
An XML-based Framework for Dynamic Service
Management

Mazen Malek Shiaa, Shanshan Jiang, Paramai Supadulchai and Joan J. Vila-
Armenegol

Department of Telematics
Norwegian University of Science and Technology (NTNU)

N-7491 Trondheim, Norway
{malek, ssjiang, paramai}@item.ntnu.no , vilaarme@stud.ntnu.no

Abstract. Service systems are likely to be highly dynamic in terms of changing
resources and configurations. On the one hand, resources are increasingly
configurable, extendable, and replaceable. On the other hand, their availability is
also varying. For this reason, the handling of these changes is crucial to achieve
efficiency. To accomplish this objective, a framework for dynamic service
management with respect to service specification and adaptation is proposed.

1 Introduction

A service system, in general, is viewed as a composition of service components. In the lifecycle
of service systems (or service components) there are two main phases: the service specification and
the service execution phases. The first handles the way services being specified, while the second
comprises all the tasks related to service instantiation, operation and maintenance. Historically,
service management as a concept has always been discussed and disputed within the second phase
only, i.e. independently from the Service Specification. Manual modification of the service
specification and thereafter configuration and reconfiguration are therefore needed. The concept of
Dynamic Service Management will take a different approach to service management. It will propose
procedures that will make services adaptable to the dynamic changes in their execution
environment, based on modifiable and selectable service specifications.
In this paper, we propose a framework for Dynamic Service Management, which addresses two key
issues; Service Specification and Service Adaptation. The main idea is to use behavior specifications
with generalized action types as the service specifications. The actual executing code, or the action
libraries that include routines specific to the execution environment, is determined during run-time.
The system resources are represented by the so-called Capability and Status of the system, which
characterize all the information related to resources, functions and data inherent to a particular node
and may be used by a service component to achieve its functionality. Service Adaptation is achieved
by allowing the service components to dynamically modify their functionality by requesting
changes to their service specification. The framework uses web services to manage the availability
and communication of service components.

2 Related work

Service management, and dynamic service management, has been dealt with in a number of
papers, e.g. in active networks [1], replacement of software modules in [2]. In general, the principles
discussed in [3] are considered to serve as a basis for any dynamic change management, which are
also followed in this paper. Another approach, sharing our view of Capability availability, can be
found in [4]. It addresses the problem of providing information access to mobile computers using
the principle of adjusting the data according to the environment status. Each application is
responsible for deciding how to exploit available resources by selecting the fidelity level of the
transmitted data. The adaptation is based on choosing between different versions of the data (fidelity
levels) in order to match the resource availability. Our work targets the adaptation of any kind of
behavior, instead of the adaptation of data itself. It requires that the behavior is rich in its processing
possibilities. In this regard, the support platform (that executes in the nodes) is responsible for
monitoring resource availability, notifying applications of relevant changes to those resources and
enforcing resources allocation decisions. Each application is responsible for deciding how best to
exploit available resources.

3 Service Specification

As a basic assumption in the framework, a service is viewed as a composition of one or more
service components (we also consider a service as a play consisting of different roles.) Each Service
Component is realized or carried out by one or more Role-Figure (being an entity in the architecture
that is capable of representing some well-defined functionality). A Role-Figure is realized by a
software component (or a collaboration of software components, e.g. multi-threaded processes)
executing in a node. However, throughout this paper, and as an abstraction from the implementation
domain, Role-Figure will be the constituent of the architecture that is used to provide a basis for
service specification and instantiation. In this regard, a Role-Figure specification is the service (or
part of a service) specification, which gives a service behavior description. The most intuitive way
to model such a specification is by a State Machine model (one well-known and applied model is
the Extended Finite State Machine, EFSM, that is considered here.) [5]. Figure 1 shows the EFSM
data structure for the Role-Figure specification. The behavior description defined in the Role-Figure
specification consists of states, data and variables, inputs, outputs, and different actions. Actions
are functions and tasks performed by the Role-Figure during a specific state. They may include
calculations on local data, method calls, time measurements, etc. The <Action> list in the Role-
Figure specifications specifies only the action type, i.e. the method name, and parameters for the
action. Each action type belongs to some Action Group according to the nature of action.

