
Inferring Presence in a Context-Aware Instant 

Messaging System 

Mikko Perttunen1 and Jukka Riekki2 

1Department of Electrical and Information Engineering and Infotech Oulu 

P.O.BOX 4500, 90014 University of Oulu, Finland 
Mikko.Perttunen@ee.oulu.fi  

2
Jukka.Riekki@ee.oulu.fi 

Abstract. The increasing volume of digital communication is raising new chal-

lenges in the management of the information flow. We discuss the usage of con-

text to infer presence information automatically for instant messaging applica-

tions. This results in easy-to-use applications and more reliable presence 

information. We suggest a new model, context relation, for representing the 

contexts that are relevant for inferring presence. The key idea is to represent 

both the communication initiator’s and the receiver’s contexts. The model al-

lows sophisticated control over presence information. We describe a fully func-

tional prototype utilizing context relations.   

1 Introduction 

Instant messaging (IM) has proved its usefulness: its popularity is growing fast, and it 

has been introduced into corporate use as well. Due to the increasing importance of 

IM as a method of everyday interpersonal communication, the volume of messages 

and simultaneous messaging sessions will increase. This development may lead to ex-

cessive interruptions on the user’s other tasks [1]. The problem can be solved by re-

ducing the attention required from the user to manage the messaging. 

IM has been described as "near-synchronous computer-based one-on-one commu-

nication" [2]. It is said to consist of two components: synchronicity and presence 

awareness. Synchronicity refers to real-time information transfer [3]. We define pres-

ence as the ability and willingness of a user to communicate with other users. This 

meaning has lately been designated as availability [4,5], but we prefer to speak about 

presence in a broad sense to cover the user’s situation more extensively than just in 

terms of online status [6,7]. For example, presence information can define the user to 

be at her desk or to be currently typing a message [3]. Presence-awareness means that 

presence information is used to decide whether communication with a user can be ini-

tiated. This information can be used by the user about to initiate communication, or 

the IM application can deliver instant messages only to users with appropriate pres-

ence status.  

In current IM applications, the users must update their presence information manu-

ally. For example, when a user enters a meeting room, she must remember to set her 

presence as unavailable. IM applications would be easier to use, if the updating of 



presence information were automatic. Such updating could be more reliable as well, 

since the users would not need to remember to manually set their presence. Further, 

more reliable presence information would eliminate unsuccessful attempts at commu-

nication, which unnecessarily interrupt the recipient and frustrate the initiator. Such 

automatic updating can be achieved by recognizing the user’s context and inferring 

her presence from that. In the above example, a meeting context would be recognized, 

and presence would be automatically changed to unavailable. 

This article shows how presence information can be updated automatically. Our 

main contribution is to use the contexts of both the recipient and the initiator in infer-

ring the recipient's presence. In the work reported by others, only the context of the 

recipient has been used. We formalize the concept as a context relation. We describe 

a fully functional prototype IM system to demonstrate this approach. 

We adopted the instant messaging terms presented in RFC 2778 [8]. In the general 

discussion, we map these terms in a simple IM system consisting of a separate IM ap-

plication for each user and one server. Presentity (i.e. presence entity) and watcher 

are mapped into the IM application's roles. Hence, a presentity is an IM application 

providing its user's presence information to other IM applications. A watcher, in turn, 

is an IM application receiving other users' presence information. We postpone the 

discussion of the implementation of such functionality to the section presenting the 

prototype. Furthermore, the users are also called presentities and watchers according 

to their roles at the different phases of instant messaging. 

The rest of the paper is organized as follows. In section 2 we list related work. In 

section 3 we describe context-aware instant messaging and the context relation. Sec-

tion 4 presents our application prototype. It is followed by a discussion of the findings 

in section 5. 

2 Related Work 

In this chapter, we present the related work on IM and context. We adopted Dey’s 

definitions of context and context-awareness [9]: 
 

Context is any information that can be used to characterize the situation of an en-

tity. An entity is a person, place, or object that is considered relevant to the inter-

action between a user and an application, including the user and applications 

themselves. 
 

A system is context-aware if it uses context to provide relevant information and/or 

services to the user, where relevancy depends on the user’s task. 
 

