
What database do you choose for heterogeneous
security log events analysis?

Sofiane Lagraa, Radu State
Interdisciplinary Centre for Security, Reliability and Trust (SnT),

University of Luxembourg
firstname.lastname@uni.lu

Abstract—The heterogeneous massive logs incoming from mul-
tiple sources pose major challenges to professionals responsible
for IT security and system administrator. One of the challenges is
to develop a scalable heterogeneous logs database for storage and
further analysis. In fact, it is difficult to decide which database
is suitable for the needs, the best of a use case, execution time
and storage performances.

In this paper, we explore, study, and compare the performance
of SQL and NoSQL databases on large heterogeneous event logs.
We implement the relational database using MySQL, the column-
oriented database using Impala on the top of Hadoop, and the
graph database using Neo4j. We experiment the databases on
a large heterogeneous logs and provide advice, the pros and
cons of each SQL and NoSQL database. Our findings that
Impala outperforms MySQL and Neo4j databases in terms of
loading logs, execution time of simple queries, and storage of
logs. However, Neo4j outperforms Impala and MySQL in the
execution time of complex queries.

I. INTRODUCTION

In cyber-security, the concepts for network security such
as prevention, detection, and investigation are based on the
collection of heterogeneous logs incoming from multiple and
different system or device sources [7], [8]. When a large and
heterogeneous data poses cyber-security challenges, the choice
of a database is a major architectural component for storing
and processing large heterogeneous event logs for network
security.

NoSQL databases are designed for a huge amount of
data, tabular and non-tabular, store data differently than the
structured and relational tables (SQL databases). There are
different types of NoSQL databases based on their data model.
The main types are: key-value, document, column, and graph.
They provide a flexible schema and easily scale with large
amounts of data and high user loads. They store the data
relationship differently than relational databases do.

For developing an SQL or NoSQL database, storing and
analysis of heterogeneous security, the admin has to explore
the pros and cons of each database, in particular the following
properties:
• Data Model: databases often leverage data models more

adapted to use cases.
• Performance: the execution time of a query is the most

important metric for measuring the performance of a
database.

• Scalability: SQL databases are often complicated, expen-
sive to manage, and hard to scale up. In contrast, NoSQL
databases are designed to scale-out horizontally.

• Data Distribution: NoSQL databases are designed for
distributed systems while the SQL databases are designed
for data centralization.

• Flexibility: NoSQL databases are better to test new ideas
and update data structures like JSON, XML, CSV for-
mat documents.

• Size of the database: the size of a database on the disk
may change between database systems. The change of
disk usage is due to the model of the data and the type
of database.

However, it is difficult to decide which database is the best
for a use case in terms of time and storage performance,
utilisation, and scalability of large and heterogeneous logs.
In this paper, we explore the pros and cons of some of
SQL and NoSQL databases. We study their performance on
large heterogeneous log files. We implement a database from
each type of: relational database such as MySQL, column-
oriented database such as Impala, and graph database such
as Neo4J. The key-value and document-oriented databases
are not suitable for storing and querying heterogeneous and
unstructured log data as we conclude in our study. We ex-
periment the implementations on a public dataset published
by Los Alamos National Laboratory. We provide insights
to security admins about the choice of databases for large
heterogeneous logs: whether an admin wants to store logs
for simple processing with a simple query it is recommended
using a query engine like Impala on the top of Hadoop.
Whether an admin wants to process in-depth by developing
a complex query, we recommend a graph database such as
Neo4J.

