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Abstract. Switching between windows on a computer is a frequent activity, but 

current switching mechanisms make it difficult to find items. We carried out a 

longitudinal study that recorded actual window switching behaviour. We found 

that window revisitation is very common, and that people spend most time 

working with a small set of windows and applications. We identify two design 

principles from these observations. First, spatial constancy in the layout of 

items in a switching interface can aid memorability and support revisitation. 

Second, gradually adjusting the size of application and window zones in a 

switcher can improve visibility and targeting for frequently-used items. We 

carried out two studies to confirm the value of these design ideas. The first 

showed that spatially stable layouts are significantly faster than the commonly-

used recency layout. The second showed that gradual adjustments to 

accommodate new applications and windows do not reduce performance.  
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1   Introduction 

Switching between windows like email applications, word processors, and Web 

browsers is a very common task. A previous study [1] found that the mean time 

between window switches is only 20.9 seconds and that users have more than eight 

windows open more than 78% of the time. It has also been reported that the average 

number of simultaneously opened windows increases with available display space: 

from four for single monitor users to up to 18 for users with multiple monitors [2].  

Current interface methods for window switching have changed relatively little 

since early graphical user interfaces – clicking on a window brings it into focus, as 

does selecting the window from a spatial iconic representation (e.g., the Windows 

Taskbar) or from a recency list (e.g., the Windows Alt+Tab display). Recent research 



and commercial systems demonstrate alternatives to these mechanisms, but problems 

still exist – with more than a few windows in the display, users must often carry out a 

laborious search to find the desired window, even if that window is used frequently. 

Despite the different designs that have been proposed, no window switching tools 

are based on empirical evidence about how people revisit windows in actual desktop 

work. To address this limitation, and to identify new design principles for window 

switching tools, we carried out three studies. We first conducted a longitudinal study 

where window switching behaviour was recorded; this study showed that revisitation 

is frequent, both to applications and to specific windows, and that most switches are 

to a small number of applications. From this study, we identified the design principles 

of spatial constancy and morphing target sizes. Spatial constancy supports window 

revisitation by keeping thumbnails for activating windows and applications in the 

same place in the switching display, allowing users to build up spatial memory of 

frequently-used items. Morphing target sizes allocates more space to frequently-used 

applications and windows, improving Fitts’ Law targeting time for the most frequent 

items, and allowing for the addition of new items.  

Our second and third studies tested the value of these two principles. The second 

showed that spatial constancy is effective: stable layouts are significantly faster than 

recency layouts (similar to Windows Alt+Tab). The third study showed that gradual 

adjustments in the display’s layout do not reduce (or improve) performance. We 

discuss how these successful results can be deployed in new window switching tools. 

2   Related Work 

Two areas of related work inform our investigation: research on task and window 

switching interfaces; and studies of user behaviour with desktops and windows.  

2.1   Window Switching Interfaces  

The importance and frequency of window switching has led to extensive research and 

development into improved interfaces for the task. Two interface properties help 

distinguish window switching approaches: first, the type of information used to form 

and display relationships between windows, such as temporal, spatial, or semantic 

data about the windows; and second, the degree to which systems try to automatically 

establish these relationships, with some being entirely manual while others use 

sophisticated predictive methods to automatically establish window relationships.  

Henderson and Card’s seminal work with the Rooms [3] virtual desktop manager 

was almost entirely manual, with the user assuming all responsibility for the spatial 

placement of windows within a room based metaphor. Scalable Fabric [4] also uses 

manual relationship controls, including extensive support for zooming, but unlike 

Rooms it provides little explicit structure for grouping windows. The default desktop 

behaviour of Microsoft Windows XP/Vista is also largely manual (users place 

windows where they wish), although it automatically groups windows belonging to 

each application in the Taskbar. Microsoft’s GroupBar [2] maintains manual control, 

but replaces the Taskbar’s application-based grouping with user-defined task groups.  



The primary limitation with manual control of window relationships is that users 

must carry out explicit actions to gain potential benefits. To remove the dependence 

on manual actions many systems automatically form window relationships. The most 

basic and widely deployed automatic relationship system is the familiar Alt+Tab key 

binding in Microsoft Windows operating systems. Alt+Tab allows users to rapidly 

flip through a temporally based ‘z-ordering’ of windows on the display. Kumar et al. 