Peddemors et al [7] presented a system which (among its other features) allows us-

ers to set rules that cause the system to update their presence to a certain value when 

they are at a certain location. They also state that presence can be interpreted as part 

of the context of a user. The statement is reasonable, because presence information 

indicates the user’s current situation, sometimes also activity, which fits Dey’s defini-

tion.  

Ranganathan et al [10] developed ConChat, an IM system that automatically gives 

users cues about the context of their contacts. They also note the usability of context 



in avoiding semantic conflicts. ConChat, for example, automatically tags the currency 

of the sender’s country when discussing money. 

Tang and Begole [11] describe an IM system called Lilsys, which utilizes ambient 

sound, phone usage, and computer activity to infer the availability of a user. The 

Awarenex system [12] uses such parameters as location and current calendar events to 

give cues about a user’s presence. Related to their work with the Awarenex prototype, 

the researchers also developed algorithms to detect and model patterns of availability 

and unavailability over time. They integrated the work with the Awarenex prototype 

and demonstrated that the system can predict, for example, the time when a person 

comes back from lunch [13]. 

When a user is typing on a computer, she may be performing some task requiring 

concentration. When she has not typed for a while, almost every instant messaging 

application updates the user’s presence to unavailable by monitoring the keyboard 

and mouse activity. This is sometimes contradictory [11]. 

Voida et al identified contradictory user requirements in IM. For example, people 

want IM to be both asynchronous, in order to be able to be involved in many commu-

nication threads simultaneously, and synchronous, to get a prompt reply. Furthermore, 

they studied user expectations about context. They noticed, among other things, that 

the initiator of communication, despite the availability of the recipient, still wanted to 

query the recipient’s context in the first message [14]. 

3 Improving Presence Inference With Context Relations 

In IM, a message can be sent when the recipient is logged in to the system and her 

presence is available. This is interpreted by the sender as willingness of the recipient 

to receive messages and to respond to them in a timely manner. To avoid disturbance, 

a user can manually select to be unavailable. Because presence gives such an implica-

tion to the sender, it is important that the presence information provides maximally re-

liable information of the recipient’s situation. The correctness of presence reduces un-

successful communication attempts. 

To be easy to use, the application should be able to update the presence of the user 

without the user’s intervention. This also increases the reliability of the presence in-

formation, providing that the user might sometimes forget to update it. Presence up-

dating should be based on automatic context recognition and function according to 

rules accepted by the user.  

Automatic updating of presence can be achieved in two ways. First, only the con-

text of the presentity can be used in inferring her presence to the watchers. In this 

case, the watcher’s context has an effect only if it is part of the context of the presen-

tity. The second way of inferring presence will be discussed in more detail later in this 

chapter. 

The first way of inferring presence is illustrated in Figure 1. User B is the presen-

tity and User A is the watcher. User A has subscribed User B’s presence information. 

User B’s context change triggers presence inference, and User A is notified of the 

new presence of User B. Inferring is done using User B’s context-based presence 

rules.  



 

 

Fig. 1. Context-based inference of presence. 

Figure 2 shows how presence is inferred from user preferences and context infor-

mation. Boxes denote data and circles functions. User preferences define the user’s 

important locations, e.g. home and office. The context information used in the infer-

ence should be designed, as for any context-aware application, to best suit the needs 

in modeling the user’s situations. Here, we use activity and place as examples in our 

illustrations. For example, the user might select a rule “When my activity is confer-

ence, I’m unavailable”.  

Generally, the presence function in Figure 2 takes context as input and yields a 

presence value. Because both activity and place are derived from location, the rules 

may give conflicting values for presence. For example, a meeting could be scheduled 

to take place in the user’s own office, in which case the activity could be meeting and 

the place office. This situation can be handled by defining activity as the higher-

priority context. Thus, only when the user’s activity is unknown is the place used to 

derive presence.  

The above way of automatically updating presence easily leads to the following 

situation. User A and User B are both in the same lecture hall in a conference and find 

each other to be unavailable. However, for two friends, it would be natural be to be 

able to communicate and to exchange comments about the presentations. The desired 

scenario is illustrated in Figures 3 and 4: when User A enters the same lecture hall as 

User B, they are able to communicate. Such functionality can be achieved with the 

second way of inferring presence, context relation-based inference, which is discussed 

next. 



