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Abstract—A DDoS attack aims for resource exhaustion and di-
rectly impacts the availability of servers in a network infrastruc-
ture. Although significant efforts have been made to detect and
mitigate DDoS attacks in viable time, this type of attack remains
one of the leading security concerns in networking. By leveraging
data plane programmability, it becomes possible to implement
novel security solutions that do not rely on coordination with
external servers, keeping the detection and mitigation local to
the data plane, potentially reducing delays and not being subject
to usual communication bottlenecks. In this paper we present
BUNGEE1, an in-network, collaborative pushback mechanism for
DDoS attack mitigation that runs entirely in the data plane. This
mechanism is able to, locally at a given switch, identify suspect
IP addresses (through the use of continuous IP entropy analysis)
and propagate them to other switches. The different switches that
are made aware of the suspects enforce a pushback strategy for
repelling potential attacks. We implemented our solution using
the P4 language. The results reveal that the identification process
has high accuracy and that the pushback strategy is effective in
minimizing strain to network resources.

Index Terms—Programmable Data Plane, P4, DDoS, Mitiga-
tion, Attack Pushback.

I. INTRODUCTION

Distributed Denial of Service (DDoS) attacks have increased
in both volume and duration in the last years, and remain one
of the leading security concerns in networking [1]. As recent
reports show (e.g., [2]–[4]), DDoS attacks can reach rates in
the order of Tbps with the purpose of overloading servers or
network links.

Motivation and Problem Definition. Significant efforts
have been made recently to understand DDoS attacks [5], and
several strategies for detecting [6], [7] and mitigating [8] these
attacks have been proposed. However, finding the optimal
place to deploy DDoS detection and mitigation mechanisms
remains an intricate task. In general, accurate detection oc-
curs near the victim, specifically at its immediately upstream
device, since attack flows can be more easily outlined. The
further away from the victim, the more dispersed the attack
flows are, and obtaining a correct detection becomes more
difficult. Analyzing the problem from a different perspective,

1BUNGEE is named after Bungee Jumping, a sports activity that abstractly
resembles our mechanism, in which a person leaps down from a high height,
connected to an elastic cord. The jumper oscillates up and down until energy
vanishes and stability is reached.

when coarse-grained mitigation (e.g., filtering) is deployed
closer to the victim, we have a higher toll on legitimate
flows and allow illegitimate ones to travel unabated for longer,
further compromising the infrastructure. On the other hand, the
placement of mitigation mechanisms near the attack source re-
sults in a (potentially) reduced number of impacted legitimate
flows.

The P4 programming language [9] was recently introduced
to enable the programming of the data plane. It allows the
offloading of advanced and configurable packet processing
functionalities onto network devices [10]. This makes it pos-
sible to implement new security solutions directly in the
data plane, with no need to communicate with the control
plane for decision-making. Recent investigations [11]–[13] use
data plane programmability to collect and analyze network
traffic statistics, enabling accurate and prompt detection of
when an attack is ongoing. However, to the best of our
knowledge, no efforts so far capitalized on P4 programmability
to devise innovative and effective pushback-based mitigation
solutions, whose deployment can be adaptive, without human
intervention, to contain fluctuating DDoS attack campaigns.

Our Work. To bridge this gap, in this paper we propose
BUNGEE, a novel fully in-network dynamic pushback mech-
anism to detect and mitigate DDoS attacks. The mechanism
is entirely coordinated by the forwarding devices2, thereby
removing the control plane from the critical path and speeding
up reactiveness for a prompt defense. In a nutshell, BUNGEE
detects a DDoS attack through the entropy analysis of the
addresses of incoming packets, since this type of attack is
known to cause disturbances in the distribution of source and
destination IP addresses. In the proposed pushback mech-
anism, a forwarding device located next to the victim is
expected to alert upstream forwarding devices immediately
after entropy disturbances are detected. These devices, in
turn, will start to apply a filtering strategy to packets from
suspect network flows. Further, these devices will also run
the detection mechanism themselves and, if necessary, alert
their upstream counterparts, thus effectively “pushing back”
the effects of the attack. This process will be repeated in
an attempt to confine the attack traffic to as close to the

2We use the terms (forwarding) device(s) and switch(es) interchangeably
throughout the manuscript.978-3-903176-32-4 © 2021 IFIP



source as possible. Our goal is to ensure the availability of
the victim and prevent unnecessary consumption of processing
and network resources. As the attack ceases, the mechanism
starts to gradually deactivate the filtering procedures in place.