[5] observe that Alt+Tab is very efficient when the number of windows is low, but 

researchers have also labelled the method ‘tedious’ [6]. Mac OS X’s Exposé also uses 

an automatic layout, displaying thumbnails of all windows at once; but the layout is 

not spatially constant, so users cannot accurately predict where specific windows will 

be located, demanding visual search to find them.  

SWISH [7], UMEA [8], TaskTracer [9], RelAltTab [10] and Taskposé [11] all use 

sophisticated methods to automatically adapt to user activities. SWISH uses temporal 

relationships between window focus events as well as window titles to establish 

semantic relationships. Their evaluations suggested 70% accuracy rates in assigning 

windows to task groups. Similarly, TaskTracer uses machine learning to modify the 

Microsoft Start menu, Taskbar and Windows Explorer. RelAltTab uses similar 

methods to modify the Alt+Tab window order. Taskposé provides an overview in 

which windows drift towards each other dependent on their temporal relationships, 

based on the results of a ‘WindowRank’ algorithm. Taskposé windows also gradually 

enlarge to reflect their relative importance as calculated by the algorithm. 

The primary limitations of automatically adaptive systems are that they can 

incorrectly predict the user’s intention and that users can fail to understand or 

anticipate the system’s adaptation [12]. When this happens users must resort to time-

consuming visual search of candidate targets. Of all the previous designs, however, 

only two – WindowScape [13] and Elastic Windows [14] – used stable layouts to help 

improve memorability of previously-used windows.  

2.2   Studies of Window Use 

Gaylin [15] provides an analysis of window activities from the early days of graphical 

user interfaces, based on 22 minute observations of nine participants. Observations 

show that window switching activities were far more frequent than window creation, 

deletion, or geometry management. Hutchings et al. [1] update these findings using 

automatic logs of 39 participants over a 3-week period. They report on how window 

management activities differ across single- and multi-monitor display use (in common 

with Grudin’s earlier field study [6]) but their data also highlights important general 

characteristics of window management. This includes the finding that window 

switching is extremely frequent, with a mean window activation time of 20.9 seconds, 

and a median of only 3.77 seconds. This frenetic frequency of window switching is 

confirmed by Mackinlay and Royer [16], who also conducted a log analysis of 

window switching. Hutching et al.’s data also shows that users normally have many 

windows open, with eight or more windows open 78.1% of the time.  

Many types of human behaviour are highly repetitive, as observed by Zipf’s Law 

[17] and the Pareto Principle [18] (also called the “80-20” rule), where a large portion 

of effects comes from a small portion of causes. Zipfian distributions have been 



observed in many areas of computer use [19], such as frequency of command use and 

menu use. Although window and application switching activities are among the most 

frequent in computer use, with one study showing a mean time of 21 seconds between 

actions [1], we are unaware of any empirical studies of users’ patterns of revisitation 

to windows and applications. To address this limitation, we carried out the 

longitudinal study described in the following section. 

3   Log Study of Application and Window Switching 

To find out how users switch between applications and windows, we carried out a 

longitudinal study that recorded windowing behaviour as users went about their 

everyday tasks. We developed logging software for Windows XP that unobtrusively 

monitors window switches, window creation/destruction events, changes in window 

geometry, and the method used to switch windows (e.g., Alt+Tab, Taskbar, and direct 

mouse click). Nine frequent computer users (18 to 55 years old) took part in a study 

during which we recorded between 8 and 117 days of data per participant. Four 

participants used dual monitors; five, single monitors (see Table 1).  

Overall, we obtained 241 person-days of data. Only manual window switches were 

included in the analysis: automatic switches (such as window/dialog pop-ups) were 

removed from the data. This left a total of 45,377 switch events. 

3.1   Results 

Results are divided into three categories. First, we present data describing revisitation 

patterns for the windows used each day. This characterises the users’ main activities 

in window switching. Second, we describe long term revisitation patterns to 

applications. While many windows are transient, existing only for immediate work 

requirements (such as a window containing an email message during its composition) 

applications are relatively stable. For many tasks, such as “search on the Web for 

topic X” or “check my email inbox” the user’s target is likely to be the application 

(e.g., Firefox or Outlook) rather than a specific window, so an application based 

analysis is potentially informative. Third, we analyse the interface mechanisms used 

to carry out window switching activities to gain insights to how current interfaces are 

used and to determine whether users adopt similar or divergent patterns of behaviour.  