 

Fig. 2. Inferring presence from context and user preferences.  

 

Fig. 3. Context relation-based inference of presence: User B goes into a lecture hall. User A 

sees User B as unavailable and User B sees User A as available. 

 



 

Fig. 4. Context relation-based inference of presence: User A goes into the same lecture hall 

where User B is already present. As a result, they see each other as available. 

In Figures 3 and 4, User A has User B on her contact list. User A has thus sub-

scribed the presence changes of User B. Similarly, User B has User A on her contact 

list. At the beginning of the scenario illustrated in Figure 3, User B’s context (loca-

tion) changes, which causes the system to infer a new presence value for User B and 

to deliver it to the watcher, i.e. User A. This is straightforward for any context-aware 

IM system. The novelty of context relations suggested in this article is that the 

watcher's context has an effect on the presence of the presentity. Hence, a new pres-

ence value is inferred for User A as a reaction to the new context of User B. Figure 4 

shows similar actions taken when User A’s context changes. Consideration of the 

watcher's context enables the presence of User B to change when the context of User 

A changes. At the end of the scenario shown in Figure 4, the users A and B see each 

other as available and are thus able to communicate. 

We define the context pair (watcher, presentity) as a context relation. In IM, a con-

text relation is established between two users when one adds the other on to her con-

tact list. The contexts related by a context relation can be represented as: 

 

(contextw, contextp) 

 

where,  

 

context = context value, 

p = presentity = user, 

w = watcher = user or a group. 

 

In the above example, the user denotes an individual user of the IM system. The 

group denotes two or more users grouped together in the IM system. A wildcard any 

can be applied instead of a context value in the above expression. The number of con-



text relations for a (watcher, presentity) pair is not constrained; there can be as many 

relations as are required to achieve the desired context-aware behavior. Furthermore, 

the watcher's context value refers to an individual user's context even when the 

watcher is a group. Groups are used to minimize the number of relations and rules 

needed to implement context-sensitive presence updating. 

Context relations are used to form context relation-based rules that are controlled 

by the presentity. A rule for inferring presence from a context relation can be repre-

sented as: 

 

(contextw, contextp) → presencep. 

 

A wildcard any can be applied instead of a watcher or a context value in the above 

expression. A rule for any watcher is used when there are no specific rules for the 

watcher in question. Further, any context matches all contexts. It can be used, for ex-

ample, to specify that, for a specific context of a presentity, a certain presence is to be 

inferred no matter what the watcher's context is. 

The presence of a user is inferred separately for each watcher as follows: First, 

those rules for this (watcher, presentity) pair are triggered where the context values 

match the presentity's and the individual watcher's contexts. A rule for a watcher 

group is triggered if the individual watcher belongs to that group. Second, one rule of 

the triggered rules is selected (based on the rule priorities) and fired, resulting in a 

new presence value. The rules are owned by the presentities. Hence, the rules are used 

to control what presence the watchers see. 

When the context of a presentity changes, the presence must be updated in two dif-

ferent ways: 
 

1. For each watcher, infer the new presence of the presentity according to the presen-

tity’s context relation rules. 

2. For each contact, infer the new presence of the contact according to the contact’s 

context relation rules. 
 

Context relations and rules can be illustrated by the example shown in Figure 5. 

James has the users Peter, Diana, and David on his contact list, which means that he is 

watching these three users. Sarah and Diana are watching James’ presence (i.e. they 

have James on their contact lists). Now, James might have the following rules: 
 

(officeSarah, officeJames) → availableJames 
 

(anyall, officeJames) → unavailableJames 
 

Let’s assume that James’ place changes to office. The system performs the steps 1 

and 2 defined above. In step 1, James’ rules are applied to infer James’ presence for 

the watchers Diana and Sarah. For Sarah (assuming her context is office), both rules 

are triggered, but the first is fired as it has higher priority. There is no rule for Diana, 

so the rule for the group all is triggered and fired, because Diana is a member of this 

group. Further, the context any in the rule matches Diana’s recognized context (even 

if the context is unknown). As a result, Sarah can communicate with James, but Diana 

cannot. 



 

Fig. 5. Users as presentities and watchers. 