Differently from existing data plane approaches for DDoS
mitigation that require frequent communication with another
network component (e.g., external controller), the mechanism
proposed in this paper runs entirely in the data plane, at line
rate. This avoids dependence on permanent communication
with the controller, which could cause congestion in the
communication channel when an attack is in progress [14].
To demonstrate the concept and technical feasibility of the
proposed approach, we carried out a comprehensive set of
experiments. Results show that our mitigation mechanism is
effective in several proposed attack scenarios, contributing to
attenuating the impact on network resources with an overall
small memory footprint.

Main Research Contributions. In summary, we make the
following three main novel research contributions to the field.

• We devise a network-wide communication strategy for
switch coordination using P4 data plane primitives.

• We design a control-plane-free pushback mechanism,
which builds upon our communication strategy to imple-
ment a “quick-mounting defense barrier” against DDoS.

• We integrate an efficient IP entropy anomaly detection
approach to the pushback mechanism to “make the bar-
rier a moving one”, avoiding wasting network resources.

Paper Organization. In Section II, we present the back-
ground for this work. In Section III, we discuss the state-of-
the-art in pushback strategies and DDoS attack mitigation us-
ing programmable data planes. In Section IV, we introduce the
proposed mechanism. In Section V, we detail our experimental
evaluation. Finally, in Section VI, we present the concluding
remarks and perspectives for future work.

II. BACKGROUND

In this section, we briefly revisit the fundamental concepts
about data plane programmability and the general background
on DDoS attack mitigation strategies.

A. Programmable Data Planes

P4 [9] has emerged as a high-level language for pro-
gramming the data plane, making networks more flexible
and adaptive. It enables the implementation of new functions
directly in the programmable data plane (PDP), including
security functions for threat mitigation [10]. P4 was designed
to describe packet processing capabilities to be executed by
a programmable forwarding device. It incorporates a parser,
which determines how to handle incoming packets. This parser
supports the definition of headers (including those of new
protocols) and how they must be processed. Extracted fields
are passed to match+action tables that describe what actions
may be applied to packets when a header field matches the
tables. These actions can modify packet headers and determine
if incoming packets must be forwarded, dropped, or replicated.

B. DDoS Packet Mitigation

There are four main mitigation techniques that can be
used to protect a victim from a DDoS attack [15]. The
first is dropping all packets coming from sources identified
as malicious. The second is packet filtering, where just a
fraction of the traffic identified as malicious is discarded.
The advantage of this approach is that incorrectly identified
traffic, i.e., legitimate packets regarded as malicious, will
not be completely blocked. The third technique is traffic
redirection, and consists of forwarding suspicious traffic to a
new IP address for further inspection. While it is a compelling
approach, it imposes non-negligible overheads regarding for-
warding device processing and network bandwidth. Finally,
the fourth approach is quarantine or traffic isolation, where
malicious traffic is (temporarily) confined to prevent network
resources from being overwhelmed by the attack. This is
essentially impractical because it demands large amounts of
storage resources.

Given the trade-offs among the techniques above, and as
we detail later starting in Section IV, our proposed solution
employs packet filtering for attack mitigation. This method
can be adequately parameterized to be more conservative or
relaxed, depending on the services (and underlying infrastruc-
ture) to be guarded. This flexibility, together with a dynamic
pushback approach, can yield a solution that is both very
accurate and contributes to significant savings in (otherwise
wasted) network resources.

III. RELATED WORK

In this section, we discuss the recent literature beginning
with general DDoS mitigation approaches that benefit from a
programmable data plane design (P4). Right after, we review
the main pushback strategies proposed within the domain of
software-defined networks (OpenFlow).