Daily Window Revisitation. For each participant on each day, we analysed how 

frequently each window was revisited. This was conducted by forming a ranked order 

of windows according to their percentage of total daily switches.  

The number of window switches per day for participants ranged from 5 to 807, 

with a cross participant mean of 219 per day (s.d. 91). The number of distinct 

windows switched to per day ranged from 3 to 177, with a cross participant mean of 

39 (s.d. 19). In their study of Web revisitation, Tauscher and Greenberg [20] define 

the recurrence rate R as the probability that any URL visit is a repeat of a previous 

visit, giving R=(total URLs visited – distinct URLs visited)/total URLs visited ×100. 



Adapting this formula for window revisitation gives a mean recurrence rate of 82%; 

much higher than the 58-61% rate reported for the Web. This data shows that window 

revisitation is a very common activity.  

Analysing the same data with respect to the Pareto principle shows that 80% of 

window switches were triggered by between 24 and 40% of windows for the different 

participants (see Table 1), with a mean of 35.1%. 

Table 1. Application and window switching data for the nine participants. 

    Pareto. 80% of 

switches by what %   

Interface % 

P. single/ 

dual 

# days # 

switch 

# apps Windows Apps Click Task- 

bar 

Alt+ 

Tab 

1 single 10 1396 40 40 15 23.4 76.7 0.0 

2 dual 117 17088 45 34 7 78.4 21.4 0.2 

3 single 23 2588 23 37 17 37.0 47.7 15.2 

4 single 16 3019 49 37 16 35.3 61.3 3.4 

5 dual 9 2454 37 40 22 64.5 35.5 0.0 

6 dual 30 10373 54 31 13 64.1 35.5 0.4 

7 dual 8 2922 34 35 18 82.7 14.5 2.8 

8 single 13 2989 39 24 18 22.7 75.3 1.9 

9 single 15 2548 23 37 17 7.6 7.7 84.7 

Revisitation to Applications across Sessions. As mentioned above, many user tasks 

involve targeting an application rather than a specific window. For example, a user 

may have several Web browser windows concurrently open, any of which can be used 

for a pressing search task; or the user may need to target a calculator, file explorer, 

etc. In each case the application is the target, not a specific window. We therefore 

analysed each participant’s revisitation to applications for the duration of the study.  

The number of distinct applications used by the participants ranged from 23 to 54, 

with a mean of 38 (s.d. 10.6). For each participant the total number of switches to 

each application was calculated, ranked by frequency, and converted to a percentage 

of their total application switches. Fig. 1 shows this data for each participant. It is 

clear that a few applications are used a lot, and a lot are used relatively little.  

0%

5%

10%

15%

20%

25%

30%

35%

40%

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

n th most targeted application

P
e

rc
e

n
ta

g
e

 o
f 

s
w

it
c

h
e

s

1 2 3 4 5 6 7 8 9

 
Fig. 1. Percentage of switches to the 20 most frequent applications for each participant. 



Table 1 shows Pareto principle data, revealing that most users’ application 

revisitation roughly adheres to the 80-20 rule. For example, 22% of participant five’s 

applications accounted for 80% of switches. All other participants’ application 

revisitation was more pronounced than the Pareto principle predicts: e.g., only 7% of 

participant two’s application switches accounted for 80% of switches.  

3.3   Interface Mechanisms Used to Switch Windows  

We analysed the main three interface mechanisms currently used to visit and revisit 

windows: direct window clicks, selection from the Taskbar, and Alt+Tab. This 

analysis was conducted to determine whether users made similar or divergent use of 

the tools available. Table 1 shows each participant’s use of these tools. Two important 

observations from this data are as follows. First, there are substantial differences 

between participants in their use of Alt+Tab. Seven of the participants used it very 

lightly (less than 3.5% of window activations) or not at all; one used it fairly often 

(15.2%); and one used it almost exclusively (84.7%). The two participants who used 

Alt+Tab heavily had a single monitor, suggesting that it might be most valuable for 

users with constrained screen real-estate (see Fig. 2). Second, direct clicks and 

Taskbar use were also influenced by screen real-estate, with dual monitor participants 

using direct clicks more and the Taskbar less than single monitor participants.  

