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Abstract—With the continuous growth in the number of
mobile networked devices, and their rapidly improving compute
capabilities, it has become possible to harness them as an ex-
tended cloud. This presents a clear opportunity to place latency-
sensitive applications and services at the edge. As applications are
increasingly based on the microservices and Network Function
Virtualization (NFV) architectures, their overall performance will
depend on the location of their constituent microservices relative
to one-another. An extended cloud comprising mobile devices
therefore results in a dynamic network, making it difficult for
traditional orchestration systems in distant clouds to perform
timely management and replacement of microservices to ensure
the overall application or service is performant. We propose to
address this challenge by decentralizing the service discovery
and allocation logic, placing it in client microservices. This paper
presents a P2P-based design and prototype system that empowers
clients to discover desired services based on pre-defined QoS
requirements. If none are found, clients identify compute nodes
meeting the requirements to request a new service allocation.

I. INTRODUCTION

In recent years, innovation in the networking and cloud
computing space has been driven by softwarization, which re-
alizes software implementations of logic that have traditionally
been performed in hardware. Simultaneously, the proliferation
of cloud computing spurred the adoption and growth of
the microservices architecture, breaking traditional monolithic
applications into separate, distributed, inter-communicating
software processes known as microservices. The growth of
softwarization and cloud computing inspired the Network
Function Virtualization (NFV) architecture, which orchestrates
blocks of simple virtualized network functions (VNFs) into
service chains to create more complex network functions [1].
In the near future, an increasing number of devices will be
embedded with networked computers (i.e. “smart” devices),
thus expanding the IoT/edge computing tier [2]. As computing
power grows in embedded smart devices, it becomes possible
to virtualize them and place network functions and services
closer to end-users, enabling ubiquitous computing and com-
plementing Multi-access Edge Computing (MEC) [3].

The explosive growth of virtualizable devices at the edge
and fog tiers presents a scalability challenge for orchestrating
services and applications that rely on centralized management
residing far away in traditional clouds. Complicating matters
is the fact that these devices may be mobile (connecting,

disconnecting, and changing locations), affecting the connec-
tivity graph, bandwidth, and latency of links. This dynamic
environment may negatively impact the performance of service
chains and applications based on the microservices archi-
tecture. The problem becomes critical if said services and
applications partake in demanding industrial settings, power
grids, traffic management, etc. Thus, there exists a clear need
for adaptive scheduling in a continuously changing network
topology, replacing service instances as required to maintain
the performance requirements of constituent microservices.

In our past work [4], we introduced an architecture and
system that incorporated network metrics, e.g. latency and
bandwidth, into the scaling and scheduling decisions of cloud
management frameworks. Specifically, the system monitored
the service latency and bandwidth as perceived by clients, and
performed service scaling and placement to ensure the quality-
of-service (QoS) per client. A Software-Defined Networking
(SDN) solution was then invoked to re-direct the client’s
traffic to the new instance. The system thus provided service
assurance in a logically centralized manner. This led us to
ask: how can we continue to provide assurance in scenarios
where the connectivity to centralized management services are
disrupted (e.g. network congestion, natural disasters, etc.)?

In this work, we take a decentralized approach where the
discovery and allocation of services are made by the clients.
We argue that the clients are best positioned to detect when
their received service quality has degraded (e.g. loss of avail-
able bandwidth, increased latency, service failure, etc.), and
switch to another service instance, or trigger the allocation of
a new instance on a nearby compute node (i.e. server that hosts
virtualized services). Composite applications and services can
thus react more quickly to network and service impairments,
triggering restorative operations without the intervention of
possibly distant centralized orchestrators that may not even
be reachable. To this end, we leverage the cooperative, fault-
tolerant, and self-organizing features of peer-to-peer (P2P)
overlays to provide the necessary scalability, high-availability,
and mobility support for services and applications in future
edge/fog tiers and mobile ad-hoc networks [5].