In step 2, we go through the contacts on James’ contact list. Taking Peter as an ex-

ample, the system would now find all the rules (not shown) for the presentity Peter. 

Then, a specific rule for the watcher James (or a group to which James belongs) 

would be searched and fired. This example illustrates how groups can be used to spec-

ify presence for the individual watchers that have no specific rules. The groups can be 

general, i.e. seen by many users, or a user can create groups for herself and specify 

the rules for those groups. 

To further illustrate these issues, the steps 1 and 2 above are shown as a simple al-

gorithm in Figure 6. In the figure, the watcher list is a list of watchers of a presentity. 

Furthermore, the Tables 1 and 2 show an example of how the contexts of a watcher 

and a presentity connected by a context relation can be represented. Each cell contains 

the resulting presence for a pair of context values (watcher, presentity), and each cell 

thus specifies a rule. The tables have a row for each context value of the watcher and 

a column for each context value of the presentity. Separate tables or rows are required 

for each separate watcher for which rules are defined. 

Table 1. Presence rule table for context type activity for inferring presence from a context 

relation. 

 

 

Table 2. Presence rule table for context type place for inferring presence from a context 

relation. 

 

CONFERENCE UNKNOWN

CONFERENCE AVAILABLE AVAILABLE

UNKNOWN UNAVAILABLE AVAILABLE

WATCHER'S 

ACTIVITY

PRESENTITY'S ACTIVITY

OFFICE HOME UNKNOWN

OFFICE AVAILABLE UNAVAILABLE UNAVAILABLE

HOME UNAVAILABLE AVAILABLE AVAILABLE

UNKNOWN AVAILABLE AVAILABLE AVAILABLE

WATCHER'S 

PLACE

PRESENTITY'S PLACE



 

 

Fig. 6. Algorithm for inferring presence when a presentity’s context changes. 

In these tables, the value unknown may denote that the data is not available be-

cause of access control issues. It could also be interpreted as a place or activity that 

the system cannot recognize. The rules in Table 2 specify, for example, that when the 

user is at home, watchers at the office see her as unavailable, while watchers at home 

see her as available.  

Although the context relation-based rules are applied automatically, the user can 

explicitly specify her presence (possibly for each watcher separately) at any given 

moment. The system may provide this option in two ways: First, the user can select 

her presence, as in an ordinary IM application, from a menu. Second, the user may be 

able to specify a rule “In the current context I’m unavailable for all users”. This is 

semi-automatic context-based presence: the user manually selects the rule, and thus 

her presence, for the time being, but the presence is automatically updated according 

to changes in context. In the example, the user-defined rule determines the presence 

for the time the context remains the same. When the context changes, that rule is de-

activated and automatic presence updating continues. 



4 Application 

4.1 Capnet System 

The Capnet (Context-Aware and Pervasive Networks) program focuses on context-

aware mobile technologies for ubiquitous computing. At the highest level, the Capnet 

architecture is decomposed into Capnet Engines, see Figure 7. Each device that be-

longs to the Capnet universe contains an engine. An engine may be in a powerful 

server without any user interface or in a mobile device with many application user in-

terfaces (UIs). As Capnet is a component-based software architecture, the basic build-

ing blocks of the engines are component instances, each specialized for producing the 

functionality of a certain domain area, such as service discovery, user interface, con-

text recognition, media processing, connectivity management, component manage-

ment, database access, or any service added to the system by developers. The Capnet 

universe is a distributed environment, which means that the engines can use compo-

nent instances running on the local device as well as remote instances running in en-

gines somewhere in the Capnet universe to provide the required functionality for the 

applications.  

 

Fig. 7. Capnet universe. 

Considering the design of an IM system, the distribution shown in Figure 7 gives a 

natural starting point. As the users of IM are distributed in the network (using mobile 

devices or many different desktops), each engine in Figure 7 can be seen as a device 

hosting the IM application of a user. Considering the natural connectivity of the en-

gines, the Capnet architecture seems well suited for developing an IM application. 

The context components provide abstraction of context information for its consum-

ers in the Capnet universe. Context components receive sensor data from a number of 

sensors and use the data to infer higher-level context information that is utilizable by 

the other Capnet components. 