A. General Attack Mitigation on PDPs

Innovative and effective attack mitigation solutions tak-
ing advantage of programmable data planes (e.g., protocol-
independent switch architecture, reconfigurable match-action
tables, and P4) are still rare but are starting to thrive. Febro et
al. [16] propose an approach in which an edge P4 forwarding
device is programmed to keep a per-port record of the number
of packets received per second. When this number is higher
than a configured threshold, subsequent connection requests
are automatically dropped by the forwarding device until no
attack is detected for an operator-determined interval. The
work is interesting in exploring P4 primitives, but its simplified
design will penalize all incoming requests, whether legitimate
or otherwise, by completely blocking ports (and not only
suspicious flows).

Li et al. [17] implement a whitelist table that can be
used for filtering off spoofed IPs. This table is formed by
legitimate IP addresses that have previously established TCP
connections with targets of interest. Due to the complexity
and required resources (e.g., memory) to keep track of each
connection state, the creation of such a whitelist is performed
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Fig. 1. Overview of the proposed mechanism considering an attack scenario.

on the control plane. To speed up the analysis of incoming
packets, a shadow version of the whitelist is maintained on
the data plane (and updated periodically by the external SDN
controller). Hence, packets from IPs in the data plane whitelist
are forwarded to their destination without further processing.
Otherwise, they are sent to the control plane for analysis.
However, this approach suffers from high communication
overheads and memory utilization footprint.

B. Attack Pushback on SDN/OpenFlow Networks

If little has been proposed so far on general attack mitigation
mechanisms based on programmable data planes, when it
comes to pushback mechanisms, the landscape is even arider,
with a few solutions based on SDN/OpenFlow (but not PDPs).
As shown in [18], pushback is one of the key strategies used
for mitigating threats in the network. To protect the victim,
defensive measures are gradually deployed in the opposite
direction of an attack. In this context, Zhang et al. [19] propose
an exciting framework designed to assist the deployment of
defenses at strategic locations in the path to a DDoS attack
victim. The proposed approach focuses on determining optimal
defense locations, given a particular attack scenario. It is,
therefore, static and does not support rearrangements.

Moving to SDN/OpenFlow-based solutions, which have the
potential to be more dynamic, Bülbül and Fischer [20] intro-
duce a mitigation framework that uses pushback to configure
OpenFlow filtering rules on devices belonging to the victim
network. However, pushback actions are only carried out when
a device capacity is already exceeded, with the same rule set
being broadcasted indiscriminately to all upstream switches.
Similarly, Pande et al. [21] propose a mechanism in which
mitigation is performed by configuring SDN/OpenFlow rules
to block packets at the edge upon the identification of an
attacker from a different autonomous system.

As previously mentioned and evidenced by the discussed
efforts, the limited existing body of knowledge typically relies
on an external controller to decide on pushback actions, which
invariably causes increased latency and additional communi-
cation overheads. As far as we are aware of, BUNGEE is the
first P4-based mechanism to offload detection, mitigation, and
pushback deployment coordination tasks entirely to the data
plane.

IV. BUNGEE: A P4-BASED DDOS PUSHBACK MECHANISM

In this section, we introduce BUNGEE, our in-network,
collaborative pushback mechanism for DDoS attack mitiga-
tion. In Subsection IV-A, we present an overview of its
operation. In Subsection IV-B, we describe its foundations,
and in Subsection IV-C, we detail its main components, their
interactions, and how they are instantiated in P4.

A. Approach Overview

Our mechanism was designed to deal with volumetric DDoS
attacks, where, in a coordinated way, multiple sources send
a large amount of forged traffic to targets, depleting their
processing and network resources. Figure 1 shows a network
attack scenario and the general idea behind BUNGEE. It
illustrates three different switch “levels” taken into account
in our design. The first level refers to the victim’s switch.
It is where the victim of the attack is directly linked to and
receives all attack traffic sent to it. Next, intermediate switches
belong to the next level. These are forwarding devices located
either on the same AS or any AS connecting the victim
network to the attack source networks. Finally, edge switches
are equipment to which the attack sources are immediately
connected to.

BUNGEE supports two operation modes:
• Intra-AS, corporate deployment: subnetworks are spread

across a metropolitan or regional area but under the man-
agement of a single administrative domain, facilitating
deployment. In this scenario, it is possible to pushback a
DDoS attack to as far as the domain border device.

