Event parsing and interpretation inside the FLING framework.

3.3 Allows customization of event interpretation and triggered actions

To extend the default functionality offered as standard when working with FLING,
developers can tune and enhance the interpretation of device events into gestures, and
the reactions upon receiving interpreted gestures. This can be achieved with minimal
code modification because of the predisposition to customization.

The three main elements with which FLING works are events, gestures and
actions. Events are signals from input devices that are processed and homogenized

into a common stream of events by the device parsers. Each device has an associated
event parser that in some cases makes use of external drivers to capture input signals.

Gestures are interpreted by another module which receives events parsed from all
the input devices available to the user. The interpreter can use the combination of
these input events and knows of all existing interface objects in order to make sense
of the user’s intentions. It outputs FLING Gestures, which consist of recognized user
intentions. FLING is then responsible of propagating and making gesture events reach
their correct target. Once an interactive object receives a gesture event (or FLING
Gesture), it reacts according to the triggered action for that gesture. Some triggered
actions are preconfigured by default (as is the case of the move, rotate and resize
actions mentioned in section 3.2) and others are left blank, but all of them are
customizable to fit the needs of each application.

As an example of triggered action customization, we will take the resizing gesture
and change its default action so that instead of changing size, the target object will
change its transparency. The code added to the target object for modifying this
behaviour is as follows:

Example of triggered action customization

override public function onRotateGesture(gesture:FlingGesture):void{
 this.alpha += gesture.varAngle%360;
}

Normally, the “varAngle” property of the FLING event received is used to rotate the
object accordingly. Instead, we are using this value, normalized between -1.0 and 1.0,
to alter the alpha value of the object, hence changing its transparency. This is just an
example of how easy it is to change the behavior associated to a particular gesture.

Another example of framework customization can be seen when modifying the
way device events are interpreted into gestures. We will take the multi-touch gesture
interpreter and add some code to recognize a new gesture. The new gesture will
consist in a quick slide of two fingers (cursor1 and cursor2) over a visual object, from
top to bottom. This gesture will be called the “minimize” gesture, and could be linked
to the minimizing action, but this is entirely up to the programmer.

The code needed inside the finger interpreter to recognize this gesture is the
following:

Example of gesture customization

if(numCursors == 2){
 if(cursor1.type == cursor2.type == CURSOR-EXIT){
 if(slideDirection(cursorStream1)
 == slideDirection(cursorStream2) == SLIDE-DOWN){
 flingGestures.push(new FlingGesture(“MINIMIZE”));
 }
 }
}

3.4 Cross-platform multi-gestures

Another requirement for ubiquitous control is the possibility of multiple device input
(Figure 2). FLING comes with parser modules for mouse & keyboard, multi-touch
surfaces (such as Microsoft’s Surface4, MultiTouch Cell5 and the reacTable [23]),
pressure tokens (special objects recognizable by pressure marks) and fiducial markers
[24]. These input devices can be used right away, and can be configured and
customized to fit the application’s needs.

Fig. 2. A multi-platform running environment and multi-gesture input interaction enable
applications run on the device which most suits each scenario.

For advanced necessities, it also allows for new input devices to be used when
needed. The steps for adding a new input device are:

1. Identify the input data format in which the device sends events from the user’s

interaction. If not provided by the standard Adobe Flash / Air libraries, parse the
device signals into atomic non-interpreted events. These atomic events should
match the device’s interaction possibilities. For example, a joystick will have
coordinate events indicating its position, and button events indicating any change
in the state of their manipulation.

2. Add a gesture interpretation module for the new input device, which groups atomic
input events into recognized gestures. For example, using multi-touch surfaces,
two fingers separating from each-other over a same object are recognized as a
resize event by default. Gesture metrics (e.g.: resizing value) are also included in
the interpreted gesture. The gesture interpretation module sends recognized
gestures, called FLING events, as shown on Figure 1, which can be equivalent to
those already handled, or new ones which are exclusive to each input device.

3. FLING will forward both atomic (or raw) events and gesture (or FLING) events to
all objects, as described in section 3.2, for them to react consequently. All of the

4 http://www.microsoft.com/surface/
5 http://multitouch.fi/products/cell/

aspects of input device reading and interpreting can be openly customized to obtain
the required functionality, as stated on section 3.3.

