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Abstract. Passive brain-computer interfaces are designed to use brain activity 
as an additional input, allowing the adaptation of the interface in real time 
according to the user’s mental state. The goal of the present study is to 
distinguish between different levels of game difficulty using non-invasive brain 
activity measurement with functional near-infrared spectroscopy (fNIRS). The 
study is designed to lead to adaptive interfaces that respond to the user’s brain 
activity in real time. Nine subjects played two levels of the game Pacman while 
their brain activity was measured using fNIRS. Statistical analysis and machine 
learning classification results show that we can discriminate well between 
subjects playing or resting, and distinguish between the two levels of difficulty 
with some success. In contrast to most previous fNIRS studies which only 
distinguish brain activity from rest, we attempt to tell apart two levels of brain 
activity, and our results show potential for using fNIRS in an adaptive game or 
user interface.  
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1   Introduction 

A brain-computer interface (BCI) can be loosely defined as an interface controlled 
directly or indirectly by brain activity of the user. While most BCI research is 
designed for direct use with disabled users, we instead focus on passive BCIs for 
healthy users. Passive BCIs are interfaces that use brain measurements as an 
additional input, in conjunction with standard devices such as keyboards and mice [1].  

Unlike much BCI work which uses electroencephalography (EEG) [2], this 
research uses functional near-infrared spectroscopy (fNIRS), which is non-invasive, 
portable, and relatively impervious to user movement (Figure 1). It is also uniquely 
sensitive to changes in blood oxygenation, which can be used to extrapolate levels of 
brain activation. This tool has been used in the contexts of biomedical research and 
experimental psychology, but little has been done to take advantage of it in a human-
computer interaction (HCI) context. Researchers have used fNIRS to investigate brain 



patterns related to particular mental activities, such as motor imagery [3, 4], mental 
workload [5], deception [6], or emotions [7]. However, most of these studies 
concentrate on differentiating between no activity and one activity, while this 
experiment attempts to differentiate two levels of activity from each other, as well as 
each level of activity from a resting baseline.  

 

Fig. 1. A picture of a subject with the two probes (usually held by a headband). 

The goal of the present study is to distinguish between different levels of game 
difficulty using fNIRS data collected while subjects played a computer game. The 
study is designed to ultimately lead to adaptive games and other interactive interfaces 
that respond to the user’s brain activity in real time. Our results show that we can 
distinguish between the user playing Pacman or being at rest, as well as between two 
difficulty levels of Pacman. 

2   Background and Related Work  

2.1   Functional Near-Infrared Spectroscopy  

fNIRS measures changes in hemoglobin concentrations [8]. At the near-infrared 
range, light can pass through most tissues, allowing them to be probed for depths up 
to 1-3 cm. By measuring the light sent at two wavelengths, we can calculate 
oxygenated and deoxygenated hemoglobin concentration. The slow hemodynamic 
changes measured by fNIRS occur in a time span of 6-8 sec [9]. fNIRS provides high 
temporal resolution (data points measured in the order of tenths of ms), and a spatial 
resolution of approximately 5mm. However, it can only measure the cortical surface 
of the brain. In comparison, fMRI has a low temporal resolution but allows whole-
brain imaging, including both cortical and subcortical structures. EEG can gather 
information from electrodes placed all over the scalp, with a high temporal resolution. 



While there are many brain imaging techniques, each with advantages and 
disadvantages [2], we believe fNIRS to be a suitable brain sensing technology for HCI 
research because it is safe, non-invasive, easy to use, and relatively impervious to user 
movement, as compared to other brain techniques. 

2.2   Psychophysiological Related Work 

Game play has been measured using psychophysiological signals. For instance, Chen 
et. al used two physiological measures (heart rate variability and electromyogram) to 
measure the interruptibility of subjects in different tasks, including a game, and found 
a high correlation between those measures and the self-report of interruptibility [10]. 
Other researchers have measured the brain during game play using EEG and 
demonstrated the ability to distinguish the user resting, exploring the game 
environment or playing the video game [2]. Based on these results, we wanted to 
explore the fNIRS blood oxygenation response during different levels of video game 
play.  