This paper presents our proposed architecture and prototype
implementation, PhysarumSM, of a decentralized P2P service
mesh that empowers clients to discover and allocate service
instances they need to communicate with. A P2P overlay
presents an underlay-agnostic solution while enabling clients978-3-903176-32-4 © 2021 IFIP



to perform automatic discovery of nearby service instances.
A request sent to a service may automatically trigger a
service instance allocation if no pre-existing nearby instance
is discovered, or if the discovered instances do not meet pre-
defined QoS requirements.

The rest of this paper is organized as follows. Section II
provides a review of background and related works. In sec-
tion III, we define and explain the general requirements for
our envisioned system. Section IV then describes the high-
level architecture of the system, followed by a presentation of
our proof-of-concept implementation in section V. Evaluation
of the prototype is then shared in section VI, and we conclude
the paper in section VII.

II. BACKGROUND AND RELATED WORK

This section presents a brief overview of background and
related works to provide further context for the work intro-
duced in this paper.

A. Service Meshes

Service meshes have become a popular for addressing the
connectivity challenges introduced by the microservices archi-
tecture. They function as networking middleware, facilitating
inter-service communications. Some common goals of service
meshes are to provide: 1) service discovery; 2) load balancing;
3) fault tolerance; 4) traffic and health monitoring; 5) circuit
breaking; and 6) access control [6].

Istio [7] is a currently popular open-source service mesh
implementation built around the open-source Envoy [8] soft-
ware proxy. The key capabilities of Istio include traffic man-
agement, secure communications, and monitoring the service
mesh’s performance and health. Its architecture consists of a
centralized control plane, which is responsible for configuring
the service mesh, and a data plane, which is composed of
distributed Envoy proxies that forward and route the network
traffic within the mesh. Istio injects a local proxy alongside
each microservice in the mesh, intercepting all traffic to and
from the service. This deployment pattern is often called
the sidecar pattern. By itself, Istio does not perform service
discovery, and instead relies on an external entity to update
the Istio service registry with information regarding the set of
services and their endpoints.

Consul [9] is another popular open-source service mesh
solution. It features a built-in service discovery mechanism
and utilizes a simple gossip protocol [10] to help disseminate
membership information. It supports network segmentation
and delegation of administrative privileges, enabling the ser-
vice mesh itself to be virtualized. Consul maintains a logically
centralized state in a distributed fashion by utilizing the Raft
consensus protocol [11]. To provide connectivity services, it
also uses the sidecar pattern to place proxies next to services.

B. Kubernetes Approach

Kubernetes [12], abbreviated as K8s, is a popular enabling
technology for the deployment of applications built around the
microservices architecture. Many of the open-source service

mesh implementations that exist are built as K8s network
plugins to enable quick adoption. Prior to service meshes,
K8s still provided some basic service mesh functionality by
orchestrating and manipulating Linux iptables, ebtables, tc,
and routing tables. This complex combination built around
legacy tools enabled basic connectivity, but created difficulties
in debugging and tracing of errors when applications fail to
function properly. Kubernetes has its own set of management
services that comprise its control plane, typically deployed
within a controller server, and utilizes a centralized datastore
to maintain its state. Connectivity loss to either the control
plane services or the datastore results in hung operations or a
corrupted network state.

C. P2P in Edge Clouds

While P2P technologies have typically been used for
content-based discovery, they have also long been proposed
as a means for discovery within service-oriented environ-
ments [13], [14], [15]. As the concept of edge cloud computing
becomes a reality, there has been renewed interest in using
P2P. In [16] and [17], the authors proposed a P2P network
comprised of IoT gateways that would enable applications to
discover IoT resources in a federated domain. The authors
of [17] demonstrated a working prototype system and eval-
uated it on an OpenStack-based cloud, demonstrating access
and lookup latencies in the order of milliseconds.

In dynamic and volatile environments (e.g. disaster zones)
where connectivity to traditional edge processing clouds may
be disrupted, the authors of [18] used P2P as a fallback
mechanism for discovering neighbouring resources to enable
collaborative processing of data. In [19] and [20], the authors
investigated the scheduling challenges in dynamic topologies
with numerous mobile edge servers. They proposed algorithms
for choosing candidate edge servers for offloading services in
a decentralized fashion, the former taking task deadlines into
account, and the latter taking node reliability into account. Our
work serves to be an enabling framework for the scenarios and
algorithms presented in these works.