Multi-touch surfaces are one of the input devices currently supported by FLING
(Figure 3). On a typical multi-touch table, fingers placed on-top of the touch panel
(A) create light blobs that can be tracked by a video camera [25]. The camera sends a
video stream (1) to a blob driver (B), such as reacTIVision [6], Touchlib [5] or
Community Core Vision [7], which then outputs finger events using the TUIO
protocol [26] through a data socket (2). FLING (C) connects to this data socket and
uses the incoming finger events from the panel to begin the interpretation and
propagation processes (3). Finally, the application reacts to the intentions expressed
by the user, and evolves its visual interface (4) which is displayed on the same surface
used as touch panel (D).

Fig. 3. Multi-touch surface input handling using the FLING framework.

Inside the FLING framework, a parser module reads unprocessed finger events
obtained from the hardware drivers, and homogenizes them into standard input device
events. This homogenization consists in a translation of native signals to a common
event class, which holds the same information but in a standard form. Then, the finger
interpretation module is in charge of interpreting and generating gesture events that
FLING will send to the appropriate application object. Interactive objects will react in
response to these gesture events, and will also receive the unprocessed input events in
case more information is required.

The format of gestures produced from a multi-touch surface is compatible with
those generated using mouse, fiducial or token devices. Interactive objects from the
application receive complete and descriptive gestures with the user’s intentions, but
don’t have to worry about the input used to express those intentions. Additionally,

unprocessed events from the input devices are also delivered to application objects for
the event of needing detailed information about raw input data.

3.5 Progressive learning curve

The idea behind offering both rapid prototyping and advanced customization
capabilities is to create a progressive and smooth learning curve when working with
the framework. Existing cross-platform frameworks offer extensive functionality and
very advanced user expression recognition, but are difficult to use at first and require
a lengthy learning period. We experienced these difficulties when trying commercial
products such as Gestureworks[16] or the TUIO Flash client library [27] for receiving
multi-touch events. It is normal to go through a number of learning steps while getting
comfortable using a new framework, and a learning curve similar to the one described
by Gaines [28] is typically experienced.

4 Sample Applications

FLING has been thoroughly tested and used for the development of full applications
which have made their way into educational and experimental projects. Different
working environments with adapted input devices have accommodated these
applications, and people with varying levels of knowledge and expertise have given
them a try.

4.1 Therapy applications

To serve as a complement for people with disorders, games such as Simon® and
Gesture Hero (Figure 4) were developed under particular requirements. They were
designed in cooperation with teachers and assistants of people with Down syndrome
and Alzheimer’s disease to serve as therapy work for these collectives.

This supervised use has served to gather information about interaction habits and
difficulties that has been used in FLING’s design.

Fig. 4. On the left, the Simon® game, a memory training application. On the right, the Gesture
Hero game, a psychomotor skill game.

Specific gestures were added to the Gesture Interpreter module in order to supply
these applications of their interaction requirements.

4.2 Educational applications

In addition to the therapy applications, other educational applications have been
developed to be included in the regular activities of people with Down syndrome
during their classrooms. Examples are the Postman Game and the Price is Right game
shown on Figure 5.

The Postman Game consists in handing packages to the right recipient using the
same procedure as real postmen do in our university. The user needs to search for the
correct floor, office or desk assigned to the recipient from an address file. Then she
must drag the package on to the correct mailbox. This application was made to train
future university postmen, and it resembles the real procedure faithfully.

The Price is Right game simulates a typical trip to the cafeteria. The waiter offers
the user a product at random, and informs her of its price. In the wallet the user has
money represented by actual photographs of real Euro bills. She must drag money
from the wallet onto the waiter’s plate, and the waiter will give her the right change in
return. Upon analysing the payment, the game awards the user with a rating which
will be better as the payment gets closer to the right price. The change from the
previous purchase is used to continue throughout the game.

Fig. 5. On the left, the Postman Game, a package delivery simulator. On the right, the Price is
Right, a money management game.

These games are oriented to desktop computer usage, although they have also been
tested on multi-touch tables with real-case users. This was possible thanks to the
variety of input devices supported by FLING, which made it easy to shift from one
platform to another without any modification.

4.3 Data visualization and control applications

One of the great advantages of using a development environment as Adobe Air /
Flash is its inherited multimedia capabilities. Video and audio content can be accessed
in many ways, and FLING adds a rich interaction experience that helps in the
complex task of data visualization of large collections of multimedia content.