The rest of the paper is organized as follows. Section II
introduces and reviews the existing background of databases
and their use in network security. Section III describes the
heterogeneous log we use in this paper for our study. We
propose our database models we developed in Section IV. We
then present the experimental results in Section V. Section VI
discusses the results. Section VII concludes and gives some
insights.978-3-903176-32-4 c© 2021 IFIP

II. BACKGROUND AND RELATED WORK

A. NoSQL Databases

There are four types of NoSQL databases:
1) Key-value-oriented databases: Key-value databases are

one of the simplest types of databases where each item
contains keys and values. They are used for performing simple
queries and not designed to perform complex queries. Redis 1

and BerkeleyDB 2 are an example of key-value databases.
2) Document-oriented databases: Document databases

store data in documents similar to JSON (JavaScript Object
Notation) or XML (Extensible Markup Language) objects.
Each document contains pairs of fields and values. Thus,
document databases use a key-value store. MongoDB 3 is an
example of a document database.

3) Column-oriented databases: Column-oriented databases
(or column-stores) store each database table column separately,
with attribute values belonging to the same columns as op-
posed to traditional relational databases that store rows one
after the other. Column databases often used in data ware-
houses. HBase 4 and Cassandra 5 are examples of Column-
oriented databases.

4) Graph-oriented databases: Graph database models are
characterized as those where data structures for the schema
and instances are modeled as graphs, and data manipulation
is expressed by graph-oriented operations [1]. The benefit of
using a graph data model is given by: the natural modeling of
graph data representation. For example, a graph representation
relations in network security alerts [2]. Neo4J 6 is an example
of a graph database.

B. Related work

In [7] the authors proposed HuMa framework, a multi-
analysis approach to study complex security events in a large
set of heterogeneous data incoming from firewalls, servers,
and routers. In [6], the authors compared MongoDB with a
commercial vendor and with a popular open source relational
DBMS. They concluded that MongoDB is a viable alternative
compared to relational databases. In [2], the authors proposed a
Neo4j graph database-based approach for alert aggregation and
visualization. The graph database model represents relations
between sensors or alert types and common type of reported
alerts or duplicated alerts. The graph is used by security
analysts and network administrators. In [10], the authors pro-
posed a Neo4j graph database-based hierarchical multi-domain
network security situation awareness (NSSA) data storage
method. They combine all the data that reflect the network
security situation and launching queries for the visualization
of query results using the Cypher query language. In [8], the
authors proposed an approach for investigation of attack graph
analysis based on Neo4j graph database. They combined a

1https://redis.io/
2https://www.oracle.com/database/berkeley-db/db.html
3https://www.mongodb.com/
4http://hbase.apache.org/
5https://cassandra.apache.org/
6https://neo4j.com/

variety of data by creating relationships between firewalls,
host vulnerabilities, potential attack patterns, and intrusion
alerts. We notice that the existing works use databases in their
solutions without studying and comparing the performance of
their database regarding the processing, storage, and utiliza-
tion. In addition, even the non-exhaustive works on the use of
SQL or NoSQL databases for heterogeneous data, to the best
of our knowledge, no study has been proposed to measure
the performance of databases on large heterogeneous logs of
security.

III. LARGE HETEROGENEOUS DATASET OVERVIEW

Data used in this paper are from Los Alamos National
Laboratory (LANL). LANL provides a public comprehensive
dataset7 [4], [3]. It includes 58 consecutive days of:

• windows-based authentication events from both indi-
vidual computers and centralized Active Directory do-
main controller servers: Each event is in the form of
”time, source user@domain, destination user@domain,
source computer, destination computer, authentication
type, logon type, authentication orientation, success/fail-
ure” and represents an authentication event at the given
time.

• process start and stop events from individual Win-
dows computers: Each event is in the form of ”time,
user@domain, computer, process name, start/end” and
represents a process event at the given time.

• Domain Name Service (DNS) lookups as collected on
internal DNS servers. Each event is in the form of ”time,
source computer, computer resolved” and presents a DNS
lookup at the given time by the source computer for the
resolved computer.

• network flow data as collected on at several key router
locations. Each event is in the form of ”time, duration,
source computer, source port, destination computer, des-
tination port, protocol, packet count, byte count” and
presents a network flow event at the given time and the
given duration in seconds.