• Inter-AS deployment: switch coordination can span over
multiple cooperating ASs across the Internet. In this sce-
nario, mutual agreements (like those required for peering)
are necessary, but the pushback can go to as far as the
edge switches of the source network(s) of an attack.

The first step of our proposed mitigation mechanism is –
once a DDoS attack is detected (which will be described in
the following subsection) on the victim’s switch (Label 1 in
Figure 1) – determining a set of IP addresses as candidate
attack sources and starting to filter them locally (2). At this
time, the neighbor intermediate switches are alerted about the
ongoing attack to take the necessary actions, i.e., a pushback
action is executed (3). This communication is carried out



through alarm packets containing a list of suspect IP addresses.
Right after a neighbor switch receives an alarm, it starts its
own detection process. If it detects an ongoing attack, it starts
filtering packets from informed suspects (4). Additionally, it
notifies its upstream switches (5), which re-iterate through the
described steps. If the neighbor switch does not detect the
attack, we assume it is not going through this path, so no
further action is required for this device. Ideally, the pushback
mechanism is expected to end at the edge switches (6). In this
case, malicious packets will be discarded as close as possible
to their sources, thereby avoiding network resource exhaustion.

Although not shown in the figure, an intermediate/edge
switch that starts filtering packets for suspect IP addresses
also sends a notification message (containing IP addresses that
the switch has started filtering) to its downstream switches.
If a switch receives notifications from all of its upstream
neighbors, it means it has successfully handed off filtering
of an IP address to its upstream counterparts, and so it stops
filtering packets from that IP, making room for new entries.
Finally, as we will detail ahead, the proposed solution is
adaptive to fluctuating attack dynamics. For example, when an
ongoing attack ceases, our mechanism starts a “contraction”
process, where filtering actions are gradually deactivated.

B. Mechanism Formalization

The finite-state machine (FSM) in Figure 2 formalizes
the states in which a switch running BUNGEE may be at
any point in its operation life-cycle. We focus here on the
inter-switch communication processes. In Section IV-C, we
will detail the fine-grained operation steps of the proposed
mechanism. A forwarding device can detect disturbances in
the network traffic via entropy analysis, as discussed below.
After detecting an entropy alteration, a pushback action is
executed to notify all upstream switches. As a monitoring
window ends, the device continues calculating entropy for the
following windows. After a no entropy disturbance window,
the switch falls into a local contraction state, indicating
that the attack is being contained. However, if an entropy
disturbance is registered for a window while in this state, the
switch performs a pushback action again. To avoid oscillating
activation/deactivation of defensive measures, the switch waits
for some entropy normality windows to inactivate the defenses
(local contraction)3. Next, we discuss in detail the main aspects
of this FSM.

IP Entropy Analysis. Before the pushback action can kick-
off, BUNGEE needs first to detect an ongoing attack. To this
end, we employ IP entropy analysis in the data plane, building
on previous work [12]. The choice for entropy analysis is
due to its recognized efficacy for anomaly detection and its
simplicity, making it possible to be implemented in resource-
constrained programmable devices. In information theory, the

3Note that state changes occur at different time frames since the attack
is detected. It is identified in the monitoring window Wt. First-hop up-
stream switches perform entropy analysis in the next time window Wt+1.
Consequently, edge switches will be warned in window Wt+m, where m
corresponds to the number of intermediate switches.
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Fig. 2. Operation life cycle of a BUNGEE-enabled switch.

entropy of a variable is the level of information inherent in the
variable’s possible outcomes. It is appropriate to analyze the
behavior of network indicators due to its high sensitivity in
detecting abnormal network traffic changes. We make use of
source and destination IP entropy analysis for attack detection.

A volumetric DDoS attack causes disturbances in the dis-
tribution of source and destination addresses. During a DDoS,
the entropy of source addresses tends to increase due to
the wide distribution of the attacking (potentially forged) IP
addresses. Conversely, the entropy of destination addresses
tends to decrease due to the high recurrence of the victim
IP address. For discretization purposes, we divide incoming
packets into windows of a fixed number of packets. In this
context, Shannon’s entropy offers the degree of randomness of
a monitoring window (X), and can be calculated, per source
(Hsrc(X)) or destination (Hdst(X)) IP, as follows:

H(X) = log2(m)− 1

m

N∑
x=0

fx log2(fx) (1)

where m corresponds to the number of packets in a window,
and f0, f1, . . . , fN represent the frequencies of each (source
or destination) address in the window X. In case of a DDoS
attack, the destination IP entropy tends to zero, Hdst(X) →
0. In contrast, the source IP entropy tends to the maximum
value, Hsrc(X) → MAX . The entropy values calculated
for each monitoring window are compared with thresholds
set according to entropy measurements observed during the
“normal” network operation. If these values are exceeded,
BUNGEE will start the pushback process, as described below.