Declaring Actions by their general types and classifying them into Actions Groups (e.g. G1:
Node Computation Capability, G2: Communication model, G3: Graphics, G4: I/O interaction) is a
technique used to tackle the problem of platform and implementation independence, as well as
achieving a better flexibility and reusability in service and application design. Using Action Types
and Action Groups in the service specification keeps the specification short, clean and abstract from
how it would eventually be implemented in different end-user devices, operating policies, and
executing environments. For instance, actions such as terminate, exit, error handling, etc. can be
classified in “G100: Control Functions”. Consequently, the action terminate would be used in a
specification as: <actionType>terminate</actionType> <actionGroup>G100</actionGroup>

The Capability concept abstracts all the information related to functions, resources and data
required by the Role-Figures to achieve their functionality. Examples of such capabilities can be:
software/hardware components, such as units of processing, storage, communication, system data,
etc. Role-Figures achieve tasks by performing or executing actions. Such actions would naturally
consume or require resources, or capabilities. A Role-Figure specification explicitly specifies what
sorts of capabilities are required. Occasionally, the execution of the Role-Figure halts if certain
capabilities are not available. Status comprises observable counting measures to reflect the resulting
state of the system.

EFSM_name
string

init_state
string

data

+

EFSM

FSM_name

string

output

FSM_name

string

next_state

*

tran_rule

state

state_name
string

input
string

*
FSM_name

string

actions

+

Action Type
string

parameter
string

Action Group
string

*

*

Figure 1 EFSM model data structure.

As have been indicated previously, Action Types, and eventually their classes or Action Groups,
are not “executables” that may be run in a specific environment or device. Therefore, service
designers should map their actions to executable routines provided by device manufacturers
(Usually using built-in function calls, with explicit and proper parameter values, through the
device’s Application Programming Interface, or API.) In this regard, these executable routines
should also be classified, to indicate what operating circumstances and capability requirements, they
are working within and demanding for. We refer to this classification as Capability Categories, so
that each category represents a capability set. Examples of Capability Categories can be: C1:
Powerful PDA, C2: Basic PDA, C10: Bluetooth, C11: WLAN, C100: Default CC for G100. A
mapping is therefore required to link the action definitions in the service specification to the
executable routines stored in Action Libraries.

4 Dynamic Service Management Framework

The Framework presented here considers three distinct forms of Role-Figure specification.
Firstly, Role-Figure specification exists as a static representation of the behavior of the Role-Figure
functionality. Secondly, Role-Figure specification would exist as an instantiated code or class
instances, with all the necessary mappings to their executing environment, which is “instantiated
Role-Figure specification.” However, a third form may exist between these two forms. Once the
capability category is determined, it is important to extend and convert certain actions into

corresponding sets of actions, e.g. providing extra security and authentication checks. This form we
refer to as “calculated Role-Figure specification.”

The framework for Dynamic Service Management is illustrated in Figure 2. The components of
the framework are:
1. Play Repository: a data base that contains the service definitions and includes:
� Role-Figure Specifications: provide behavior definitions for each Role-Figure, including the

Action Types to be performed and their corresponding Action Groups.
� Selection Rules: provide information for dynamically selecting the proper Role-Figure

Specification, if it has several corresponding specifications.
� Mapping Rules: specify the mapping between capabilities and capability categories.
2. Capability and Status Repository (CSRep): is a database that provides a snapshot of the

resources of the system. It maintains information on all capability and status data in all system
nodes.

3. Action Library: is a database that contains codes for the state machine-based actions. These
codes are implemented according to the capability category they require.