The events are labelled as malicious or normal via a
RedTeam file. In total, the event logs set is approximately
92.63 gigabytes across the four data elements and presents
1,648,274,558 events in total for 12,425 users, 17,684 com-
puters, and 62,974 processes. Table I summarizes the charac-
teristics of heterogeneous event logs incoming from different
services.

TABLE I: Characteristics of heterogeneous log files.

File Size #Events File Size #Events

auth.txt 70 GB 1,051,430,459 flows.txt 4.9 GB 129,977,412
proc.txt 15 G 426,045,096 dns.txt 776 MB 40,821,591

Total 92.63 GB 1,648,274,558

7https://csr.lanl.gov/data/cyber1/

IV. IMPLEMENTATION OF DATABASE MODELS ON
HETEROGENEOUS LOGS

We use one database from each type of database, except
key-values and document-oriented databases. Key-values
databases don’t manage multiple and heterogeneous data
and JOIN query cannot be possible. However, document-
oriented databases such as MongoDB manage multiple and
heterogeneous data and trying to JOIN in MongoDB would
defeat the purpose of using it. For instance, MongoDB creates
a document for each row or event log. For example: the event
log from netflow files (flows) {1, 0, C1423, N1136,
C1707, N1, 6, 5, 847} corresponding to time,
duration, source_computer, source_port,
destination_computer, destination_port,
protocol, packet_count, byte_count,
respectively, is represented by the following document
in MongoDB.

1 {” i d ” : O b j e c t I d (” 5 f 5 c c f 24976d541 a 396 e 9 f 4 c ”) , ” t ime ” : 1 ,
” d u r a t i o n ” : 0 , ” s o u r c e c o m p u t e r ” : ”C1423 ” , ”
s o u r c e p o r t ” : ”N1136 ” , ” d e s t i n a t i o n c o m p u t e r ” : ”C1707
” , ” d e s t i n a t i o n p o r t ” : ”N1 ” , ” p r o t o c o l ” : 6 , ”
p a c k e t c o u n t ” : 5 , ” b y t e c o u n t ” : 847}

The ObjectId value is the identifier of the document created
by MongoDB. It consists of: timestamp value, random value,
and incrementing counter. It also is the default primary key
for a MongoDB document and is usually found in the _id.
Thus, 129,977,412 documents are created for the netflows in
flows file, which is the total number of event logs. For each
heterogeneous log file, a collection of documents is created,
and a simple query can be launched such as retrieving a value
or counting. However, complex queries with JOIN operations
cannot be possible across different types of collections of
documents. Thus, we performed a comparative study between
the column-oriented database, relational database, and graph
database.

A. Column-oriented database

Hadoop is a framework that allows for the storage and dis-
tributed processing of large data sets across computers in clus-
ters using simple programming models. Hadoop Distributed
File System (HDFS) is the primary data storage system used
by Hadoop applications. For processing data in HDFS there
are several libraries and tools such as Spark, Hive, Impala. In
this study, we use Cloudera Impala. Impala is an open source,
native analytic database for Apache Hadoop, and SQL engine
for Hadoop that was designed to bring a parallel database
management system (DBMS) to the Hadoop environment. It
was written from the ground up in C++ and Java. It works both
for analytical and transactional and single-row workloads. It
runs within Hadoop, by widely using Hadoop file formats for
reading the data, and runs on the same nodes that run Hadoop
processes. It utilizes Hadoop components such as HDFS,
HBase, Metastore, YARN, and is able to read the majority of
the widely used file formats such as csv, plain text,
JSON, Parquet, Avro. A major Impala goal is to make
SQL-on-Hadoop operations fast and efficient. It provides low

latency and high concurrency for analytic read-mostly data on
Hadoop Distributed File System. It demonstrates its superior
performance compared against other popular SQL-on-Hadoop
systems such as SparkSQL, Hive, and Presto [5].