Pushback Process. The pushback process deploys defenses
progressively at the upstream devices, shifting to as far as



Algorithm 1: Pushback
Input: Incoming packet completing monitoring

window (pkt)
createAlarm(pkt);
SuspectIPs = {s1,s2,s3. . . sn}, vector of suspect IPs
for si in SuspectIPs do

Alarm.append(si);
end
UpstreamSwitchList = {d1,d2,d3. . .dm}, vector of

upstream switches
sendAlarm(UpstreamSwitchList);

Algorithm 2: Contract
Input: Incoming packet from suspect (pkt)

Consecutive monitoring windows without
detection (c)

if c == n then
deactivate(defenses);

end
if pkt.SourceIP ∈ SuspectIPs then

ApplyFilteringStrategy(pkt);
createNotification(pkt);
Notification.append(pkt.SourceIP);
DownstreamSwitchList = {d1,d2,d3. . .dm}, vector

of downstream switches
sendNotification(DownstreamSwitchList);

end

possible from the victim network. After an entropy distur-
bance, the victim’s switch will alert its first-hop upstream
counterparts, sending them an alarm packet containing a list
of suspect IP addresses. Upon receiving an alarm, upstream
neighbors will begin calculating the entropy for the upcoming
windows and filtering packets incoming from the suspect IPs.

Usually, the controller executes pushback by sending a
particular packet to the switches. Due to limitations in pro-
grammable hardware, spontaneous packet generation is not
possible. To address this limitation, we resort to the P4 clone
primitive [22], which allows making a copy of a packet. Thus,
pushback is executed by cloning the last packet completing the
monitoring window, and using it for inter-switch communica-
tion. The cloned packet is transformed into an alarm packet
by appending a custom header and the identified suspect
IPs. Finally, the alarm packet is sent to upstream devices.
Algorithm 1 summarizes the described pushback operation.

Local and Remote Contraction. So far, we have shown
how pushback is adopted for the deployment of defenses.
However, BUNGEE includes a reverse process to inactivate
these defenses, which we refer to as contraction. This con-
traction process allows the optimal use of TCAM (Ternary
Content-Addressable Memory) and SRAM (Static Random
Access Memory) resources. As shown in the FSM in Figure 2,
we consider two contraction types. Local contraction refers
to deactivating defenses after an attack ceases. For this, after

a pushback action, the switch keeps a registry of monitor-
ing windows without entropy alteration (contraction count).
When the switch considers that the attack stopped for a certain
number of windows (n), the defenses are deactivated, and the
switch returns to the initial state.

During its operation, as the switch begins to filter off a
suspect IP address, it notifies the downstream neighbor that
filtering has been handed off and that it can stop filtering
the suspect; we denote this notification process as remote
contraction. As this process involves another device, it occurs
in different windows, similarly to what happens with the
pushback process. A switch begins to filter a suspect in
window Wt and notifies the downstream device. At this point,
the downstream device requires receiving the same notification
from all (differently from the pushback action) its upstreams
switches to execute the contraction process, i.e., remove the
IP address as a suspect. Thus, this process will occur in up to
window Wt+w, where w corresponds to the number of time
windows the switch takes to receive contraction notifications
from all its upstream switches (in the best case w = 1,
in the worst case it is a maximum operator-defined value).
Algorithm 2 shows how the contraction process operates in
an upstream switch after receiving an alarm packet.

C. Architectural Components

The main components that comprise the proposed mitigation
mechanism are illustrated in Figure 3. These are expected to
be executed on the victim’s switch. Alternatively, intermediate
and edge switches implement slightly different functionality
compared to the victim’s switch. Next, we detail the role and
operation of each component, following their invocation order
in the pipeline followed by ingress packets. Whenever the
victim’s switch and the intermediate and the edge switches
behave differently, those differences will be made explicit.