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

Direct Click Taskbar Alt-Tab

M
e
a
n

 p
e
rc

e
n

ta
g

e
 o

f 
to

ta
l 

s
w

it
c
h

e
s

Single monitor

Dual monitor

 

Fig. 2. Cross participant means of the percentage of window switches activated by clicking on 

the window, Taskbar selections, and Alt+Tab. Error bars show ±1 standard error. 

4   Design Principles for Window Switchers 

The patterns observed in the log study strongly suggest that supporting revisitation 

should be a main design goal in window switching tools. More specifically, this 

support should allow users to quickly find and distinguish between previously-visited 

windows in a switcher’s display. There are several possible ways to provide this 

support (for example, previously-visited windows could be highlighted in the display, 

or the most frequently-used windows could be shown first), but previous research in 

psychology argues for an approach that makes use of spatial constancy, discussed in 

Section 4.1. However, user’s patterns of behaviour change over time: for instance, a 



user may replace an application with a different vendor’s system. Complete spatial 

constancy does not allow for the addition/removal of items. We address this problem 

with the use of size morphing (Section 4.2). Morphing target sizes allow for the 

addition of new items while maintaining as much spatial stability as possible. Also, 

allocating more space to frequently-used applications and windows will reduce their 

Fitts’ Law targeting times. Given that some applications and windows are used much 

more frequently than others this might increase overall performance. 

4.1 Supporting Window and Application Revisitation with Spatial Constancy 

Spatial location memory is a person’s memory of where objects are in space. It is well 

developed and can be extremely fast: studies have shown that items can be found in 

time proportional to the logarithm of the size of the set, which can be much faster than 

the linear search time needed for unorganised sets [19]. This fast performance is 

enabled by spatial constancy – that is, items remaining in the same location over time. 

This idea has been known since the first interface design guidelines [21], and many 

studies have demonstrated its effectiveness. 

There is also evidence that spatial location memory in user interfaces is 

surprisingly robust. In studies of the Data Mountain’s spatial layout of thumbnail 

images [22] users were able to quickly and accurately recall the location of specific 

targets four months after originally creating a layout of 100 images. Furthermore, 

their retrieval performance was not significantly harmed when the images were 

replaced with blank outlines. Spatial constancy, however, has received little attention 

in research on task- and window switching tools (with a few exceptions [13, 14]). 

Applying the idea of spatial constancy in a window switcher implies that windows 

and applications should not move in the switcher’s display. Within a work session, 

this design approach has clear advantages: since revisitation is strong, people will 

quickly learn the locations of the most frequently-used windows. Spatial stability 

offers similar advantages across work sessions. Since people regularly return to a 

relatively small number of applications, the problem of where to place individual 

windows in the switcher display can be solved by creating ‘application zones’ that are 

themselves spatially constant, and that reflect people’s longer-term repeating work 

patterns. Spatial constancy can thus be applied in a hierarchical fashion: applications 

are given stable zones in the switcher display, since these change slowly over the long 

term; and within each zone, the application windows used in the current work session 

are placed in stable spatial locations. The application-based organisation provides an 

initial guide to the location of a new window, but as the window is used more and 

more frequently, users will start to remember its location as a separate entity.  

4.2 Size Morphing to Accommodate Change and Optimise Performance 

The design principle of spatial constancy potentially conflicts with changes in patterns 

of behaviour. For example, when users replace one application with another how can 

spatial stability be maintained? Also, given that some applications and windows are 

used much more frequently than others, how can the switching interface depict the 



relative importance of applications and windows, and optimise the acquisition of 

frequent targets? 

Our proposed solution is to use gradual size ‘morphing’ to adjust the sizes of 

application zones and window thumbnails. Morphing avoids abrupt changes in layout 

that would damage spatial memory, while allowing the introduction of new items and 

enabling frequent targets to be enlarged to enhance their visibility and to reduce 

pointing time.  

Fig. 3 shows a mock-up of our design, which uses the entire screen when activated. 