In [21], we experimented with leveraging P2P in our own
distributed edge clouds to enable a self-healing SDN data
plane. When SDN controllers go down, the affected SDN
switches that lose connectivity will automatically discover the
nearest available controller, taking into account its version and
compatibility, and connect to it.

III. REQUIREMENTS

As we begin designing a system that enables clients to
discover and allocate service instances, we first discuss and
review the set of functional requirements and objectives.

Decentralized Discovery: Decentralizing service discov-
ery enables clients to independently discover nearby service
instances they wish to connect to. When link failures or
routing table failures cut off clients from the core network,
traditional centralized discovery mechanisms may fail, causing
applications and services to malfunction. We note that a system



can easily support centralized and decentralized methods, with
one acting as the fallback for the other.

Client-Initiated Allocation: When a client’s received qual-
ity from a given service is degraded (e.g. due to network
latency, or increased demand and load from other clients,
etc.), or predicted to degrade in the near future (i.e. due to
trending or seasonality patterns), the service should be quickly
scaled. Such scaling operations may be vertical or horizontal.
In the horizontal case, the scheduling system should be client-
aware, so that it takes into account the location and demand
of existing clients and strategically places the new instance in
a location that decreases the load on the existing instance(s)
while potentially improving the QoS of one or more clients.

Monitoring of Infrastructure and Services: The system
should be able to monitor the health of the underlying infras-
tructure, the services it hosts, as well as the QoS of the clients
that use those services. Infrastructure information, such as
compute and network metrics, enables the system to perform
optimized placement of services based on the service’s require-
ment constraints (e.g. RAM, CPU, latency, bandwidth, etc.).
Additionally, collecting data and statistics on the applications
and services will enable us to calculate their key performance
indicators (KPIs), as well as see how changes to the underlying
infrastructure can affect service and application performance.
This information (raw or preprocessed) should be available to
clients for use when they need to perform an allocation.

Security: As in any cloud environment, the system should
provide security against compromised hosts and listeners on
the wire. Common measures should be utilized, such as end-
to-end traffic encryption to avoid traffic inspection, access
control and authentication to ensure only authorized peers can
communicate, and hashing of service images to ensure they
have not been modified.

IV. ARCHITECTURAL DESIGN

We now present a high-level architecture that aims to
achieve a scalable, highly-available, and mobile-friendly ser-
vice mesh. Our design leverages an underlying P2P substrate,
comprised of a distributed hash table (DHT), that enables
clients to discover nearby instances of a particular service
based on hash identifiers. This approach implicitly supports
mobility of compute nodes that host virtualized services.

A. System Overview

Figure 1 presents a generalized high-level architecture of
our system. The architecture has three main tiers: a resource
metrics tier at the bottom, an information tier in the middle,
and a control & management tier at the top. The bottom
tier consists of the physical infrastructure (e.g. compute,
network, storage, wireless, etc.), and any virtualized versions
of those resources, and is able to provide their utilization and
performance metrics. The middle tier comprises telemetry and
monitoring for aggregating and analyzing information from
the bottom tier, as well as a service registry that contains the
metadata of services that can be deployed on the infrastructure.
Finally, the top tier contains any components that partake in

Fig. 1: Generalized high-level architecture.

the logical decision-making processes concerning the control
and management of the infrastructure, as well as the services
that run atop the infrastructure.

In accordance with our view that the P2P-enabled clients
(which themselves may be microservices) have a say in the
discovery and allocation process, we have placed the clients
and services within the control & management tier. The clients
and services have access to the monitoring information as well
as the service registry, which allows them to make resource
allocation and life cycle decisions, and to request the cloud
control & management services to execute these decisions.