Suspect List. This is the first component of the mitigation
mechanism. It is responsible for examining the source IP
address of all incoming packets and determining if they come
from sources suspect of generating attack traffic. To this end,
the component implements a data structure4 that is consulted
on a per-packet basis. If the source address of an incoming
packet matches any entry on the suspect list, it is selected for
filtering. Otherwise, it continues following the usual flow, to
the Suspect Identification component.

Filtering. Packets that match the suspect list must be
subjected to filtering. Different strategies can be implemented,
ranging from dropping all suspect packets to just a fraction
of them, according to a predetermined policy (e.g., random,
individual, route-based, score) [23]. In this work, we adopt a
partial packet dropping procedure where we control the ratio
of suspect packets that will be allowed to follow their way to
the victim. Packets that are not dropped move forward in the
pipeline to the Attack Detection component.

Suspect Identification. For the proper functioning of our
mechanism, a list of suspects must be generated. As we

4This data structure is populated by the Suspect Identification component.
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mentioned earlier in the formalization section, we discretize
traffic analysis using monitoring windows. During a window,
the victim switch determines the source IP address of every
incoming packet and updates counters associated with ad-
dresses. As shown in Figure 4, we resort to a data structure
based on sketches (multiple hash tables) [24] to store the
monitored statistics. At the end of a window, IP addresses
whose frequency is higher than a determined threshold are
considered suspects. These sources are sent to the Suspect List
component.
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Fig. 4. Sketch-based data structure for suspect identification.

In an intermediate or edge switch, this process is slightly
different, as this device only keeps a list of IP addresses to
inspect, whose entries are included by a downstream switch
(i.e., the one(s) from which it receives alarms). In these
devices, source IP addresses matching the inspection list are
included in the suspect list.

Attack Detection. The previous components handle the
construction/maintenance of a suspect list, as well as the
execution of a filtering procedure on packets from suspect IPs.
For the sake of triggering the pushback mechanism, we need to
detect if an intrusion is taking place. This is the responsibility
of the Attack Detection component. For intrusion detection,
we resort to a robust entropy-based heuristic proposed in our
previous work [12]. Additionally, the last packet within a mon-
itoring window is cloned and used to trigger the consolidation
of values; as such, this cloned packet will carry the consolidate

values to the Alarm Generation component for analysis. A
new monitoring window is initiated. All packets that reach this
point leave the pipeline and are forwarded to their intended
destination.

Alarm Generation. Consolidated entropy values are com-
pared to values estimated for a “healthy” network. If the
difference is higher than a determined threshold, the network
is considered to be under attack and alarm packets are sent
to the upstream switches. Each alarm packet carries the IP
addresses considered suspects, consolidated from the Suspect
Identification component. As previously mentioned, the imple-
mentation of this component in P4 is achieved with cloning
and recirculation of packets.

For intermediate and edge switches, in addition to the alarm
packets being sent upstream, the intrusion detected is also
notified to the downstream switches. Further, an intermediate
or edge switch that is upstream in relation to the victim and
receives an alarm packet will verify if it can also detect the
attack5. If so, packets arriving from suspect sources will be
subjected to filtering at this upstream location, and downstream
switches will be notified to stop filtering the address (thus
effectively “pushing back” the attack).

V. EXPERIMENTAL EVALUATION

We performed an experimental evaluation to demonstrate
the technical feasibility of BUNGEE. Since we are interested
in accuracy, resource utilization, reaction time and resource
footprint analysis (and not on performance measurements),
we carried out an emulation-based evaluation. Additional
experiments on real equipment focusing, e.g., on throughput,
are left as future work.

5Attack detection thresholds in intermediate or edge switches are set up to
a (configurable) fraction of those used by the victim’s switch. The rationale
behind this is that the farther from the victim a switch is, the less aggressively
an ongoing attack will be perceived (or even missed completely), since the
attack traffic is potentially coming from different sources (see Figure 1).