In Impala, a database is a logical container for a group of
tables. Each database defines a separate namespace. Creating
a database is a lightweight operation. There are minimal
database-specific properties to configure and create tables. The
only condition is to put the log files in the HDFS or HBase. In
fact, each database is physically represented by a directory in
HDFS. In order to use Impala, we have to move the logs from
disk to HDFS using $ hdfs dfs -put command. We use
Impala-shell to create the tables and load the corresponding
logs in the namespace. In Listing 1 of Appendix A, we present
a code to create a log database model in Impala. Impala keeps
its table creations in a traditional MySQL database known as
the metastore.

B. Relational database

We chose to evaluate MySQL because it is a popular and
widely used relational database for different applications and
systems. MySQL uses SQL as language for querying the
database. The database model we create for the study is the
same as the column-oriented database. It follows a relational
data model to store the logs. However, the structure of the
heterogeneous logs is dynamic but in this study we keep it
static, i.e., the number of fields don’t change over time. Thus,
the structure of the database would have been static and we
have had to follow a structure set implicitly in the database.

C. Graph database model

We regroup all event logs in a graph database. The use
of a graph database allows to interconnect heterogeneous
event logs in a database storage and perform graph operations
processing over them. The advantages of Neo4j database
compared to MySQL and Impala are: finding paths between
source and destination nodes, finding intrinsic and complex
patterns that couldn’t be discovered using an SQL query.

In our study, we use Neo4j as a graph database. Neo4j is the
most popular graph database and it is freely available and well
documented. Neo4j is a native disk-based storage manager,
high performance, scalable, and robust graph database solving
queries with multiple relationships storing data in the nodes
and relationships [9]. Cypher Query Language is used for sub-
graph querying. It is a declarative language used for loading,
storing and retrieving data from the graph database.

1) Event log import method: To import the heterogeneous
event logs to the Neo4j database, there are globally two options
are available:
• Load CSV 8: used using the Cypher command to load

into an existing database.
• Neo4j Import Tool 9: is only for newly created databases.
However, we need to organize the log files in order to be

imported into Neo4j database.

8https://neo4j.com/developer/guide-import-csv/
9https://neo4j.com/docs/operations-manual/current/tools/import/

The csv files holding the event logs need to be processed
and structured in the way of the corresponding header file,
e.g., the SourceComputer.csv file needs to be structured as the
SourceComputer-header.csv.

2) Network security to graph database model: A graph
database is a storage system that uses graph structures, de-
signed for managing graph-like data following the basic princi-
ples of database systems. The fundamental abstraction behind
a database system is its database model. Graph database model
schema is composed of following nodes: Source user, source
computer, destination computer, resolved computer. The nodes
are connected through the following relationships: USES,
IS RUNNING, IS RESOLVED, CONNECT, FLOWS. Fig-
ure 1 provides and summarizes the proposed graph database
model.

Fig. 1: Graph database model.

The nodes and edges i.e. relationships can be imported
into Neo4j using the import script shown in Listing 2 of
Appendix B. Different indexes are created using the Cypher
language for indexing nodes for quick access, processing and
querying.

3) Characteristics of graph database model: Our current
implementation consists in the following components: 1) a
processing unit for extracting and transforming heterogeneous
event logs, 2) a logs set transformation pipeline built using
bash scripts, 3) a graph model construction component.

Table II shows the characteristics of the graph database. It
took 2 hours, 34 minutes, and 2 seconds to import the whole
heterogeneous event logs. The total size of the graph database
in a disk space is 250 GB, which is 2.7 times greater than the
original event logs.

TABLE II: Graph database characteristics

Node Type Count Relationship
Type

Count

SourceUser 80,553 USES 1,051,430,459
SourceComputer 16,249 IS RESOLVED 40,821,591
DestinationComputer 15,895 IS RUNNING 402,894,548
ComputerResolved 13,776 CONNECT 1,051,430,459

FLOWS 119,905,148

All Nodes 126,473 All
Relationships

2,546,577,057

Figure 2 shows an example of the users who use a common
computer. The sub-graph is extracted using Cypher query
language.