Clicking on a zone or thumbnail immediately switches to the associated application or 

window. Each zone contains thumbnails representing all windows associated with the 

application, scaled and tiled to fit. Initially all application zones are of equal size (see 

Fig. 3a), but they gradually morph in size to reflect frequency of use (see Fig. 3b). 

   
 (a) Initial view.  (b) After morphing. 

Fig. 3. Prototype application zones, before and after size morphing. The application and 

window in the top left have been used most frequently. 

5   Evaluating Spatial Constancy and Morphing  

Our design principles assume that users will perform better at switching to windows 

when thumbnails remain in spatially stable locations than when they are rearranged 

according to recency or other properties. It also assumes that size morphing will allow 

users to maintain their spatial memory while the interface adapts. We conducted two 

experiments to separately investigate these issues. 

5.1   Experiment 1: Spatial, Recency, or Frequency Ordering? 

A window switching interface can order items in a variety of ways, including spatially 

or by recency (like Alt+Tab). Other orders are also possible: frequency reordering 

might work well for Zipf-like distributions; random orders may perform well if visual 

popout effects are strong. This experiment, therefore, investigates the performance 

impact of four different orderings (spatially stable, recency order, frequency order, 

and random order) for tasks involving acquisition of targets in a Zipf-like distribution. 

The experimental interface consisted of a grid of distinct icons (Fig. 4a) with a 

cued target on the right. Participants were instructed to click on the target icon region 



as quickly and accurately as possible, with each successful acquisition immediately 

cueing the next. The spatially stable layout used an arbitrarily but stable order (i.e., 

icons never moved). In the random layout all items were randomly repositioned after 

each selection. The recency reordering condition moved the most recently selected 

item to the top left of the grid, pushing earlier items along in row-major order (similar 

to Alt+Tab). Finally, frequency reordering repositioned items according to their 

cumulative selection counts (most frequent at top left, in row-major order). Note that 

frequency reordering rapidly stabilizes with a Zipf-like distribution of targets, while 

recency ordering is less stable.  

   
(a) Experiment 1.                                        (b) Experiment 2 (post morphing). 

Fig. 4. Experimental interfaces showing 16 icon regions and the target cue on the right. 

To understand how performance with these interfaces is influenced by number of 

targets, participants completed trials with 4, 9, 16, 25, 36, 49 and 64-item grids. The 

Zipfian distribution of targets was generated by randomly selecting eight targets from 

among the candidates (all four for the 4 item grid): one was cued 10 times, one 5 

times, then 3, 2, 2, 1, 1, and 1 for the others. 

Twenty-six students volunteered for the experiment (16 male, 10 female, 16-44 

years old). Their participation lasted approximately 45 minutes.  

Results and Discussion. The selection time dependent measure was analysed using a 

4×3×7 RM-ANOVA for factors layout (stable, frequency, recency, random), 

experience (novice, intermediate or expert) and items (4-64). Experience was 

determined by assigning first-time icon selections as novice, 2nd-7th selections as 

intermediate, and 8th-10th as expert.  

All factors showed significant main effects: layout (F3,60=72, p<.001), experience 

(F2,40=409, p<.001) and items (F6,120=135, p<.001) (see Fig. 5). Stable layouts were 

the fastest (mean 1.2s) followed by frequency reordering (1.3s), recency reordering 

(1.3s), and random (1.8s). Post hoc comparisons show pairwise differences between 

all layouts except frequency and recency reordering, and frequency reordering and 

stable (Bonferroni, p<.05). Fig. 5a shows a significant layout×experience interaction 

(F6,120=47, p<.001) caused by relatively constant performance across experience with 

random layouts in contrast to marked improvement with other layouts. Fig. 5b shows 

a significant layout×items interaction (F18,360=14, p<.001), caused by the random 

layout worsening much more rapidly across increased number of items than the other 



three layouts. The results show that spatial constancy is beneficial. The stable, 

frequency, and recency layouts all supported expertise development; random did not. 

The recency layout (similar to Alt+Tab order) was outperformed by the stable layout.  
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Fig. 5. Experiment 1 mean selection times (±1 standard error) with the four layouts. 