4.2 Design and Implementation 

The context-aware instant messaging system was developed on the existing Capnet 

system. Below, we will describe the Capnet IM system briefly, without going into de-

tails of implementation. 

The IM system is composed of the components shown in Figure 8. In Capnet, the 

schedule information comes from a calendar application, while the location informa-

tion is provided by a location sensor component. The context components receive 

sensor data and infer contexts from it. 

 

 

Fig. 8. Software components of the prototype IM system. 

In our current implementation, automatic presence inference is performed by the 

IM component, which receives context information from the context component. In 

the next version, we plan to update the context component to provide presence infor-

mation as well. The context types activity and place, as shown in the Tables 1 and 2, 

are used in inferring presence. The inference is done using hard-coded rules common 

for all users; explicit representation of these rules is one challenge for further re-

search. There are rules for the groups co-workers, family, and other. The group used 

for presence inference is defined by the group of the watcher on the contact list of the 

presentity. If the watcher is not on the contact list of the presentity, then the group 

other is used for presence inference. A better way would be to show the watcher list 

for the presentity and to allow her to group the watchers. 

If a user sets her presence manually, the application instance reports the value to 

the IM component, which delivers the information to the watchers. The messages 

travel through the IM component from application to application. The user resolver 

component is used to resolve users by their name and to fetch user data by the user 

ID. Unique email-like identifiers identify users, and an identity is associated with a 

user when she logs into the Capnet system. 

Only the UI component is required to be executing in the thin terminal, e.g. a PDA, 

while the other component instances may be run on any device running a Capnet en-

gine, i.e. on a network on some server. 



4.3 Test Environment and Testing 

The mobile device, Compaq iPAQ PDA, is equipped with WLAN cards and IBM’s J9 

virtual machine. All mobile device components are implemented according to the 

PersonalJava 1.2a specification. Devices are located with the Ekahau positioning en-

gine that utilizes WLAN signal strengths measured in the devices. The university’s 

premises covered by WLAN are used as the test environment. All inter-device com-

munications utilize XML-RPC; the open-source Marquee XML-RPC library is used. 

We demonstrated the system with two users according to the scenarios in the Fig-

ures 3 and 4.  The users were using the PDAs described above. A smart living room 

environment was configured to be the home for the users, a meeting room to be the 

lecture hall in the scenarios and an office in our premises to be the office for the user. 

Also, we added an event occurring in the meeting room into the calendars of both us-

ers.  

When a user entered the meeting room, the Capnet system recognized the context 

change, allowing the IM system to infer a new presence for the user. In the case of 

two co-workers present in the same meeting room, the system successfully utilized 

context relation to infer them as available for each other. Overall, the system func-

tioned as shown in the scenario in Figures 3 and 4. 

Below, we present two screen shots of the Pocket PC screen captured via Micro-

soft’s Remote Display Control for Windows CE. Figure 9 shows the contact list view 

and a view of an ongoing chat of the IM application prototype. On the contact list, the 

user sees the presence of her contacts and the group that she has selected for each 

contact when entering it.  

 

Fig. 9. Views from the IM application prototype. Left: Contact list view. Right: Chat view. 

From the screen shown on the left in Figure 9, one-to-one messaging can be started 

by selecting a user from the contact list and clicking the ‘Chat’ button. A single one-



to-many message can be sent by selecting users from the contact list and clicking the 

’Post’ button. In both cases, the selected users must be available. In ongoing chats, 

the presence of the participants may change to unavailable at any time, but the com-

munication can still continue. When inferring presence, the system also generates a 

textual description of the reason for resulting presence value specific to each context 

relation. Clicking the ‘Show’ button displays the description of the selected user. 

5. Discussion 

We introduced context relation as a new concept in context-aware instant messaging. 

The key idea is to utilize both the communication initiator’s and the receiver’s con-

texts in inferring presence. We presented an IM prototype that utilizes context rela-

tions to update users’ presence information automatically. Automatic updating en-

ables user-friendly IM applications with reliable presence updating. It reduces 

disruptions by minimizing the number of communication attempts by others when the 

user is not willing to communicate. Furthermore, utilization of context relations in 

automatic updating allows sophisticated control over the presence information deliv-

ered to others. 

