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Abstract—Security risk quantification is a necessary step in 

protecting critical resources in today’s networked systems. 

Conventional security risk measures are based on the point 

estimates of the likelihoods of potential multi-step attacks that 

combine multiple vulnerabilities. Drawbacks of these measures 

are due to disregard for the tail risk, inherent inaccuracy of 

estimates of low probabilities, and reliance on the specific 

attacker(s) model. The recently proposed measure of 

cybersecurity risk - Cyber security Value at Risk (CyVaR), which 

is based on the VaR measure of financial risk, accounts for the tail 

risk. However, CyVaR still suffers from reliance on the specific 

attack model, and moreover has its own problems, e.g., it is not a 

coherent risk measure, which is currently considered to be a 

necessary trait of a risk measure. Following the recent trend of 

replacing VaR with the robust and coherent Entropic VaR (EVaR) 

as a financial risk measure, we suggest replacing CyVaR with 

CyEVaR. Using an example of a networked system and a highly 

motivated and capable attacker, we demonstrate that conventional 

risk measures may significantly underestimate the actual 

cybersecurity risk. Finally, we outline directions of future 

research. 
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I.  INTRODUCTION 

Real systems contain potential vulnerabilities which can be 

exploited by adversary(ies) in attempt to disrupt system 

operations.  Emergence of large-scale critical mission 

infrastructures prone to systemic failures, makes quantitative 

evaluation of the overall system security risk not only 

exceedingly urgent but also very challenging due to the large 

number of potential vulnerabilities and non-linear contribution 

of individual vulnerabilities to the overall system risk.  

Conventional measurement of the security risk by the expected 

economic loss due to successful exploits of potential 

vulnerabilities is often inadequate due to its disregard for the 

tail risk, inherent inaccuracy of estimates of low probabilities, 

and reliance on the attacker(s) model. The recently proposed 

measure of cybersecurity risk - Cybersecurity Value at Risk 

(CyVaR) [1], which is based on the Value at Risk (VaR) 

measure of financial risk, accounts for the tail risk. However, 

CyVaR still suffers from low accuracy of VaR, and moreover 

has its own problems, e.g., is not a coherent risk measure, which 

is a highly desirable trait of an adequate risk measure. 

Following the recent trend of replacing VaR with Entropic 

VaR (EVaR) as a measure of financial risk [2], we suggest 

replacing CyVaR with CyEVaR which is a robust and coherent 

risk measure. Robustness is achieved by accounting for attack 

model risk, i.e., allowing for controlled deviation of the attack 

strategy from the expected pattern. CyEVaR is defined as the 

worst-case expectation of the economic loss due to an attack 

within a feasible attack pattern. This definition, which has 

natural game-theoretic interpretation as a game against a 

boundedly rational adversary, interpolates between Bayesian 

and purely adversarial attack models. Coherency, i.e., 

subadditivity, which is currently considered to be a necessary 

trait of an adequate financial risk measure, is also highly 

desirable in cybersecurity since it encourages service 

diversification, e.g., multipath routing in networks or 

diversification in supply chains. Other desirable traits of 

CyEVaR include relative computational simplicity and 

sensitivity to low probability – high loss events which is 

important due to inaccuracy of estimates of low probabilities. 

Based on an example of a networked system with a highly 

motivated and capable attacker, we suggest that conventional 

risk measures may significantly underestimate the actual 

cybersecurity risk. 

The paper is organized as follows.  Section II introduces 

system/attacker(s) models, which quantify system loss due to 

successful exploits of potential system vulnerabilities and 

attacker(s) selection of potential vulnerabilities to exploit. 

Section III introduces and discusses Entropic Value at 

Cybersecurity Risk CyEVaR in context of other risk measures. 

Section IV illustrates CyEVaR measure on an example of a 

popular toy networked system whose cybersecurity is modelled 

by a probabilistic attack graph. Finally, Section V concludes 

and outlines directions of future research. 