B. Telemetry, Monitoring, and Service Registry

The telemetry aggregation and monitoring component,
within the information tier shown in Fig. 1, is responsible
for ingesting, aggregating, processing, analyzing, and storing
the raw data that is received from the underlying tier. The raw
data received from the bottom tier contains metrics relating
to the CPU, memory, disk I/O, and bandwidth utilization
of wired and wireless networks. Processing and analysis of
such data yields higher-level information such as KPIs of
resources, services, and applications. A key expectation is
for the monitoring system to be cloud-aware, meaning that
it is able to discern whether a specific resource is physical or
virtual, and map a given virtual resource to a location within
the underlying physical topology. Users and clients querying
such information should also be able to directly map metrics
and information to a given resource (physical or virtual) or set
of resources that comprise an application.

The service registry component, also within the information
tier, contains metadata regarding the services that may be
deployed. This component allows application and service
creators to register new services or update existing ones. Each
service entry should contain:

• A service name and associated service hash;
• A link to fetch the service image, possibly along with

versioning information;
• Information regarding the network QoS parameters (e.g.

minimum bandwidth requirement, maximum latency tol-
erance, jitter tolerance, etc.) required for clients that uti-
lize the service to properly receive it. This allows clients



Fig. 2: System-level diagram of PhysarumSM.

communicating with the service instances to realize when
the quality they are receiving or experiencing degrades;

• The compute requirements (e.g. RAM, CPU, disk space)
of the service, so that the scheduling and allocation logic
can identify a server with sufficient capacity to host the
service; and finally

• A flag indicating whether the service is stateless or state-
ful. In the event that a client’s received service quality
degrades, it may not be able to switch to a different
instance if the service is stateful. An example of a stateful
service is streaming compression, whereas an example
of a stateless service is a DNS query. Clients should
be conscious of this distinction when deciding to switch
services mid-stream or mid-job.

V. PROOF-OF-CONCEPT IMPLEMENTATION

Figure 2 presents the system-level diagram of
PhysarumSM1, our proof-of-concept implementation, where
each component connected to the P2P network is a node
participating in the DHT. The colours of each component
correspond to the tiers from Fig. 1. The P2P network
enables discovery and communication between bootstrap
nodes (initial peers for new P2P nodes joining the network),
Life Cycle Agents (LCAs) (per-compute node daemon that
controls the life cycle of virtualized resources), service
registry and telemetry aggregator instances, and containerized
microservices (either native P2P, or legacy TCP/IP packaged
with a P2P proxy). We begin by describing the environment
upon which our work was implemented and deployed on,
followed by descriptions of each component in more detail.

A. Implementation Environment

Our prototype was developed, implemented, and deployed
on the SAVI testbed [22], a Canada-based multi-region and
multi-tenant academic cloud. SAVI features a fully SDN-
enabled network using OpenFlow [23] switches (both physical
and software), virtual machines (VMs) and containers based
on the OpenStack ecosystem, and heterogeneous resources
such as GPUs, FPGAs, and SDRs. SAVI’s multi-tier topology
includes VM-heavy core nodes, with multiple smaller edge
nodes distributed across different university campuses.

1PhysarumSM: https://github.com/PhysarumSM

The core networking features of PhysarumSM is imple-
mented using libp2p2 v0.9.2, an open-source modular net-
working stack that allows users to compose highly config-
urable P2P services and applications. libp2p is a quickly
evolving project, with a sizable community contributing to
its development. More importantly, it places an emphasis on
security, encrypting all P2P connections by default. Since
libp2p is written in multiple languages, it enables P2P services
implemented in different languages to communicate with each
other. PhysarumSM is fully implemented using the Golang
version of the library. As we deployed our prototype on
multiple regions of the SAVI testbed, we are able to test and
experiment with multi-tier applications.