Fig. 2: Users who use a common computer.

V. EXPERIMENTS

In this section, we evaluate our experiments on various het-
erogeneous dataset described in Section III. We also compare
the performance of the three databases we propose. The aim of
this comparison is to show that beside the storage efficiency
and the execution time of a simple and complex query. We
first describe the experimental environment, then the queries
used for comparing the database, and finally we present our
results and discuss them.

A. Experimental setup

The experiments are performed on a 60 cores Intel(R)
Xeon(R) CPU E5-4650 v4 @ 2.20GHz with 376 GB of
RAM. The machine runs on Linux. MySQL, Impala and Neo4j
databases are implemented using their import scripts. We use
the following versions for MySQL, Impala, and Neo4j: 5.7.31,
2.5.0-cdh5.7.0, 3.5.14, respectively.

B. Query

We created four queries of varying complexity to run on
each database. The queries are:
• Q1: Count the number of event logs in the database.
• Q2: Extract the event logs where the user C101@DOM

authenticates to a server.
• Q3: Extract the event logs where the user C101@DOM

authenticates to a server by starting a process.
• Q4: Extract the event logs where the user C101@DOM

authenticates to a server by starting a process and check-
ing a DNS lookup of the source computer.

C. Results

Figure 3 shows the performance metrics of database on
heterogeneous event logs in terms of database disk usage
(Figure 3a) and importing time (Figure 3b) of logs from disk
to database. The size of Neo4j database is 2,82X and 1,58X
greater than Impala and MySQL, respectively. The importing
time of Neo4j is 4.5X faster than MySQL, but 50X slower than
Impala. In fact, Impala is based on HDFS where the logs are
stored on HDFS. Thus, Impala inherits all Hadoop file system
properties such as the importing time and file partitions. The
user has just to put the logs in HDFS, create the tables and
load log files from it. The loading operation moves the log files

from HDFS directory to Impala directory. Thus, the importing
time is equal to moving time from an HDFS folder to another
one in an HDFS.

MySQL Impala Neo4j

100

150

200

250

Database

D
at

ab
as

e
si

ze
(G

B
)

(a) Database size

MySQL Impala Neo4j

0

50

100

150

200

Database
Im

po
rt

in
g

tim
e

(m
in

ut
es

)

(b) Importing time

Fig. 3: Performance metrics of database on heterogeneous
event logs.

Figure 4 shows a comparison of the execution time of
each query in each database. We see that Impala outperforms
MySQL and Neo4j for the queries Q1, Q2, and Q3. However,
Neo4j outperforms MySQL and Impala for the query Q4. We
note that the queries Q1 and Q2 are simple queries without a
JOIN operation, but the queries Q3 and Q4 are medium and
complex queries, respectively with JOIN operations. Impala
outperforms MySQL and Neo4j for the queries Q1, Q2, and
Q3 is due to the partitioning of the data into blocks in the
HDFS where a processing is performed in each block.

Q1 Q2 Q3 Q4

100

101

102

103

104

Query

Ti
m

e
(m

in
ut

es
)

MySQL
Impala
Neo4j

Fig. 4: Comparison of query execution time in each database.

VI. DISCUSSIONS

Table III provides a comparison of the experimented
databases on the basis of functional and nonfunctional features
such as, database model, developed language of the database,
query language used in the database, data storage, updating
individual records. We notice that the use of Neo4j is quite
difficult in terms of modeling data into a graph and having in
mind a sub-graph query instead of rows or columns oriented
queries. Neo4j requires an organization of the log files so that
they can be imported into the graph database. The importing
time requires several minutes to hours, depending on the size
of the logs. It is difficult to find the best graph model for
modeling the heterogeneous logs. Measuring the performance
of different graph models is a challenging task that could
be considered as a future work. In addition, the user has to
learn the Cypher query language for retrieving patterns (sub-
graph) in a graph database. In contrast, the use of relational