Being a new concept, context relation requires further research. Preliminary ex-

periments show that the use of context relations in inferring presence may improve 

the user experience of IM applications, but this should be studied in more detail.  Fur-

thermore, a clear way to visualize the context relations and the rules would facilitate 

the creation and modification of personal relations and rules. Moreover, introducing 

more versatile contexts may require modifications of the context relation model we 

presented. Context relations could be used in other awareness applications as well, as 

awareness generally means knowing the activities of others [15]. 

Although we allow groups as watchers in the rules, the resulting context relations 

are one-to-one relations between two users. However, it would be possible to extend 

the relations to one-to-many. For example, the user could set a rule: “When my co-

workers are having a coffee break and I am working, remind me about the coffee 

break”. A separate threshold could specify the number of group members that are re-

quired to have a coffee break before the group context is set to coffee break. Simi-

larly, we could allow presentity groups. For example, a system with the predefined 

groups patients, nurses, and doctors might set the presence of a nurse to available for 

patients when the nurse is at her desk and no doctor is near her (i.e. discussing with 

her). In this example, it is assumed that all patients and doctors are watchers of the 

nurses.  

As automatic context recognition is such a challenging topic, systems providing 

automatic presence updating still need to support manual presence selection as well. 

Furthermore, the system could learn the manual selections – when a user selects the 

same presence in the same context repeatedly, the system could suggest automatic set-

ting of presence. The routine learning methods presented in [16] could be used in 

learning the presence rules. It would be important that the user could control the 

learning, deciding which rules would be accepted and which rejected. Even when 

there is no learning, the user should be able to specify whether she wants to confirm 



the automatic presence changes, or if the new presence is applied without confirma-

tion.  

A context-aware instant messaging system should utilize the contexts of its users 

by all reasonable means. The other prototypes described in chapter 2 have demon-

strated the feasibility of utilizing context in IM in various ways. The ConChat [10] 

prototype does well in enriching IM communication with context information. 

Awarenex provides awareness information on whether the contacts are having phone 

calls, are engaged in other IM discussions, or have a scheduled calendar event going 

on [12]. The Capnet IM system did not aim to enrich communications or to provide 

more awareness information, although we consider them equally important as reliable 

presence inferring for an IM system. As an addition to the features of Awarenex, Be-

gole et al also demonstrated the prediction of availability from presence history data 

[13]. The routine learning methods discussed above could be used to predict presence 

as well. Predicted presence could be used in automatic presence inference when, for 

example, there is not enough information to infer presence from context. 

Lilsys [11] infers user’s availability from sensor data, such as sound, phone usage, 

and computer activity. Using inferred availability, the system gives cues to other users 

as ‘neutral’, ‘possibly unavailable’, or ‘probably unavailable’. The system utilizes a 

wider range of sensor data than our prototype. The Capnet IM prototype aims for bet-

ter presence inference by utilizing the context relation. The conceptual representation 

of the context relation enables the application of sophisticated rules to presence infer-

ence. 

Dourish and Bellotti point out a problem in awareness: the appropriateness of in-

formation about a person’s activity at a given time for a receiver depends on the re-

ceiver’s needs [15]. This problem could be alleviated in a context-aware IM system 

by choosing the exposed context information about a user to a receiver based on the 

receiver’s context. For example, more context information could be exposed about the 

users involved in the currently most active instant messaging session than about pas-

sive users on the contact list. 

Although we did not discuss or implement any security or privacy issues, we want 

to mention that context relation also has implications for these design issues. Basi-

cally, the user must have control over who can access her presence, or context, infor-

mation. Privacy in presence awareness systems has been studied widely, for example 

in [6].  

In addition to security and privacy, instant messaging standards [17] need to be 

considered in future work. Another future topic might be representation of the context 

relation-based presence rules by RDF. As a conclusion, we have demonstrated the ad-

vantages of context relations and the rules applied to them. We will continue to de-

velop the concept. 

Acknowledgments 

This work was funded by the National Technology Agency of Finland. The authors 

would like to thank all the personnel in the Capnet program, and the participating 

companies. 



References 

1. Cutrell E., Czerwinski M. and Horvitz E. (2001) Notification, disruption, and memory: 

Effects of messaging interruptions on memory and performance. INTERACT 2001 Con-

ference Proceedings. IOS Press, IFIP, 263-269. 