5.2   Experiment 2: The Effect of Size Morphing 

The second experiment examined the performance impact of the morphing behaviour 

used for two purposes: to allow new windows/applications to be introduced, and to 

change target sizes in response to the Zipf-like frequency distribution. Experiment 1 

suggests that total stability is the ‘gold standard’, but total stability would prohibit the 

addition of zones for new windows/applications, as well as prohibiting morphing size 

adaptation to reduce the Fitts’ Law targeting time.  

We therefore experimentally compared target acquisition performance using totally 

stable placement (the gold standard control condition) as well as morphing behaviour 

implemented with squarified [23] and spiral [24] treemaps. Treemaps recursively 

divide 2D spaces into rectangles of various sizes, with size representing an underlying 

quantitative data attribute. Various algorithms for creating treemaps exist, and two 

main properties are the average aspect ratio and spatial stability (see [24] for a recent 

review). Squarified and spiral treemaps were used in this experiment because they 

respectively support low and high spatial stability. Fig. 4b shows the spiral 

experimental condition after morphing. The experimental method, procedure and 

design were similar to Experiment 1. There were seventeen participants (fifteen male, 

two female, 21-35 years old).  

Results and Discussion. Task time was analysed using a 3×3×7 RM-ANOVA for 

factors layout, experience, and items. There were significant main effects for items 

(F6,96=204, p<.001) and experience (F2,32=444, p<.001), but not for layout (F2,32=1, 

p=.3). Mean times for the three layouts were similar at 1.3s, 1.4s and 1.4s with stable, 

squarified and spiral respectively.  

The absence of a significant difference between layouts is interesting and warrants 

further analysis. The stable interface is not a practical solution to window switching 

because it prohibits the addition of new applications and windows. However, total 



stability best supports users in exploiting their spatial memory, so it is interesting that 

it did not significantly outperform either of the two treemap layouts. It is reasonable 

to suspect that the treemap interfaces allowed users to benefit from reduced Fitts’ Law 

targeting performance with frequently selected items (which gradually morphed to 

larger sizes), and that this counteracted the penalties associated with reduced absolute 

stability, but this explanation is not supported by a significant layout×experience 

interaction (F4,64=2, p=.1). More powerful experimental analysis is required.  

6   Discussion 

The studies provide important findings for the design of window switching tools: 

• Within a work session, people frequently revisit previously-used windows; 

• Revisitation to a small set of applications is also strong across sessions; 

• Most users rely heavily on mouse-based window switching methods, but some 

use keyboard methods almost exclusively; 

• Spatially-constant item layouts are significantly faster than recency-based 

layouts for a Zipfian distribution of target stimuli; 

• Gradual size ‘morphing’ of item areas in the display did not affect 

performance – importantly, morphing did not substantially harm the 

participant’s spatial memory for target locations. 

In the following paragraphs, we consider reasons why these design principles 

succeeded and discuss design issues for real-world window switching tools. 

6.1   Why the Principles Succeeded  

The results of Experiment 1 add to previous findings showing performance 

advantages for spatial constancy in comparison to alternatives. Furthermore, these are 

the first results (that we know of) comparing spatially stable 2D layouts with 

frequency and recency based layouts.  

The stable layout was significantly faster than the recency layout, with 

performance benefits increasing with expertise. This is easily explained – after each 

selection in the recency layout users must either calculate the new position of their 

targets or visually search for them, both of which demand time.  

Performance with stable and frequency layouts was similar to each other, raising 

the question of whether window switching interfaces should use frequency ordering. 

However, the experiment used a Zipfian distribution of stimuli, causing the frequency 

layout to quickly settle to spatial stability, so we believe that the frequency layout’s 

comparative success is also explained by its spatial stability (after a short period of 

reorganisation). In practical use, a frequency layout for windows is unlikely to 

succeed due to the transient nature of most windows. Consequently, some other basis 

for organisation is required, such as application zones. Although application zones 

could be placed in a frequency layout, doing so would create placement instability 

during early use, which might cause users to discard the system due to its 

unpredictable behaviour. We therefore believe that using spatial stability as the main 



layout principle is a preferable solution. Another reason for believing application 

zones to be a useful placement strategy is that it quickly narrows the user’s search 

space when there are several candidate windows from the same application – rather 

than having to search the whole display, users can quickly dismiss the majority of 

candidates by homing in on only those in the appropriate application zone.  