MySQL Impala Neo4J
Database Model Relational

DBMS
HDFS/
HBase

Graph

Developped Language C and
C++

C++ and
Java

Java and
Scala

Query Language SQL
(full)

SQL
(subset)

Cypher

Data storage File sys-
tem

HDFS File sys-
tem

Update individual records Yes No Yes
Delete individual records Yes No Yes
Index support Extensive Limited Extensive
Scalability No Yes Yes
Complexity of values Low Medium High
Performance of queries Low High Variable
Structure Static Dynamic Dynamic
Easy to use Yes Yes Variable
Easy to model Yes Yes No

TABLE III: Comparison of databases.

database (MySQL) or column-oriented (Impala) is very easy
in terms of modeling, querying without learning a new query
language. Regarding the performance, Impala is well adapted
for querying, monitoring and providing log analytics from
heterogeneous security sources. However, Neo4j is suitable
for querying complex patterns, but the storage of the graph
database takes more than 2X the origin size while Impala
keeps the same size of the origin logs. In fact, for using Impala,
the user has just to put the logs in HDFS, create the tables
and load log files from it. The loading operation moves the
log files from HDFS directory to Impala directory. MySQL
is not suitable for heterogeneous and large log files. Even a
simple query takes time. In addition, MySQL is not suitable
for heterogeneous and large logs. One of the characteristics of
the heterogeneity is the change of the event log structure. The
structure of the event log means that the number of fields can
change during the life cycle of the database.

VII. CONCLUSION

In this paper, we propose a study of the problem of
storage and processing heterogeneous event logs incoming
from multi-sources such as firewall, server, router. The study
consists in comparing the performance of existing databases
on heterogeneous event logs. We implement and compare SQL
and NoSQL databases. A relational database using MySQL. A
column-oriented database using Impala, and agraph database
using Neo4j. The Key-value and document oriented databases
are not suitable for the heterogeneous data. From our study, we
conclude that the best database to store the large heterogeneous
data is Hadoop/HDFS infrastructure. It keeps the same size
as the original logs, easy to migrate the data, and easy
to manipulate for further processing. We use Impala as a
distributed SQL query engine for Apache Hadoop. Impala
outperforms MySQL and Neo4j in terms of execution of
queries, size of the logs on disk, the importing time, and
easy to use. However, Neo4j outperforms Impala and MySQL
in terms of execution time of complex queries. However, it’s
difficult to model event logs into graph models and the user
has to learn the Cypher query language used in Neo4j.

REFERENCES

[1] R. Angles and C. Gutiérrez. Survey of graph database models. ACM
Comput. Surv., 40(1):1:1–1:39, 2008.

[2] M. Husák and M. Čermák. A graph-based representation of relations in
network security alert sharing platforms. In 2017 IFIP/IEEE Symposium
on Integrated Network and Service Management (IM), pages 891–892,
2017.

[3] A. D. Kent. Comprehensive, Multi-Source Cyber-Security Events. Los
Alamos National Laboratory, 2015.

[4] A. D. Kent. Cybersecurity data sources for dynamic network research.
In Dynamic Networks in Cybersecurity. Imperial College Press, 2015.

[5] M. Kornacker, A. Behm, V. Bittorf, T. Bobrovytsky, C. Ching, A. Choi,
J. Erickson, M. Grund, D. Hecht, M. Jacobs, I. Joshi, L. Kuff, D. Kumar,
A. Leblang, N. Li, I. Pandis, H. Robinson, D. Rorke, S. Rus, J. Russell,
D. Tsirogiannis, S. Wanderman-Milne, and M. Yoder. Impala: A modern,
open-source SQL engine for hadoop. In CIDR 2015, Seventh Biennial
Conference on Innovative Data Systems Research, Asilomar, CA, USA,
January 4-7, 2015, Online Proceedings, 2015.