A. Experiment Setup
Our test infrastructure was instantiated on a virtual machine

running Ubuntu 16.04 with four processors and 16 GB RAM.
Figure 5 illustrates the instantiated network. It is comprised
of a victim network, three attack source edge networks, and
four intermediate networks. The forwarding devices depicted
in the figure are those that support P4 and are configured to
run our mechanism using the BMv2 software switch.

A1
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A3Attack Source
Networks
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I1

I3
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I4

Victim Network
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L M

N

Fig. 5. Topology used in the experiments.

We conducted a sensitivity analysis to determine the pa-
rameters of the proposed mechanism. We report the results
obtained for the best combination of parameter values, which
were the following. The window size was set to 8,192 packets.
The threshold to consider an IP address as a suspect was
fixed to 1% of the window size (i.e., 82 packets per window).
Finally, the filtering component was configured to perform
traffic throttling, allowing 30% of suspect packets to follow
their way to the victim.

We used the CAIDA Anonymized Internet Traces 2016
dataset to represent legitimate traffic on the network. To
perform the attack, we used the CAIDA DDoS Attack 2007
dataset, consisting of anonymized traffic traces from a DDoS
attack of around one hour. We generated training and test
workloads for each of the three attack sources. The training
phase was composed of 150 windows containing legitimate
traffic only. As for the test phase, the workload consisted of
300 windows, where the first 75 windows were formed by
legitimate traffic, the following 150 windows encompassed a
mix of authentic and malicious traffic, and the 75 last windows
were, again, legitimate traffic.

In our experiments, three different scenarios were consid-
ered, ranging from a confined to a broad attack, as follows:

• Scenario 1 – One attack source network: hosts in the
source network A1 send a proportion of 90% malicious-
to-legitimate packets during the 150 attack windows,
while hosts in the other two source networks transmit
legitimate traffic all the time.

• Scenario 2 – Two attack source networks: hosts in source
networks A1 and A2 send a proportion of 45% malicious-
to-legitimate packets during the 150 attack windows,
while the remaining source network sends legitimate
traffic all the time.

• Scenario 3 – Three attack source networks: hosts in the
three source networks, A1, A2, and A3, transmit each a
proportion of 30% malicious-to-legitimate packets during
the 150 attack windows.

We analyzed the following evaluation metrics: detection ac-
curacy, network utilization, reaction time, and switch memory
footprint. Accuracy was measured through true positives (ratio
of packets coming from suspect IP addresses that were indeed
dropped) and false positives (proportion of packets coming
from legitimate IP addresses that were wrongly dropped).
Network utilization was measured considering the amount
of link bandwidth consumed by attack packets (without and
with the proposed solution activated). Reaction time was
calculated as the delay between the beginning of the attack
and BUNGEE’s filtering start. Finally, memory footprint was
measured by calculating the amount of device memory that
our mechanism requires to be implemented.

B. Accuracy

Figure 6 shows the accuracy of the proposed mechanism
to detect DDoS attacks considering the three scenarios. As
one can observe, the detection rate (TPR) is higher than
90% for all cases. Besides, the false-positive rates (FPR) are
below 10% for all scenarios. The figure also reveals that the
mechanism is nearly equally effective regardless of the origin
(single x multiple sources) of the attack. Notice that these
results are consonant with the performance of state-of-the-
art approaches (e.g., [16], [17]). As we will show next, the
gains resulting from our proposal are not necessarily in higher
accuracy (already at the top), but substantially lower usage of
unnecessary network and processing resources.
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Fig. 6. Accuracy of the proposed mechanism according to True Positive Rate
(TPR) and False Positive Rate (FPR).

C. Network Utilization

DDoS attacks cause link saturation. The attack packets
end up occupying a substantial share of the links, sometimes
exceeding their capacity. As a result, network resources are
“wasted”, and legitimate traffic may not reach its destination.
Figure 7 illustrates the occupation of links K, L, M, N (and
aggregated) of the network topology without and with our
mechanism enabled. Remember that, in this evaluation, we
allow 30% of suspect packets to follow their way to the victim.
As one can observe, without the mechanism (orange), network
resource consumption with attack traffic ranges from 15% to
25%. With our mechanism activated (blue), these numbers fall



to around 5%. Looking carefully at the aggregated plot, the
difference between the orange and the blue areas represent
the bandwidth savings obtained by our proposed mechanism,
which near 65% with the given parameters.
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Fig. 7. Network utilization savings resulting from the proposed mechanism.