II. SYSTEM/ATTACK MODELS   

Consider system with set of N  potential vulnerabilities 

( , 1, .., )nv n N= =V  which can be exploited by 

adversary(ies).  We identify set of actually exploited 

vulnerabilities with a random binary vector 
1( , .., )Nδ δ δ= , 

where 1nδ =  if vulnerability 
nv   is successfully exploited, and 

0nδ =  otherwise. Due to causal relationships between 

component failures or vulnerability exploits, e.g., encoded by a 

fault tree, attack graph, or their combination [3], vector δ  takes 

values in subset ∆  of {0,1}N
: {0,1}Nδ ∈ ∆ ⊆ . Set of 

U.S. Government work not protected by U.S. copyright 

 



successful exploits 
1( , .., )Nδ δ δ=  causes system economic 

loss ( )L δ .  We assume that (a) (0) 0L = , (b) function 

( )L δ  is increasing, i.e., 
1 2( ) ( )L Lδ δ≤  if 

1 2δ δ≤ , for 

any binary vectors 
1 1( )nδ δ= ∈ ∆  and 

2 2( )nδ δ= ∈ ∆ , and 

(c) each vulnerability is relevant, i.e., for each vulnerability 
nv  

there exists vector : ( , )n k k nδ δ− = ≠ , such that 

(0, ) (1, )n nL Lδ δ− −< . Partial ordering of vectors is defined 

with respect to all vector components: 
1 2 1 2( , 1, .., )n n n Nδ δ δ δ≤ ⇔ ≤ = . These assumptions 

define class of structures which generalize class of monotonic 

structures [4] for which loss function ( )L δ  is binary: 

( ) 0L δ =  or ( ) 0L Lδ = >  for δ ∈ ∆ . 

Risk evaluation involves averaging over unconditional 

distribution of vector 
1( , .., )Nδ δ δ= , ( )P δ . However, 

evaluation of distribution ( )P δ  is generally a difficult and still 

open problem, especially for large-scale systems with large 

number of vulnerabilities. We encode causal relationships 

between system failures/exploits by binary functions 

( ) {0,1}n nχ δ − ∈ , 1,..,n N= , where ( ) 1n nχ δ − =  if 

prerequisites for successful exploit of vulnerability 
nv  are 

satisfied, and ( ) 0n nχ δ − =  otherwise. We assume functions 

( )n nχ δ −
 to be increasing with respect to partial ordering of 

vectors 
nδ −

. For example, if prerequisite for exploitation of 

vulnerability 
nv  is successful exploitations of both 

vulnerabilities 
kv  and 

mv , then ( , )n k m k mχ δ δ δ δ= . If 

prerequisite for exploitation of vulnerability 
nv  is successful 

exploitations of at least one vulnerability 
kv  or 

mv , then 

( , )n k m k m k mχ δ δ δ δ δ δ= + − . 

Unconditional distribution ( )P δ  incorporates both system 

structure and conditional probabilities of vulnerability exploits, 

given that the required prerequisites have been satisfied, and 

thus vulnerability 
nv  1,..,n N=  can be in principle 

exploited. In practice, these conditional probabilities of  
nq%  are 

phenomenologically derived from the provided by the National 

Vulnerability Database (NVD) and Common Vulnerability 

Scoring System (CVSS) scores [5]. Our additional motivation 

is overcoming the limitations due to the assumption that 

attacker is oblivious to the system structure. We propose to 

achieve that by separating system and attacker(s) as follows. 

While system is described by causal relationships between 

component failures or vulnerability exploits, attacker(s) 

strategy is described by random binary vector 

1( , .., ) {0,1}N

Nσ σ σ= ∈ , where conditional binary random 

variable {0,1}nσ ∈  assumes that ( ) 1n nχ δ − = , i.e., 

prerequisites for successful exploit of vulnerability 
nv  are 

satisfied. Given ( ) 1n nχ δ − = , component 1nσ =  if 

vulnerability 
nv  is successfully exploited, and 0nσ =  

otherwise. Conventional attack/reliability model assigns 

conditional exploit probabilities [ ]n nq E σ=%  and assumes 

that random variables 
nσ  are jointly statistically independent 

for 1,..,n N= : 

                  
1

1
( ) (1 )n n

N

n nn
Q q q

σ σσ −

=
= −∏% % % .                             (1) 

Viewing distribution (1) as a point estimate of the actual 

conditional distribution ( )Q σ , robust risk measures account 

for possible inaccuracies in this estimate. Since distribution 

( )Q σ  quantifies the attacker(s) strategy, robustness implies a 

possibility that actual attacker(s) strategy deviates from the 

assumed one, which is a highly desirable trait in adversarial and 

highly uncertain cybersecurity decision making. 