[6] K. Mahmood, T. Risch, and M. Zhu. Utilizing a nosql data store for
scalable log analysis. In B. C. Desai and M. Toyama, editors, Proceed-
ings of the 19th International Database Engineering & Applications
Symposium, Yokohama, Japan, July 13-15, 2015, pages 49–55, 2015.

[7] J. Navarro, V. Legrand, S. Lagraa, J. François, A. Lahmadi, G. D. Santis,
O. Festor, N. Lammari, F. Hamdi, A. Deruyver, Q. Goux, M. Allard,
and P. Parrend. Huma: A multi-layer framework for threat analysis in a
heterogeneous log environment. In Foundations and Practice of Security
- 10th International Symposium, FPS 2017, Nancy, France, October 23-
25, 2017, Revised Selected Papers, volume 10723 of Lecture Notes in
Computer Science, pages 144–159. Springer, 2017.

[8] S. Noel, E. Harley, K. H. Tam, and G. Gyor. Big-data architecture for
cyber attack graphs representing security relationships in nosql graph
databases, 2015.

[9] I. Robinson, J. Webber, and E. Eifrem. Graph Databases. O’Reilly,
2015.

[10] X. Tao, Y. Liu, F. Zhao, C. Yang, and Y. Wang. Graph database-based
network security situation awareness data storage method. EURASIP
Journal on Wireless Communications and Networking, 2018(1):294, Dec
2018.

APPENDIX

A. Impala

Listing 1 shows the creation of the log model in Impala. It
creates a table form each source and loads csv files for each
one using LOAD DATA statement. This statement streamlines
the Extract Transform and Load (ETL) process for Impala
tables by moving (not copied) all log files in a directory from
an HDFS location into the Impala log directory for the created
tables.

1 c r e a t e t a b l e f l o w s (t i m e r i n t , d u r a t i o n f l o a t ,
s o u r c e c o m p u t e r s t r i n g , s o u r c e p o r t s t r i n g ,
d e s t i n a t i o n c o m p u t e r s t r i n g , d e s t i n a t i o n p o r t s t r i n g ,
p r o t o c o l s t r i n g , p a c k e t c o u n t i n t , b y t e c o u n t s t r i n g)
row f o r m a t d e l i m i t e d f i e l d s t e r m i n a t e d by ’ , ’ ;

2 c r e a t e t a b l e a u t h (t i m e r i n t , s o u r c e u s e r s t r i n g ,
d e s t i n a t i o n u s e r s t r i n g , s o u r c e c o m p u t e r s t r i n g ,
d e s t i n a t i o n c o m p u t e r s t r i n g , a u t h e n t i c a t i o n t y p e s t r i n g ,

l o g o n t y p e s t r i n g , a u t h e n t i c a t i o n o r i e n t a t i o n s t r i n g ,
s u c c e s s f a i l u r e s t r i n g) row f o r m a t d e l i m i t e d f i e l d s
t e r m i n a t e d by ’ , ’ ;

3 c r e a t e t a b l e dns (t i m e r i n t , s o u r c e c o m p u t e r s t r i n g ,
c o m p u t e r r e s o l v e d s t r i n g) row f o r m a t d e l i m i t e d f i e l d s
t e r m i n a t e d by ’ , ’ ;

4 c r e a t e t a b l e p roc (t i m e r i n t , u s e r s t r i n g , compute r
s t r i n g , p rocessname s t r i n g , s t a r t e n d s t r i n g) row
f o r m a t d e l i m i t e d f i e l d s t e r m i n a t e d by ’ , ’ ;

5 l o a d d a t a i n p a t h ’ / HDFS / a u t h . t x t ’ o v e r w r i t e i n t o t a b l e
a u t h ;

6 l o a d d a t a i n p a t h ’ / HDFS / p roc . t x t ’ o v e r w r i t e i n t o t a b l e
p roc ;