Task load and blood oxygenation have been shown to be correlated in a number of 
non-game environments [11] as well as in more directly relevant game-playing 
environments. Several fNIRS studies reported a significant variation in hemoglobin 
concentration in the prefrontal cortex in comparison to resting while playing an arcade 
game [12], a shooting game, a rhythm action game, a block puzzle and a dice puzzle 
[13]. Another study showed that one could differentiate between playing and not 
playing a computer game using functional magnetic resonance imagery (fMRI), by 
comparing three video games: Space Invaders, Othello and Tetris [14]. These studies 
all compare rest versus play, but never more than one level of difficulty.  

These research papers show a prefrontal cortex response to video game playing, 
which lead us to believe that the video game Pacman could produce similar 
activations. However, note that most of the fNIRS studies measure a larger brain 
region, with probes that are much different than ours, although our current probe 
format has the advantage of a simple and comfortable setup. The present study applies 
fNIRS to the human forehead, measuring the anterior prefrontal cortex, a subset of the 
prefrontal cortex. The choice of Pacman was motivated by the fact that Pacman offers 
different difficulty levels that keep all other aspects identical, such as the scene and 
the characters’ behavior. It was also desired to study an untested arcade video game 
with fNIRS, which we believe can be translated to other games of similar mental 
demand.  

3   Experimental Protocol 

The goal of this study was to measure brain activity using fNIRS during game play, 
and to differentiate the brain signal between different levels of a computer game. The 
arcade game Pacman was selected because of its customizable environment. We 
implemented a homemade computer version of the game, originally released by 
Namco (Japan). The user directs Pacman through a maze by pressing arrow keys, with 



the goal of eating as many fruits and enemies as possible, without being killed. Two 
levels of difficulty, differentiated by pace and quantity of enemies, were selected 
through pilot testing.  

Participants were hypothesized to be able to distinguish these difficulty levels, so it 
was also hypothesized that brain measurements would show distinguishable 
differences in addition to observed differences in performance.  

Nine subjects (4 females) participated in this study (mean age of 24.2 years; std 
4.15). All were right-handed, with normal or corrected vision and no history of major 
head injury. Informed consent was obtained, and participants were compensated for 
their time. All knew of the game, and all but one had previously played it. Participants 
practiced the game for about one minute to familiarize themselves with our version. 

3.1   Design and Procedure 

Participants completed ten sets of two trials (one in each difficulty level) over a 
twenty minute period. In each trial, participants played the game for a period of thirty 
seconds, and rested for thirty seconds to allow their brain to return to baseline. 
Conditions within each set were randomized for each subject. The experimental 
protocol of alternating 30s-long windows of activation and rest was designed to take 
into account the slow hemodynamic changes that occur in a time span of 6-8 sec [9] 
as well as a short game cycle that nonetheless allowed performance to level off.  

In addition to fNIRS data, we collected performance data—number of times 
Pacman is killed, as well as number of fruits and enemies eaten. At the end of the 
experiment, subjects were asked to rate the overall mental workload of each game 
level with the NASA Task Load Index (NASA-TLX) [15], a widely used measure of 
subjective mental workload used here as a manipulation check. NASA-TLX provides 
a ground truth measurement, a benchmark for comparing and validating fNIRS 
results. It is a collection of questions relating to the task’s mental, physical, and 
temporal demands on the user, their performance, effort and frustration level when 
executing the task. The NASA-TLX for each level was administered using a paper 
version (two in total). 

3.2   fNIRS Equipment  

We collected fNIRS data using an OxiplexTS, from ISS, Inc. (Champaign, IL). Our 
setup is comprised of two probes (see Figure 2). Each source emits two wavelengths 
(690 and 830nm), with a sampling rate of 6.25Hz. The probes were placed in the 
middle of the forehead. We chose to use the data from the two last sources of each 
probe only (with source-detector distances of 2.5 and 3cm), because they reach deeper 
into the cortex. The shallower source-detector axes are thought to pick up primarily 
systemic responses happening in or on the skin. 



 

Fig. 2. A picture of the right probe. A probe includes a detector (larger square) and four light 
sources (smaller squares). While the probe has five possible light sources, only four sources can 
used at once because of hardware constraints. Moreover, we decided to only use data from two 
sources, the two furthest from the detector. The picture shows the side that will be on the 
forehead. 