The mentioned parameters have different effects on
BUNGEE: firstly, the monitoring window size affects the
processing time to make decisions, changing the reaction time.
Larger monitoring windows take longer to process. Secondly,
the threshold used to determine if an IP is suspicious af-
fects BUNGEE’s accuracy. Finally, the probability of dropping
packets in the filtering strategy will trade off overall system
accuracy and network utilization.

D. Reaction Time

While packet processing delays are minimal (due to the
architecture of a P4-enabled switch, designed to operate at
line speed) and can be neglected, the monitoring window size
plays an essential role in the time it takes for BUNGEE to
activate its defensive actions. Table I shows the theoretical
upper-bound for the reaction time of our mechanism as a
function of window size. As one can observe, for a window of
8,192 packets, BUNGEE can detect a DDoS attack and initiate
its mitigation procedures in as low as 1 millisecond (for a 1
Gbps link) and 0.1 milliseconds (10 Gbps). Even for larger
window sizes, the reaction takes place in sub-second time
frames. Such low values are achieved mainly due to the design
of BUNGEE as a fully in-network mechanism, eliminating the
periodic intervention of the control plane controller.

TABLE I
REACTION TIME TO ACTIVATE DEFENSIVE ACTIONS.

Window Size (Packets) 1Gbps (ms) 10 Gbps (ms)

8,192 1.114 0.111
32,768 4.416 0.441

131,072 17.825 1.782
262,144 35.651 3.565
524,288 71.303 7.130

E. Memory Footprint

Each forwarding device instantiates a set of data structures
to handle the attack detection and the pushback mitigation
mechanisms. For suspect identification, we devised a sketch-
based structure [24] composed of six stages (i.e., hash tables).

Each hash table has 1,400 entries with 7 bytes each. This ac-
counts for a total of 58,800 bytes. Given a monitoring window
of size ws packets and a suspect threshold of k packets, ws/k
represents the maximum number of suspects that can exist
within a window. Considering our current instantiation of ws
= 8,192 packets and k = 82 packets, we would need room for
100 suspects, while the data structure supports a considerably
higher number of entries (8,400). As we illustrate in Table II,
many other configurations for both ws and k would still be
supported by the hash data structure (collision-free).

TABLE II
MAXIMUM NUMBER OF SUSPECTS FOR WINDOW SIZE AND THRESHOLD.

Window Size (Packets) Suspect Threshold (Packets) Max. Suspects

41 200
8,192 82 100

123 67
41 800

32,768 82 400
123 267
41 3,197

131,072 82 1,599
123 1,066
41 6,394

262,144 82 3,197
123 2,132
41 Not Supported

524,288 82 6,394
123 4,263

In addition to the data structure described above, each
switch instantiates three vectors to maintain the inspection and
suspect lists, as described in Section IV. Each entry of these
structures occupies 4 bytes to store an IP address. Considering
lists of 1,400 entries each, the total number of bytes needed
for them is 16,800 bytes. Finally, there is the cost of executing
the entropy-based detection mechanism described in previous
work [12], which is of 39,040 bytes. Therefore, the total
switch memory footprint is of 114,640 bytes, which is deemed
very low, given that existing forwarding devices have available
memory in the order of hundreds of MB.

VI. CONCLUSION AND FUTURE WORK

In this paper, we proposed BUNGEE, a mechanism for
DDoS detection and mitigation to be entirely executed on
a programmable P4 data plane. Our main novel research
contribution is the proposal of an adaptive pushback ap-
proach that, through entropy-based anomaly detection and
inter-switch communication, allows for the optimal, dynamic
deployment of filtering procedures. The results obtained reveal
the mechanism is accurate and contributes to considerable
savings of network resources. Moreover, the solution reacts in
a fraction of the time typically demanded by its external CPU
and SDN controller-based counterparts. Finally, it consumes
a small amount of a forwarding device’s memory, enabling
other applications to co-exist on the device.

As future work, we plan to focus on refinements to the
technique used for suspect identification, including devising
dynamically-defined thresholds. In the longer term, we also
plant to potentially resort to machine learning-based methods
in order to perform suspect identification.
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