Starting point for our analysis are the following equations 

                        ( )n n n nδ σ χ δ −= ,                                                (2) 

1,..,n N= , which directly follow from definition of functions 

( )n nχ δ −
. We view (2) as a system of N  equations with 

respect to vector δ , given vector σ . Further we assume that 

this system has unique solution: 

                             ( )n n n nδ σ ϕ σ −= ,                                               (3) 

which is a case at least if the causal relations between different 

exploits do not have cycles. Mapping (3) allows for 

reformulation random system loss in terms of conditional 

distribution ( )Q σ  rather unconditional distribution ( )P δ : 

                ( ( ) ) (L( ) )P L x Q xδ σ≤ = ≤ ,                                (4) 

where renormalized loss function 

          
1 1 1L( ) : [ ( ), .., ( )]N N NLσ σ ϕ σ σ ϕ σ− −= .                     (5) 

In particular, unconditional probabilities of exploits are 

                     
( )[ ( )]n n Q n np q E σ ϕ σ −= .                                        (6) 

III. ROBUST SECURITY RISK METRICS   

Expected loss  

                         : [L( )]
Q

L E σ= %
%                                                    (7) 

may not be an adequate representation of the security risk since 

average (7) does not account for the tail risk. Even more 

importantly, point estimate of conditional probabilities 

( ) ( )Q Qσ σ≈ %  may be highly unreliable. 

Following Value at Risk (VaR) measure of financial risk, 

World Economic Forum has proposed notion of Cybersecurity 

VaR (CyVaR) [1]: 

   
1 inf{ 0 : (L( ) ) 1 }CyVaR y Q yα σ α− = ≥ ≤ ≥ −% ,        (8) 

where confidence level 1 α− quantifies decision maker risk 

averseness. Practical region for 
1CyVaR α−

 lies between 

expected loss (7) for some (0,1)α ∈ , and the maximum loss 

                     
{0,1}

ˆ : max L( )NL
σ

σ
∈

=                                             (9) 



for 0α = . Serious deficiency of risk measure (8) is that 

1CyVaR α−
 is not a coherent measure, i.e., violates 

subadditivity property [2], which is highly desirable since it 

encourages system redundancy and service diversification. 

This and some other limitations of measure (8) motivated 

financial industry transition to Conditional Value at Risk 

(CVaR), also known as Expected Shortfall [6]. In our context, 

Cybersecurity CVaR (CyCVaR) takes the following form: 

    
1 1L( ) L( )

Q
CyCVaR E CyVaRα ασ σ− −=  >  %

.      (10) 

While 
1CyCVaR α−

is a coherent risk measure, it inherits from 

1CyVaR α−
 reliance on highly inaccurate estimate of the 

conditional probabilities ( ) ( )Q Qσ σ≈ % . This lack of 

robustness motivated financial industry to develop concept of 

robust risk measures. In our context, robust risk measures allow 

actual distribution ( )Q σ  deviate from unreliable point 

estimate ( ) ( )Q Qσ σ≈ % . The rest of this paper suggests that 

an adequate cybersecurity risk measure could be based on 

Entropic Value at Risk (EVaR) which is a particular case of 

robust risk measures. 

The corresponding Cybersecurity EVaR (CyEVaR) measure 

represents the maximum expected loss with respect to all 

feasible conditional distributions ( )Q σ : 

       
1 : ( ) ln

max [L( )]
QQ H Q Q

CyEVaR Eα α
σ− ≤ −

=
%

,           (11) 

where the Kulback-Leibler deviation is 

 ( ) {0,1}
: ( ) log ( ) ( )NH Q Q Q Q Q

σ
σ σ σ

∈
 =  % %      (12) 

and parameter 0 1 1α≤ − ≤  characterizes decision maker risk 

eversness. It is easy to verify that 
1CyEVaR α−

 increases from 

expected loss (7) to maximum loss (9) as 1 α−  increases from 

0  to 1 . Briefly note that in addition to controlled robustness, 

risk measure (11) has other advantages, including relative 

computational tractability and natural game-theoretic 

interpretation, where boundedly rational adversary chooses 

probability distribution ( )Q σ . Measure (11) interpolates 

between Bayesian model for 1α =  and purely adversarial 

attack models for 0α = . 