Movement artifacts picked up by the fNIRS probes can include both general limb 
movement, and specific skin movements (e.g. frowning). The user was seated at ease, 
with their right hand positioned to reach the arrow keys of a standard keyboard 
comfortably, with the fingers resting on the keys, minimizing all movement of the arm 
and hand. We asked the users not to move their limbs, or to frown, but they were not 
constrained in any way. We did not measure their eye blinks or frowning, but we did 
visually observe their behavior. We did not find a visual correlation between such 
small movements and the preprocessed data. A pilot test indicated that small finger 
movements show up only minimally in our data, and this noise is mostly removed 
with filtering.  

4   Analysis Techniques and Results 

4.1   Behavioral Results and Performance Data 

In this section, we performed an analysis on the non-brain data collected, such as the 
NASA-TLX results and the game performance statistics. 

NASA-TLX. We analyzed results from the NASA-TLX data to confirm that users 
perceived the two difficulty levels as different. Results indicated an average mental 
workload index of 26 (std 12.9) for the easy level, and 69 (std 7.9) for the hard level, 
on a 100 point scale. This difference was significant according to a two sided t-test 
(p<0.01), and confirm our manipulation.  

Sources Detector 



Performance Data. We also examined the performance data. Every data source 
collected showed a significant difference between the two difficulty levels (p<0.05). 
Figure 3 displays the average value of the data collected.  

 

Fig. 3. Graph of data collected, with standard deviation, for each difficulty level, averaged over 
trials and subjects. The difference between each level is significant for each data type.  

4.2   Brain Data 

fNIRS is still a new methodology, and as such it lacks well-established preprocessing 
and analysis methods [16]. Each researcher is currently left to his or her better 
judgment to find a method that works best. Some researchers choose to do a visual 
inspection of the data to determine patterns [17], while most use some sort of 
statistical analysis of the data, with no real consensus on how to perform this analysis. 
Many perform paired t-test on averaged concentration change for each trial [18], 
while others average all the trials at each time point and performs t-test to compare 
each point with a baseline point [5, 12]. Additionally, a small number of researchers 
perform machine learning classification and clustering on fNIRS data [4, 5].  

We performed two analyses of the brain data to confirm the presence of differences 
in hemoglobin concentrations for the different conditions: a classic statistical analysis 
to establish the differences between conditions, and a more novel task classification 
that will show the possibility of using this data in a real-time adaptive system.  

Data Preprocessing. We preprocessed the raw data to remove artifacts and transform 
it into concentration of oxygenated and deoxygenated hemoglobin. To remove motion 
artifacts, and optical changes due to breathing and heart beat, we applied a folding 
average filter using a non-recursive time-domain band pass filter, keeping frequencies 
between 0.01Hz and 0.5Hz. The filtered raw data was then transformed into 
oxygenated hemoglobin and deoxygenated hemoglobin concentrations (respectively 
[HbO] and [Hb]), using the modified Beer-Lambert law [8].  



Given the assumption that the brain returns to a baseline state during each rest 
period following the stimuli, even though it may not be the same baseline state in each 
rest period, we shift each trial so that the initial value is zero to control for differences 
in initial state. Finally, we separate each trial according to Activeness—whether the 
user was playing or resting. Figure 4 illustrates trials of data for a particular stimulus.  
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Fig. 4. Example of fNIRS data. The data displayed is subject 2’s [HbO], from source 3 of the 
right probe, filtered. The red, ticker line indicates the mean of all trials. The left half of the data 
was taken when the user was playing the easy Pacman, and the right half was the rest period 
following.  