4. Service Manager (SM): is responsible for the handling of Initial Service requests (to instantiate
a Role-Figure), Role-Figure move (to move an already instantiated Role-Figure from one node
to another), and Function Update requests (to change the functionality of an already
instantiated Role-Figure). It, first, selects a specific Role-Figure specification based on the
Selection Rules. Secondly, it calculates the offered Capability Category according to the
Mapping Rules, which is denoted as Mapping table. Then it generates the calculated Role
Figure Specification by adding the corresponding Capability Category information and the
substructures that can be used for decision-making when capability changes occur. This
calculated Role Figure Specification and the Mapping table are then sent to the proper State
Machine Interpreter for execution.

5. Requests: supply, on the one hand, the identification of the Role-Figure to be instantiated or
modified. On the other hand, they provide the information to be taken into consideration during
the calculation of the Capability Category. Three types of service requests may be handled by
the SM:

� Initial Service request indicates a role to be executed in a node.
� Role-Figure move is issued when there is a severe deterioration in certain capabilities

availability or the Role-Figure is requested to move to achieve a mobility task for instance. [6]
gives an overview of the mobility management of Role-Figures.

� Function Update request is issued to update a functionality due to capability change.
6. Results: are the outcomes of the calculations performed by SM, which contains the following:
� calculated Role-Figure Specification indicates a changed Role-Figure specification.
� Mapping table is the result of calculating and matching of Capability Categories

based on the given instantaneous capability situation, Mapping rules, and incoming
request and its parameters.

7. State Machine Interpreter (SMI): is a State Machine execution support [5]. This is the primary
entity in the framework responsible for the execution of Role-Figures according to the
instantiated Role-Figure Specification. The framework allows for a decentralized computation.
The dotted-arrow connecting the Play Repository and the SMI allows for the calculation of the
Role-Figure Specification to be conducted in the node where it will execute, i.e. by the SMI
instead of the SM that is, in most cases, would exist at a remote location. This option can solve
problems related to over-loaded SM, congested network, time-critical applications, etc.

Node / Device

Service Manager
(SM)

Action
Library

Capability
& Status
(CSRep)

Play
Repository

State Machine
Interpreter

(SMI)

ManuscriptRole-Figure
Specification

Selection
Rules

Mapping
Rules

Capability
Set

Subset of
Action
Lbrary

Funtion Update
requests

Initial Service
requests

Role-Figure
move

Role-Figure
Specification
(instantiated)

Role-Figure

Role-Figure
Specification
(instantiated)

Role-Figure

ManuscriptRole-Figure
Specification
(calculated)

Mapping
table

Figure 2 Dynamic Service Management Framework.

The next specification is of a clientMultimediaPlayer Role-Figure that runs on a Laptop, with
both the capability of WLAN (default) and Bluetooth (used when WLAN is unavailable).

<state name=”stMediaPlay”>
 <actionType>MediaPlay</actionType>
 <actionGroup>G2</actionGroup>
 <CapCategory>C10</CapCategory>
 <CapCategory>C11</CapCategory>
 <Config>
 <defaultCC>C10</defaultCC>
 <ProblemType>
 <List>out of coverage</List>
 <List>congestion</List>
 </ProblemType>
 <choice>
 <check>Check Bluetooth neighbourhood</check>
 <substate name=”Bluetooth”>
 <condition value=”available”>
 <output>
 <msg type=”FunctionUpdate”>
 <param>
 <name>manuscript</name>
 <value>SchoolClient</value>
 </param>
 <param>
 <name>C10</name>
 <value>out of coverage</value>
 </param>

 <param>
 <name>Wireless Communication</name>
 <value>unavailable</value>
 </param>
 <dest>ServiceManager</dest>
 </msg>
 </output>
 <nextState>stWaitForManuscript</nextState>
 </substate>
 <substate name=”NoBluetooth”>
 <condition value=”unavailable” offline=”No”>
 <actionType>Terminate</actionType>
 <actionGroup>G100</actionGroup>
 <CapCategory>C100</CapCategory>
 <nextState>stTerminate</nextState>
 </substate>
 <substate name=”Offline”>
 <condition value=”unavailable” offline=”Yes”>
 <actionType>ChangeToOffline</actionType>
 <actionGroup>G100</actionGroup>
 <CapCategory>C100</CapCategory>
 <nextState>stWaitUserInput</nextState>
 </substate>
 </choice>
 </Config>
 <nextState>stWaitUserInput</nextState>
</state>

Part of a calculated specification for a clientMediaPlayer Role-Figure, in which an action of simple
communication has been converted into a structure of additional actions and substates.