2. Nardi, B., Whittaker, S., & Bradner, E. (2000) Interaction and Outeraction: Instant mes-

saging in action. Proceedings of the ACM Conference on Computer Supported Coopera-

tive Work (CSCW 2000), New York, USA, 2000, 79-88. 

3. Bradbury, D. (2001) Pigeon post for the 21st century. Computer Weekly, 2001 October 

18, 1–6. 

4. Fogarty, J., Lai, J., and Christensen, J. (in press) Presence versus Availability: The Design 

and Evaluation of a Context-Aware Communication Client. To appear in International 

Journal of Human-Computer Studies (IJHCS). 

5. Greene, D., O’Mahony, D. (2004) Instant Messaging & Presence Management in Mobile 

Ad-Hoc Networks. In Proc. of the IEEE Annual Conference on Pervasive Computing and 

Communications Workshops (PERCOMW’04). Orlando, USA, March 14-17, 2004. 

6. Godefroid, P., Herbsleb, J.D., Jagadeesan, L.J., Du Li. (2000) Ensuring Privacy in Pres-

ence Awareness Systems: An Automated Verification Approach. In Proc. of the ACM 

Conference on Computer Supported Cooperative Work (CSCW 2000). Philadelphia, 

USA, Dec. 2000, 59-68. 

7. Peddemors, A.J.H., Lankhorst, M.M., de Heer, J. (2002) Combining presence, location 

and instant messaging in a context-aware mobile application framework. GigaMo-

bile/D2.8 (TI/RS/2002/068) Telematica Instituut Enschede. 

https://doc.telin.nl/dscgi/ds.py/Get/File-21982/PLIM_d28.pdf 

8. Day, M., Rosenberg, J., Sugano, H. (2000) A Model for Presence and Instant Messaging. 

RFC 2778, IETF. 

9. Dey, A.K., Abowd, G.D. (1999) Towards a Better Understanding of Context and Context-

Awareness, College of Computing, Georgia Institute of Technology, Atlanta GA USA, 

1999, Technical Report GIT-GVU-99-22. 

10. Ranganathan, A., Campbell, R.H., Ravi, A., Mahajan, A. (2002) ConChat: A Context-

Aware Chat Program. IEEE Pervasive computing, Volume: 1 , Issue: 3. 

11. Tang, J.C., Begole, J. (2003) Beyond Instant Messaging.  ACM Queue 2003 November, 

Volume 1, Issue 8. 

12. Tang, J., Yankelovich, N., Begole, J., Van Kleek, M., Li, F., Bhalodia, J. (2001) Con-

Nexus to Awarenex: Extending awareness to mobile users. In Proc SIGCHI Conference 

on Human Factors in Computing Systems (CHI 2001). Seattle, USA, 2001, 221-228. 

13. Begole, J. B., Tang, J. C. and Hill, R. (2003) Rhythm Modeling, Visualizations, and Ap-

plications. Proceedings of the ACM Symposium on User Interface Software and Technol-

ogy (UIST 2003). Vancouver, Canada, 2003, 11-20. 

14. Voida, A., Newstetter, W. C., Mynatt, E. D. (2002) When Conventions Collide: The Ten-

sions of Instant Messaging Attributed. Proceedings of the SIGCHI Conference on Human 

Factors in Computing Systems (CHI 2002) Minneapolis, USA, 2002, 187-194. 

15. Dourish, P. and Bellotti, V. (1992) Awareness and Coordination in Shared Workspaces. 

Proceedings of the ACM Conference on Computer Supported Cooperative Work 

(CSCW'92). Toronto, Ontario, Canada, 1992, 107-114. 

16. Pirttikangas, S., Riekki, J., Porspakka, S., Röning, J. (2004) Know Your Whereabouts. 

2004 Communication Networks and Distributed Systems Modeling and Simulation Con-

ference (CNDS'04), San Diego, California, USA, 19-22 January 2004. 

17. McCleaa, M., Yena, D.C., Huang, A. (in press). An analytical study towards the devel-

opment of a standardized IM application. Computer Standards & Interfaces, Volume: 26, 

Issue: 4, August 2004, 343-355. 