Statistical Analysis. For the statistical analysis, we average each trial of each 
condition to get a mean value of [HbO] and [Hb], for each difficulty level, activeness, 
hemisphere and channel. We then apply a factorial repeated measures analysis of 
variance (ANOVA) on Difficulty level (2) x Activeness (2) x Hemoglobin Type (2) x 
Hemisphere (2) x Channel (2) x Subject (9). This factorial ANOVA will observe 
differences within each participant, and determine if they are significant across 
participants. If the end result is to construct a system that can respond to different 
individuals with a minimum of training, we need to know how different we should 
expect individuals to be—hence including subjects as a factor in the analysis. Given 
the novelty of the fNIRS method, and the lack of well established analysis methods in 
previous work in this area, the cortical distribution of the(combination of channel and 
hemoglobin type effects cannot yet be predicted beforehand. In addition to the 
statistical significance, we report the effect size of the interaction (ω2), which is the 
magnitude of the observed interaction, and indicates practical significance. An 
omega-squared measure of 0.1 indicates a small effect, 0.3 a medium effect and 0.5 a 
large effect [19].  

We found that the Hemoglobin Type was a significant factor, with a medium effect 
(F(1, 8)=6.819, p<0.05, ω2=0.39). This was expected, because [Hb] and [HbO] are 
present in different concentrations in the blood. The interaction of Channel x 



Hemoglobin Type is also significant, with a medium effect (F(1, 8)=5.468, p<0.05, 
ω2= 0.33), indicating that [Hb] and [HbO] are not the same at a given channel. 

Game-playing compared to resting are significantly different as an interaction with 
channel with a large effect size (Activeness x Channel, F(1, 8)=27.767, p<0.001, ω2= 
0.75), showing that there is a difference between playing Pacman and resting, and that 
this difference varies as a function of the cortical depth of the measurement (that is, 
the source-detector distance). We also observed that the interaction of Activeness x 
Channel x Hemoglobin Type is significant, with a medium effect (F(1, 8)=5.412, 
p<0.05, ω2= 0.32).  

Finally, we observed a significant interaction of Difficulty Level x Activeness x 
Channel x Hemoglobin Type, with a small effect size (F(1, 8)= 7.645, p<0.05, ω2= 
0.18). This interaction shows that we can significantly distinguish between the 
activeness of the participant, and the degree of difficulty of the current game when we 
take into account the channel and the hemoglobin type. This confirms our initial 
hypothesis.  

Machine Learning Classification. Statistical analysis confirmed our hypothesis that 
the brain signals in the different conditions were significantly different. We then 
wanted to determine whether this signal could be used in an adaptive user interface. 
To do this, we used machine learning to train a classifier. 

We chose sequence classification [20] because of its simple nature. Sequence 
classification applies a label to an entire sequence of data, and uses each data point as 
a feature. In our case, a sequence is one trial, containing 180 points. We used the same 
preprocessing as for the statistical analysis, but we use non-zeroed data, as it is more 
similar to data we would have in a real time brain-computer interface.  

Because we have multivariate data (8 recordings for each time point: 2 probes x 2 
channels x 2 hemoglobin types), we classify each channel individually first. To 
combine the results of all these classifications, each classifier votes for the label of the 
example. We used a weighted voting technique that takes into account the probability 
distribution of each example by each classifier. 

The classification algorithm used is k-nearest-neighbors (kNN), with k=3. kNN 
uses the label of the three most similar examples (the closest neighbors) to the 
example to classify, and assigns a label based on the weighted average of their labels. 
We used a random 10-fold cross-validation in all classifications. We trained the 
classifier on part of one subject's data, and then tested for this specific subject with the 
left out data. This procedure was repeated for each subject.  

We attempted three types of classification: (a) Activeness (Play versus Rest), (b) 
Difficulty level (Easy versus Hard), and (c) Two difficulty levels and rest (Easy versus 
Hard versus Rest). To accomplish each classification, we selected and/or grouped the 
trials differently. For Activeness, we combined all playing trials into one class, and all 
resting trials into another to form two classes. For Difficulty Level, we compared the 
easy and hard levels using the play trials only. Finally, in Two difficulty levels and 
rest, we compared three conditions: the play period of the easy level, the play period 
of the hard level, and all rest periods. Figure 5 shows the average accuracy of each 
type of classification (accuracy averaged over subjects). 



 

Fig. 5. Average accuracy for different classifications, with the standard variation and the 
random classification accuracy. Activeness compares the playing trials to the resting trials; 
Difficulty Level compares the easy and hard levels using the play trials only; Two difficulty 
levels and rest compares the easy playing trials versus the hard playing trials versus the resting 
trials.  