For these reasons, FLING was employed at Carnegie Mellon University to create a
video discovery application that used a geographical information system based on
Google MapsTM. Maps can be browsed with multi-touch gestures, and embedded
videos can be opened and played with full timeline controls, which are easily
triggered with finger gestures. The typical hardware setup for this application is a
vertical multi-touch panel on which the graphical interface can be projected and the
interaction is executed using the hands. This application is an example of different
interaction techniques seamlessly combined through FLING. While the Google
MapsTM API listens to mouse events, the multitouch panel generates TUIO events. In
addition, the rest of the elements of the interface, such as the opened videos, listen to
finger events. FLING integrates all the interactions seamlessly, significantly reducing
the programmer’s effort. Google MapsTM are integrated naturally, as they do in
traditional PC applications, and all the functions of their API can be used directly out
of the box.

Fig. 6. On the left, a video discovery application using GIS developed at the Instinctive
Computing Lab on Carnegie Mellon University. On the right, a control application for an
intelligent room at the Universidad Autónoma de Madrid.

The intelligent environment control application is meant to be run on a multi-touch
table that accepts fiducial marker interaction. These fiducial symbols can be placed
over appliances drawn on the house map to control some of their properties. For
example, the intensity fiducial marker can be placed over lamps, and can be rotated
clockwise to increase light brightness, or anti-clockwise to reduce it. A selection
fiducial can be placed over the TV to change the channel. This application was
developed to show how new input devices (fiducials in this case) can be easily added
to FLING, and how its functionality is automatically incorporated to the existing
gestures.

5 Conclusions and Future Work

This paper has focused on the problem of developing applications for an increasing
number of interaction mechanisms. In doing so, we have stressed the necessity to
distinguish between events, gestures and actions. Events depend on the interaction
mechanisms, gestures represent the users’ manipulation intentions and actions depend
on each particular application.

Following this distinction we have developed FLING, a framework that allows:

• To easily build interaction independent applications without having to deal with
interaction events.

• To build new complex gestures combining events from multiple interaction
sources.

This framework is designed to be:

• Scalable: so that new interaction mechanisms and gestures can be added and
integrated with existing ones.

• Multi-platform: so that it can run in the varied number of platforms in which the
new interaction mechanisms are emerging.

This framework has been tested, seamlessly and over a number of platforms, through
a number of applications using both traditional mouse and keyboard, as well as novel
multi-touch interaction mechanisms.

This has been achieved through a modular design, separating the parsing of each
input device from the gesture interpreter process. Thus, new sensors can be added by
just incorporating the corresponding parser to the framework.

We are currently working in extending the interaction experience through new
interaction mechanisms and merging the interaction of multiple interfaces.

Finally, working in the Ambient Intelligence domain, we look forward to enriching
the interactions with context-aware information in a multi-user, distributed, intelligent
environment.

Acknowledgments. This work has been partially funded by the following projects:
ASIES: Adapting Social & Intelligent Environments to Support people with special
needs (Ministerio de Ciencia y Educación de España, TIN2010-17344), and Vesta
(Ministerio de Industria, Turismo y Comercio de España, TSI-020100-2009-828).

References

1. Lester, J., Hurvitz, P., Chaudhri, R., Hartung, C., Borriello, G.: MobileSense-Sensing modes
of transportation in studies of the built environment. In: UrbanSense 2008, pp. 46--50.
(2008)

2. Dragicevic, P., Fekete, J.: Input device selection and interaction configuration with ICON.
In: Blanford, A., Vanderdonkt, J., Gray, P. (eds.) People and Computers XV Interaction
without Frontiers: Joint proceedings of IHM 2001 and HCI 2001 (IHM-HCI’01), pp. 543--
558. Springer Verlag (2001)

3. Flippo, F., Krebs, A., Marsic, I.: A framework for rapid development of multimodal
interfaces. In: 5th International Conference on Multimodal Interfaces (ICMI’03), pp. 109--
116. ACM, New York (2003)

4. Serrano, M., Nigay, L., Lawson, J., Ramsay, A., Murray-Smith, R., Denef, S.: The
openinterface framework: a tool for multimodal interaction. In CHI’08 extended abstracts
on Human factors in computing systems (CHI EA '08), pp. 3501--3506. ACM, New York
(2008).