5 Implementation issues

The framework has been developed and implemented as part of the TAPAS architecture, see
[6,7,8] and the URL: http://tapas.item.ntnu.no/. The implementation of the framework is built
around the support functionality of the TAPAS core platform. Java Web Services Developer Pack
(Java WSDP) [9] was applied to develop the main communication parts of the framework, while
Apache Axis [10] was used as a SOAP server. In this regard, nodes running the platform will have
an entity that supports Web Services requests and replies. Figure 3 shows a possible implementation
of the framework, in which a configuration of two nodes running two and three distinct Role-
Figures is applied, beside a node running the SM and a web server containing the repository data.
The TAPAS Core Platform has been extended with Web-services communication routines, node
registry capabilities, and extended configuration data reflecting the reachability of SM. In the figure
a connection is highlighted between the CSRep and the nodes participating in the execution of these
Role-Figures. Although it has not been fully implemented, a capability registration and update
mechanism is considered, which keeps the CSRep updated in terms of any capability change in the
nodes. Throughout the experimentation process such update has been conducted manually in order
to simplify the overall processing.

WebServer

Action
Library

Play
Repository

Node3

State Machine
Interpreter

(SMI)

Role-Figure
Role-Figure

Node2

State Machine
Interpreter

(SMI)

Role-FigureRole-Figure

Role-Figure

Node1

Service Manager
(SM)

Capability
& Status
(CSRep)

configurationFile

bootstrap

TAPAS Core PlatformTAPAS Core Platform

TAPAS Core Platform

configurationFile

bootstrap

configurationFile

bootstrap

Communication Network

server.tapas.org
node2.tapas.org node3.tapas.org

node1.tapas.org

Figure 3 An implementation of the Dynamic Service Framework within the TAPAS

platform

6 Experimentation Scenarios

Several scenarios have been proposed to demonstrate the applicability and foremost features of
the framework. During the experimentation, simple application scenarios have been used. The
application used was the Teleschool, which is an application facilitating distance-learning, allowing
students and teachers to participate in virtual class activities in real-time or off-line modes, using
multimedia capabilities on various types of terminals and devices. The test scenarios were limited to
run and execute the client Role-Figures, and examine their proper functionality. Here we instantiate
SchoolClient Role-Figure on a node featuring a Bluetooth and WLAN communications. Below we
show an example of a Role-Figure move request to initiate a move functionality of a Role-Figure
from a node to another one.

<RoleFigureMoveRequest>
 <sender><oNode>http://Node2.tapas.org</oNode>
 </sender>
 <dateTime />
 <serviceType>Teleschool</serviceType>
 <roleRequesting>SchoolClient</roleRequesting>
 <RFSUsed>SchoolClient_Advanced</RFSUsed>
 <preferredConfiguration>
 <nodeInstalling>
 http://Node3.tapas.org
 </nodeInstalling>
 </preferredConfiguration>
 <contextInfo>
 <connectionUsed>LAN</connectionUsed>

 <userSubscription>Advanced</userSubscription>
 <MMSupport>VideoPlayer</MMSupport>
 </contextInfo>
 <stateInfo>

 <currentState>stInitUserInterface
 </currentState>
 <variables>
 <variable>
 <name>v_server</name>
 <value>aaaaaa</value>
 </variable>
 </variables>

 </stateInfo>
</RoleFigureMoveRequest>

An example Role-Figure move request used to move a Role-Figure from Node2 to Node3

WebServer

Action
Library

Play
Repository

Node3

State Machine
Interpreter

(SMI)

RF_3_1

Node2

State Machine
Interpreter

(SMI)

RF_2_1

Node1

Service Manager
(SM)

Capability
& Status
(CSRep)

TAPAS Core PlatformTAPAS Core Platform

TAPAS Core Platform

server.tapas.org

1: When there is a need to move an
instantiated Role-Figure, a Role-Figure
Move request is sent to SM, indicating
where to re-instantiate it, and how to let it
continue its functionality or performance.
This request contains information about the
state information, like the current state of
the role figure, and the variable information.