5   Discussion 

Our analyses show that we can distinguish between subjects being active and passive 
in their mental state (Activeness), as well as between different levels of game 
complexity (Difficulty Level) in this particular task when combined with the 
activeness of the participant, the channel and hemoglobin type measured. The classic 
statistical analysis confirmed that these conditions produced different patterns in 
blood oxygenation level, and the machine-learning analysis confirms that these 
patterns can be distinguished by the classifiers used. 

While some might argue that performance data is sufficient to classify the 
difficulty level of a game and can be obtained without interference, the goal of this 
study is to investigate the use of the brain measurements with fNIRS as a new input 
device. In a more complex problem, performance and brain data coming from fNIRS 
might not be as related, e.g. if the user is working hard yet performing poorly at some 
point. In addition, distractions may also produce workload increases that would not 
obvious from monitoring game settings and performance, and thus may necessitate 
brain measurements. That is, a participant playing a simple game while answering 
difficult questions might also show brain activity relating to increased workload that 
would be incomprehensible based only on performance data (e.g. [21]). In real, non 
gaming situations, we might not have performance data like in the present case, as we 
don’t always know what to measure— how hard is an air traffic controller working, or 
a person creating a budget on a spreadsheet? The use of the brain signal as an 
auxiliary input could provide better results in these situations. 



5.1   Brain activation when playing Pacman: play versus rest 

Results indicate the presence of a distinct brain signal when playing Pacman, in 
comparison to the rest periods. The Activeness classification in Figure 5 yields an 
average accuracy of 94.4%. It indicates a noticeable difference between the playing 
signal, and the resting signal. This corresponds to the results obtained with the 
statistical analysis, where Activeness was a significant factor in multiple interactions. 
This provides real time measurements that could be used in an adaptive interface. Our 
results corroborate those of previous studies that showed prefrontal cortex activity 
related to video games, measured with fNIRS.  

5.2   Difficulty levels: easy versus hard 

The Difficulty level of the game was shown to be a significant factor in this 
experiment in both types of analyses. This is supported with the fact that users 
perceived the two levels as being significantly different according to the NASA-TLX. 
Hence, we can say that there was a significant cognitive difference between the two 
levels. Previous fNIRS game experiments [12, 13] only analyzed stimuli versus non-
stimuli periods (which in this experiment we have called activeness), and not two 
levels of difficulty, making this result an advance over prior work. 

However, the statistically significant interaction that included Difficulty Level had a 
small effect size, and classifying the difficulty of playing periods yields an average 
accuracy of 61.1%. This relatively low accuracy indicates that it is difficult with this 
classifier to differentiate between the two levels, which relate to the small effect size 
found in the statistical analysis. We also observed significant inter-subject variability: 
four participants scored between 65% and 85%. This indicates that the two difficulty 
levels might be significantly different with only part of the participants. As everyone’s 
brain varies greatly, this is not a surprising result. 

A comparison of three types of conditions (Two difficulty levels and rest) indicates 
an encouraging average accuracy of 76.7%, explained by the low differentiation 
between the difficulty levels, and the high separation between the activeness of the 
subjects. We must note that the difference in brain signal measure is not strong. One 
explanation may be that the difference in mental processes between each level 
manifests itself in other brain locations besides the anterior prefrontal cortex (location 
measured), such as in the dorsolateral prefrontal cortex. It could also be that the 
difference between the two difficulty levels was not big enough to cause strong 
changes in activation.  

Results are consistent with prior work. Distinguishing work from rest was 
relatively easy, but discriminating different workload levels was harder, with 
significant inter-subject variability. Similar results have been found over decades of 
EEG work (e.g. [22, 23]), which may suggest fundamental limitations in making fine 
discriminations between two similar workload levels. 



5.3   Subject movement 

We noted earlier that subjects’ motions can sometimes be picked up by fNIRS 
devices. We believe that by simply asking the subjects to restrain their movement 
(major limb movements, as well as yawning and frowning), and by applying a 
filtering algorithm, we can minimize these motion artifacts. The data showed in this 
paper corroborates this hypothesis. The experiment was located in a quiet work 
environment, our subjects did use the keyboard, and significant differences between 
conditions were still obtained. This is good news for the use of fNIRS in HCI, as it 
shows the feasibility of using such tool in a real setting. We hypothesize that the use 
of the mouse would also be acceptable because those movements are usually minimal.  
 