5. Touchlib: an opensource multi-touch framework, http://www.whitenoiseaudio.com/touchlib
6. Kaltenbrunner, M., Bencina, R.: reacTIVision: a computer-vision framework for table-based

tangible interaction. In: 1st international conference on Tangible and embedded interaction
(TEI’07), pp. 69--74. ACM, New York (2007)

7. Community Core Vision, http://ccv.nuigroup.com/
8. Touchè, http://gkaindl.com/software/touche
9. Bederson, B. B., Grosjean, J. Meyer, J: Toolkit Design for Interactive Structured Graphics.

IEEE Trans. Softw. Eng. 30(8) 535--546 (2004)
10. Gokcezade, A., Leitner, J., Haller, M:. LightTracker: An Open-Source Multitouch Toolkit.

J. Comput. Entertain. 8, Article 19 (2010)
11. VVVV, http://vvvv.org/
12. Hansen, T. E., Hourcade, J. P., Virbel, M., Patali, S., Serra, T.: PyMT: a post-WIMP multi-

touch user interface toolkit. In: ACM International Conference on Interactive Tabletops and
Surfaces (ITS '09), pp. 17--24. ACM, New York (2009)

13. De Nardi, A: Grafiti: Gesture Recognition mAnagement Framework for Interactive
Tabletop Interfaces. Diploma thesis. University of Pisa (2008)

14. Surface SDK, http://msdn.microsoft.com/en-us/library/ee804845.aspx
15. Esenther, A.; Forlines, C.; Ryall, K.; Shipman, S.: DiamondTouch SDK: Support for Multi-

User, Multi-Touch Applications. Mitsubishi Electronics Research Laboratory, Report No.
TF2002-48 (2002)

16. Gestureworks, http://gestureworks.com/
17. König, W. A., Rädle, R., Reiterer, H.: Squidy: a zoomable design environment for natural

user interfaces. In: 27th international conference extended abstracts on Human factors in
computing systems (CHI EA '09), pp. 4561--4566. ACM, New York (2009)

18. Ramanahally, P., Gilbert, S., Niedzielski, T., Velázquez, D., Anagnost, C.: Sparsh UI: A
Multi-Touch Framework for Collaboration and Modular Gesture Recognition. In Proc. of
WINVR 2009, Conference on Innovative Virtual Reality, pp 1–-6 (2009)

19. Scholliers, C., Hoste, L., Signer, B., De Meuter, W.: Midas: a declarative multi-touch
interaction framework. In: 5th International Conference on Tangible, Embedded, and
embodied Interaction (TEI '11), pp. 49--56. ACM, New York (2011)

20. Echtler, F., Klinker., G.: A Multitouch Software Architecture. In 5th Nordic Conference on
Human-Computer Interaction (NordiCHI 2008), pp. 463--466 (2008)

21. Laufs, U., Ruff, C., Zibuschka, J.: MT4j - A Cross-platform Multi-touch Development
Framework. In: Engineering Patterns for Multi-Touch Interfaces 2010, Workshop of the
ACM EICS (2010)

22. Blom, S., Book, M., Gruhn, V., Hrushchak, R., Kohler, A.: Write Once, Run Anywhere A
Survey of Mobile Runtime Environments. In: 3rd International Conference on Grid and
Pervasive Computing – Workshops, pp. 132--137. IEEE Press, New York (2008)

23. Jordà, S., Geiger, G., Alonso, M., Kaltenbrunner, M.: The reacTable: exploring the synergy
between live music performance and tabletop tangible interfaces. In: 1st International
Conference on Tangible and Embedded Interaction (TEI’07), pp. 139--146 ACM, New York
(2007)

24. Bencina, R., Kaltenbrunner, M.: The design and evolution of fiducials for the reactivision
system. In: 3rd International Conference on Generative Systems in the Electronic Arts (3rd
Iteration 2005), Melbourne, Australia (2005)

25. Wang, F., Ren, X., Liu, Z.: A Robust Blob Recognition and Tracking Method in Vision-
Based Multi-touch Technique. In: International Symposium on Parallel and Distributed
Processing with Applications (ISPA’08), pp. 971--974. IEEE Press, New York (2008)

26. Kaltenbrunner, M., Bovermann, T., Bencina, R., Costanza, E.: TUIO: A protocol for table-
top tangible user interfaces. In: 6th Int’l Workshop on Gesture in Human-Computer
Interaction and Simulation (2005)

27. TUIO Flash client library http://www.tuio.org/?flash
28. Gaines, B., Shaw, M.: A learning model for forecasting the future of information

technology, J. Future Computing Systems 1, 31--69 (1986)