The finding from the second experiment that morphing was no worse than absolute 

spatial stability is important because it suggests that gradual layout changes allow 

users to successfully use spatial memory while the display adapts to changes in their 

behaviour. Although we have not yet tested item addition and deletion, we believe 

that the spiral treemap algorithm used in Experiment 2 will allow users to maintain 

their spatial understanding of the layout. We will test this in future work. We will also 

model and test the Fitts’ Law performance advantages gained from morphing.  

6.2   Design Considerations for Real-world Switching Tools 

The log study and experiments suggest that our design principles can be successful, 

but several design issues arise in translating these findings into a real-world switching 

tool, as discussed below.  

Number of windows and applications. Fig. 3 portrays our design intention, showing 

four application zones and seven windows. However, the log study revealed that users 

actually work with dozens of applications and windows. Can our design scale? We 

are confident it can for several reasons. First, prior work (e.g., [22]) shows that users 

can successfully learn and remember the locations of hundreds of targets. Second, our 

experiments included up to 64 targets, and the benefits of spatial stability increased 

with the number of targets. Third, our design uses the full display space to show and 

access all windows and applications at once, allowing much larger targets than is 

possible with visually compact tools such as the Windows Taskbar.  

Flexibility in input device and interface behaviour. The log study showed that most 

users relied on mouse input for window switching, but that one user used the Alt+Tab 

key combination almost exclusively. Convenience will clearly influence the choice of 

input device (e.g., using the mouse when a coffee cup is held in the other hand, or 

using Alt+Tab when typing to avoid repositioning the hands). However, Alt+Tab is 

also powerful when the user needs to ‘flip’ between a few recent windows. It is 

therefore desirable that next generation window switching tools continue to support 

flexibility in input devices and recency-based traversal. Our design can easily 

accommodate both. For example, the tool could be activated by a key combination 

(such as Alt+Tab) or by a dedicated mouse button or wheel; and the traditional 

Alt+Tab recency list can be traversed by highlighting items on subsequent key 

combination or button/wheel press.  

Integrated support for application launch and window switching. Another potential 

advantage of our design (yet to be evaluated) is that it integrates support for different 

types of window switching tasks. In current interfaces, application launch facilities 

are largely partitioned from window switching tools, yet the user activities are closely 

related. For example, to “search on the Web for topic X” the user needs to acquire a 

browser window. If the user starts by searching the Taskbar they will be unsuccessful 

if no browser windows are active, necessitating a second action such as navigating 



through the Start menu hierarchy to launch the browser. Alternatively, if the user 

begins by launching the application, they will often gain a superfluous window (when 

others were already available) adding to their window management load. Our design, 

in contrast, provides a single interface mechanism for all window and application 

activities: if the application zone is empty, the user clicks to launch; but if windows 

are already available, any candidate can be immediately brought into focus.  

Tailored layouts. Finally, the design could be adapted to allow users various 

manual controls, such as ensuring that certain application zones are always displayed 

in specific locations (perhaps to ensure consistency between a desktop and laptop 

display), or excluding particular applications from appearing in the layout.  

7   Conclusions and Future Work 

Log analysis of real window and application switching showed that revisitation 

(returning to previously used windows and applications) is an extremely frequent 

activity in computer use. It also showed that most users activate their window and 

application switches using the mouse as the input device, but that some users rely on 

keyboard methods almost exclusively. These empirical characterisations of window 

and application switching are new, and although they may confirm (or refute) 

designers’ intuitions, empirical confirmation is necessary for informed design. The 

main design message of the log analysis is that window and application switching 

interfaces should improve efficiency by explicitly supporting revisitation.  

We proposed two design principles to better support revisitation: spatial constancy 

of the interface controls to activate applications and the windows belonging to them; 

and size morphing to allow the spatial display to adapt to changes of behaviour and to 

optimise selection of frequent targets. Two empirical studies showed, first, that 

spatially stable layouts allow faster acquisition than recency and random layouts for 

skewed distributions such as those occurring in window switching tasks, and second, 

that size morphing is not significantly slower than the (idealistic but impractical) gold 

standard of absolute spatial stability.  

In future work we will conduct a longitudinal study of user performance with a 

complete tool implementing the principles derived and tested in this paper.  
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