7 l o a d d a t a i n p a t h ’ / HDFS / f l o w s . t x t ’ o v e r w r i t e i n t o t a b l e
f l o w s ;

8 l o a d d a t a i n p a t h ’ / HDFS / dns . t x t ’ o v e r w r i t e i n t o t a b l e dns ;

Listing 1: Heterogeneous event logs to Impala-shell

B. Neo4j
The file logs are processed and organized into CSV

files of nodes and relations of a graph in order to
load them into Neo4j. Each node must have a unique
ID such as the IP, the name of the computer or a
name of a computer (--nodes:name_of_the_node)
to be able to be referenced when creating relation-
ships between nodes in the same import. Relationships
are created by connecting the specified node IDs. For
each relationship, a name of the relation is specified
--relationships:name_of_the_relation. When
dealing with very large log files, it is more practical to
have their headers in a separate file. This makes it easier
to edit or update the header by avoiding opening a large
log file just to change a header. The header file of a log
file must be specified with its log file during the import.
Other Neo4j parameters are enabled for a high process-
ing and loading of log files such as --high-io=true
which specify that the storage system can support parallel
IO with high throughput. It is true for SSDs, large raid
arrays and network-attached storage. Other parameters are
enabled such as --ignore-duplicate-nodes=true,
--ignore-missing-nodes=true which ignore duplica-
tion, or missing nodes, respectively.

1 e x p o r t LOGS=/ p a t h / t o / f o l d e r / c o n t a i n i n g / t x t−f i l e s /
2 e x p o r t HEADERS=/ p a t h / t o / f o l d e r / c o n t a i n i n g / t x t−h e a d e r s /
3 . / b i n / neo4j−admin i m p o r t \
4 −−d a t a b a s e = he te rogeneousDB . db \
5 # a u t h e n t i c a t i o n d a t a
6 −−nodes : User
7 $HEADERS / User−h e a d e r . csv , \
8 $LOGS / User . c sv \
9 −−nodes : SourceComputer

10 $HEADERS / SourceComputer−h e a d e r . csv , \
11 $LOGS / SourceComputer . c sv \
12 −−nodes : D e s t i n a t i o n C o m p u t e r
13 $HEADERS / D e s t i n a t i o n C o m p u t e r−h e a d e r . csv , \
14 $LOGS / D e s t i n a t i o n C o m p u t e r . c sv \
15 −−r e l a t i o n s h i p s : USES
16 $HEADERS / u s e s r e l−h e a d e r . csv , \
17 $LOGS / u s e s r e l . c sv \
18 −−r e l a t i o n s h i p s :CONNECT
19 $HEADERS / c o n n e c t r e l−h e a d e r . csv , \
20 $LOGS / c o n n e c t r e l . c sv \
21 # p r o c e s s d a t a
22 −−r e l a t i o n s h i p s : IS RUNNING
23 $HEADERS / i s r u n n i n g r e l−h e a d e r . csv , \
24 $LOGS / i s r u n n i n g r e l . c sv \
25 # f low d a t a
26 −−r e l a t i o n s h i p s :FLOWS
27 $HEADERS / f l o w s r e l−h e a d e r . csv , \
28 $LOGS / f l o w s r e l . c sv \
29 # dns d a t a
30 −−nodes : ComputerResolved
31 $HEADERS / ComputerResolved−h e a d e r . csv , \
32 $LOGS / ComputerResolved . csv \
33 −−r e l a t i o n s h i p s : IS RESOLVED
34 $HEADERS / i s r o s o l v e d r e l−h e a d e r . csv , \
35 $LOGS / i s r o s o l v e d r e l . c sv \
36 # n e o 4 j p a r a m e t e r s
37 −−i g n o r e−miss ing−nodes = t r u e \
38 −−i g n o r e−d u p l i c a t e−nodes = t r u e \
39 −−high−i o = t r u e

Listing 2: Heterogeneous event logs to graph database: Import
Script