In our context, power of adversary or attack severity is more 

naturally characterized by the expected, with respect to the 

conditional distribution ( )Q σ , number of “conditionally 

successful exploits” 
1

: [ ]
N

Q Q nn
s E σ

=
=  , then parameter α . 

Risk measure (11), parameterized by 
Qs s=  for 

1
:

N

nn
s s q

=
> = % % , is given by solution to the following 

optimization problem 

 
, :0 1, ( ) ln ,

( ) max [L( )]
Q

Q
Q H Q Q s s

CyEVaR s E
α α α

σ
≤ ≤ ≤− ≤

=
%

.     (13) 

Shown in Figure 1 function (13) increases from the expected 

loss (7) to the maximum loss (9) as s  grows from s%  to some 

s N≤
)

.  

 

 

 

 

 

 

 

 

 

Figure 1.  Entropic Value at Risk vs. attack severity. 

 

Function ( )CyEVaR s  is especially informative for large-

scale systems with large number of potential vulnerabilities 

1N >>  due to close connections of Entropic Value at Risk 

with Chernoff bound and large deviations [2].  In this short 

paper we only note that ( )CyEVaR r  upper bounds the 

conditional expected loss, given attack severity: 

      
( ) 1

L( ) ( )
N

Q nn
E s CyEVaR sσ σ σ

=

 ≥ ≤   .           (14) 

For system with large number of potential vulnerabilities N , 

under some technical conditions, inequality in (14) becomes 

equality asymptotically as N → ∞ . Also note that typically 

s s N≤ <<
)

%  since our model assumes extremely determined 

and capable attacker to inflict system losses. 

IV. EXAMPLE: PROBABILISTIC ATTACK GRAPH 

Consider shown in Figure 2 popular toy example [7].  

 

 
Figure 2.  Example of networked system. 

 

Machines 0, 1, and 2, are user’s workstation, a web server, and 

a database server, respectively. The firewall allows http and ssh 

requests from machine 0 across to machine 1. During the 

normal operation, the user makes an http request to server 1, 

which goes through the firewall. Server 1 accesses database 

server running on server 2 to retrieve the required data and 

communicates back to machine 0 through http. If the user 

attempts to access machine 2 directly, e.g., by sending a ssh 

request from machine 0 to machine 2, the firewall blocks the 

communication. Successful attack may include a command 

injection attack on server 1 followed by a SQL injection attack 

on the database at machine 2. Then, the restricted data could be 

siphoned to server 1 and then to machine 0. 

Attack graph for shown in Figure 2 system is depicted in 

Figures 3, where vulnerabilities are enumerated as follows: 

ftp_rhosts(0,1) 
1v= , ftp_rhosts(0,2) 

2v= , ftp_rhosts(1,2) 

3v= , rsh(0,1) 
4v= , rsh(0,2) 

5v= , rsh(1,2) 
6v= , 

sshd_bof(0,1) 
7v= , local_bof(2) 

8v= .  

L̂

0 N

L%

CB

A

C y E V a R

s% s
)
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Figure 3.  Attack graph for shown in Figure 2 system. 

 

Following [7], we assume that point estimates of conditional 

probabilities of successful vulnerability exploits are as follows: 

1 2 3 0.8q q q= = =% % % ,
4 5 6 0.9q q q= = =% % % , 

7 8 0.1q q= =% % . 