2: A new mapping table and Role-Figure
Specification are sent to the new location, in
this case Node3.

3: The TAPAS Core Platform takes care of
the mobility handling, creating a new role
figure and obtaining the required capability.
SMI downloads the corresponding Role-
Figure Specification from the Play
Repisotory,

4: and a subset of the Action Library, then it
restores the state information and resumes
the execution of the moving role figure

1

2

3

4

Figure 4 Experimentation scenario of a Role-Figure move including two nodes.

http://comp2.tapas.org/

7 Conclusion

In this paper some challenges of the Dynamic Service Management have been
discussed, and a framework has been proposed to tackle them. In a highly dynamic
system, components composing the system come and go, as well as the system resources
that are allocated for them vary and change all the time. The demonstrated framework
provides a way of enabling the dynamic service management based on specifications that
can be selected, their behavior be computed, and their handling of system resources are all
based on the available capabilities in the execution environment. Specifications contain
only Action Types and Action Groups, while the executable code or Action Libraries are
available on a different database. This distinction is mainly to achieve flexibility.
Capability Categories classify these executables based on the capability information in the
system.

References

1. M. Brunner and R. Stadler, Service Management in Multiparty Active Networks, IEEE
Communications Magazine, Vol. 38, No. 3, pp. 144-151, March 2000.

2. Christine R. Hofmeister and James M.Purtilo. Dynamic reconfiguration in distributed systems:
Adapting software modules for replacement. In Proceedings of the 13th International
Conference on Distributed Computing Systems, IEEE Computer Society Press, May 1993.

3. Jeff Kramer and Jeff Magee. The Evolving Philosophers Problem: Dynamic Change
Management. IEEE Transactions on Software Engineering, 16(11):1293-1306, Nov. 1990.

4. B.D. Noble and M. Satyanarayanan. Experience with adaptive mobile applications in Odyssey
(1999). Mobile Networks and Applications, 4, 1999.

5. Jiang, S. and Aagesen, F. A. (2003) XML-based Dynamic Service Behaviour Representation.
NIK'2003. Oslo, Norway, November 2003. [http://tapas.item.ntnu.no]

6. Shiaa M. M and Aagesen. F. A. (2002) Architectural Considerations for Personal Mobility in
the Wireless Internet, Proc. IFIP TC/6 Personal Wireless Communications (PWC’2002),
Singapore, Kluwer Academic Publishers, October 2002. [http://tapas.item.ntnu.no]

7. Aagesen, F. A., Anutariya, C., Shiaa, M. M. and Helvik, B. E. (2002) Support Specification
and Selection in TAPAS. Proc. IFIP WG6.7 Workshop on Adaptable Networks and
Teleservices, Trondheim Norway, September 2002. [http://tapas.item.ntnu.no]

8. Aagesen, F. A., Helvik, B. E., Anutariya, C., and Shiaa M. M. (2003) On Adaptable
Networking, Proc. 2003 Int’l Conf. Information and Communication Technologies (ICT
2003), Thailand.

9. SUN Microsystems, the Web services Homepage, Java Web Services Developer Pack (WSDP)
documentation, http://java.sun.com/webservices/index.jsp

10. The Apache homepage, Apache Axis 1_1, http://ws.apache.org/axis/

http://tapas.item.ntnu.no/
http://tapas.item.ntnu.no/
http://tapas.item.ntnu.no/
http://java.sun.com/webservices/index.jsp
http://ws.apache.org/axis/