Overall, the findings indicate the presence of brain activation in the anterior prefrontal 
cortex when playing Pacman. Because the activation of the different levels of 
difficulty is correlated with mental workload (measured with NASA-TLX), we can 
presume that the difficulty level in this experiment is also correlated with mental 
workload.  

The machine learning results show that fNIRS data can be classified easily, 
suggesting great potential as an auxiliary input for an adaptive interface. In the long 
run, our goal is to be able to classify data in real time. 

6   Future Work 

There is much interesting work to be done with fNIRS that could benefit the HCI 
community. Next steps include converting an offline classifier into a real-time 
algorithm that accepts streaming data for use in an adaptive interactive user interface. 
Additional data analysis could further resolve the temporal dynamics of classification 
efficacy, such as detecting workload changes within the first 2, 5, or 10 seconds 
instead of 30. Furthermore, a probe with more sensors, placed differently, could lead 
to a stronger signal, as it would pick up changes in blood oxygenation in more 
locations.  

Saito et al observed a larger activation cluster in the dorsolateral prefrontal cortex 
with the games of Othello and Tetris than with Space Invaders [14]. This was justified 
with the fact that Othello and Tetris require spatial logical thinking (planning and 
memory of prior moves). The game of Pacman relates more to Space Invaders than to 
Othello or Tetris, as both are arcade games, and not puzzles, suggesting the possibility 
of a stronger signal with a different game. In addition, previous work using fNIRS to 
study video games compare different types of games (e.g. shooter game versus puzzle 
game), which could be interesting to experiment with, such as contrasting different 
levels in other types of games. This could verify whether differentiating two levels of 
video games yield weak results in other game types, or that Pacman’s main brain 
activation is located elsewhere.  

In a larger research context, exploring the use of fNIRS in an adaptive interface 
would prove interesting for the HCI community. Pacman was chosen in this 
experiment because of its great potential for passive adaptability: it is easy to change 



the amount of enemies to maintain interest without overwhelming the user. Results of 
the comparison of two different levels could be applied to other games of similar 
mental demand. The correlation between mental workload and difficulty levels in this 
experiment indicates we could also apply the current results to general applications 
that respond to such measurements.  

There are limitations to using fNIRS in real-time, such as the fact that the 
metabolic response measured by fNIRS occurs over a few seconds, and the difficulty 
of filtering out motion artifacts in real time. This suggests that a real time user 
interface would be hard-pressed to produce an immediate, perfect response. Using 
fNIRS as a passive supplemental input will avoid some of these issues since the 
interface would not be dependent on this signal for its interaction. The interface can 
be adapted in a subtle matter, when we have a high degree of certainty in the user’s 
cognitive state. In the case of an adaptive Pacman, changing the difficulty level should 
not be clearly noticeable to the user.  

7 Conclusion 

In this experiment, we have shown that functional near-infrared spectroscopy can 
distinguish between the brain at rest and the brain activated when playing a video 
game, both using statistical analysis and machine learning classification. We also 
demonstrated that we can differentiate two levels of difficulty. The activation of the 
different levels of difficulty is correlated with mental workload, measured with 
NASA-TLX. Hence, we can presume that the difficulty level in this experiment is 
correlated with mental workload. However, our classification accuracy was low when 
distinguishing easy or hard levels.  

We introduced fNIRS as a new input device to the HCI community. It shows 
potential by its ability to measure different brain signals, such as difficulty level and 
mental workload, and its ease of use, and quick setup time. This is a step forward, as 
previous work only studied the activeness of the user during video games using 
fNIRS. We believe this work to be a stepping stone to using fNIRS in an adaptive user 
interface, in this case a passive brain-computer interface. In a real time user interface, 
we could use fNIRS measurement as an additional input on which to adapt the 
interface. In the case of Pacman, it could be used to modify the game’s difficulty level 
to keep the user in an ideal game level, always challenged without being 
overwhelmed.  
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