The corresponding functions ( )n nϕ σ −
 in (3) are as follows: 

1 2 7 1ϕ ϕ ϕ≡ ≡ ≡ , 
4 4 1( )ϕ σ σ− = , 

5 5 2( )ϕ σ σ− = ,           

3 3 1 4 7 1 4 7( )ϕ σ σ σ σ σ σ σ− = + − ,                                                  

6 6 3 3 3 1 4 7 1 4 7 3( ) ( ) ( )ϕ σ σ ϕ σ σ σ σ σ σ σ σ− −= = + − ,      

8 8 2 5 6 6 6 2 5 6 6 6

2 5 2 5 1 4 7 1 4 7 3 6

( ) ( ) ( )

(1 )( )

ϕ σ σ σ σ ϕ σ σ σ σ ϕ σ

σ σ σ σ σ σ σ σ σ σ σ σ
− − −= + − =

= + − + −
     

and the renormalized loss function (5) is 

                    
8 8 8L( ) : [ ( )]QLEσ σ ϕ σ −= ,                                  (15) 

where economic loss due to user directly accessing machine 2 

is L . In particular, the point estimates of unconditional 

probabilities of exploits [ ( )]n n n nQ
p E σ ϕ σ −= %
%  are as 

follows: 
1 1 0.8p q= =% % , 

2 2 0.8p q= =% % , 
3 0.60p ≈% , 

4 5 0.72p p= =% % , 
6 0.54p ≈% , 

7 7 0.10p q= =% % , 

8 0.087p ≈% , and thus the expected loss is 0.087L L≈% .  

It can be shown that solution to (13) is as follows: 

  1

2 5 8 1,3,4,6,7
( ) ( , , ) (1 )n n

n nn
Q q q qσ σσ σ σ σ −

=
= −∏ % % ,  (16) 

and thus  

2 5 8

6 6 2 5 8
( , , )

( ) max [( (1 ) ) ]Q
q

CyEVaR s L E p p
σ σ σ

σ σ σ= + −% % ,  (17) 

where 
6 0.54p ≈%   and maximization (17) is subject to the 

following constraints 

 

2 5 8

2 5 8
2 5 8 1

, , {0,1}

2,5,8

( , , )
( , , ) log ln

(1 )n n

n n

n

q
q

q q
σ σ

δ δ δ

σ σ σ
σ σ σ α

−
∈

=

 
 

≤ − − 
 


∏ % %

     (18) 

   
2 5 8 1 3 4 6 7[ ] ( )QE s q q q q qσ σ σ+ + ≤ − + + + +% % % % % .      (19) 

Solution (16)-(19) indicates that as attacker power, measured by 

the expected number of potential exploits s , increases from 
8

1
5.4nn

s q
=

= =% %  to 
2 5 8( ) 3 6.5s s q q q= − + + + =

)
% % % % , 

the Entropic risk measure (17) grows from the expected loss 

8 0.087L Lp L= ≈% %  to the maximum loss L̂ L= . Further 

increase in the attacker power does not increase the Entropic 

risk measure (17). This example demonstrates that in a case of 

highly determined and capable attacker, expected loss L%  may 

significantly underestimate the actual cybersecurity risk. 

Further analysis indicates the same for measures (8) and (10). 

V. CONCLUSION AND FUTURE RESEARCH 

This paper suggests Entropic Value at Risk (EVaR) as a 

measure of cybersecurity risk. While EVaR has been gaining 

popularity as a measure of financial risk and has been extended 

to robust engineering of systems of various types, EVaR 

application to cybersecurity risk presents new opportunities and 

challenges.  This paper, which is a work in progress, outlines 

some of them. Analysis of a simple networked system indicates 

that CyEVaR is a more adequate measure of cybersecurity risk 

than conventional measures at least in a case of highly 

determined and capable attacker.  Our immediate plans include 

efficient evaluation of functions ( )n nϕ σ −
 in (3) for large-scale 

systems with a large number of potential vulnerabilities N  and 

possibility of loops in the system Attack Graph. Imposing 

additional constraints on optimization (11)-(13) may allow for 

modelling attacker(s) of limited ability/determination. e.g., 

modelling limited cooperation of multiple attackers by 

imposing certain constraints on the mutual information of 

random variables 
nσ , 1,..,n N=  in (11)-(13). Our ultimate 

goal is quantification of the existing qualitative cybersecurity 

risk mitigation recommendations, e.g., NIST Cybersecurity 

Framework [8]. Achieving this goal will require significant 

efforts in developing computationally effective yet accurate 

estimates of the Security Risk Reduction Return on Investment 

(SRR-RoI). In our future research we will employ 

computational techniques of statistical physics to approximate 

CyEVaR, and employ CyEVaR decomposition techniques, 

including Shapley value, to approximate SRR-RoI.  
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