B. Telemetry Aggregation & Monitoring

To aggregate raw telemetry collected from the infrastructure
and services, we use the open-source Prometheus3 database.
Prometheus scrapes metrics collected from various data col-
lection agents known as exporters. To collect hardware and
OS statistics from our various compute nodes, we utilize
Node Exporter, an open-source agent binary that is part of
the Prometheus ecosystem. Using Prometheus’ client libraries,
we have also instrumented all the critical P2P services in the
system (the ping monitor (bootstrap), the service registry, the
life cycle agent (LCA), and the service proxy), so that they can
export metrics to Prometheus. From these, we collect software-
level metrics such as CPU utilization, memory utilization,
number of threads, etc. Additionally, we can observe service-
level metrics such as traffic bandwidth, the number of clients,
and who those clients are. This provides comprehensive visi-
bility into the overall state of the system.

In Fig. 2, we show the telemetry aggregator to be connected
to the P2P network. This is because we can couple Prometheus
with a P2P-enabled proxy that allows it to dynamically dis-
cover and scrape from the other P2P services. This simplifies
the operation of Prometheus as its configuration does not have
to be dynamically updated whenever new services join or
existing services leave the network.

C. Bootstrap Node(s) / Ping Monitors

Initial well-known bootstrap addresses are required for
many P2P systems. Bootstrap nodes serve as the initial peers
of newly joined nodes, allowing them to discover other nodes
participating in the network. Their role in the network nat-
urally leads them to become nodes with a large number of
directly connected peers, and thus most suitable to perform
routing within the DHT. While libp2p supports a broadcast-
based discovery system using multicast DNS (mDNS) [24]
to discover initial peers, the SAVI testbed’s current network
policies forbid Ethernet broadcast and multicast frames.

The bootstraps serve a secondary purpose. Due to their
highly-connected nature, they are ideally situated to serve
as latency monitoring points. They periodically ping their
directly connected peers to collect round-trip time (RTT)

2libp2p: https://libp2p.io/
3Prometheus: https://prometheus.io/



latency information. By strategically placing instances of these
bootstrap monitoring nodes in key locations in the underlay,
such as gateway routers where traffic must traverse through
to reach peers in other networks, we can measure the latency
of peers to well-known points and build a latency graph for
the P2P network. We expose this information to Prometheus,
allowing it to scrape the latency data.

D. Service Registry

As mentioned in subsection IV-B, the registry stores meta-
data regarding registered services. For each service, the cur-
rent implementation stores a link to its container image, its
compute requirements, and the network QoS requirements
for its clients. This information plays a critical role when
deciding the placement of services in relation to the clients.
In [4], we previously introduced a client-aware QoS auto-
scaling and scheduling system that uses the QoS information
in this registry to: 1) configure monitoring alarms that track the
client’s traffic latency and bandwidth; and 2) make scheduling
decisions when a new instance is launched, placing it at a
location that best meets the clients’ needs.

In this work, we extend the role of the service registry
to serve as a lookup service between human-readable service
names and service hashes, thus playing a role similar to DNS
within the traditional Internet architecture. A service hash is
a unique identifier calculated based on a service’s container
image, thus preventing modified images from producing the
same hash while simultaneously providing an implicit form of
versioning. The mapping between human-readable names and
service hashes allows developers of applications or services
to simply specify the name of service they wish to connect
to, which is then resolved to a service hash for querying the
DHT. Applications and services can hard-code the hashes of
services they communicate with if they wish to avoid potential
incompatibilities in case the human-readable name-to-hash
mapping is modified (e.g. a new version of the service is
released), or if the registry becomes compromised.

The registry itself is implemented as a P2P-enabled service
with a well-known service hash. This allows clients wishing to
query the registry to discover the closest instance and direct
its query to it. The service registry can thus be distributed
across different regions and cloud tiers to offer redundancy
and to reduce the access latency. It synchronizes its state
with other registry instances by using etcd4 under-the-hood,
an open-source distributed key-value store.

E. Life Cycle Agents

The LCAs are per-compute node instances responsible for
managing the life cycle of virtualized compute resources. Like
the service registry, the LCA is implemented as a P2P-enabled
service with a well-known service hash. The LCA leverages
a virtualization driver to create, update, and delete virtualized
compute resources. We currently use Docker5 as our main
virtualization engine, and so the LCA utilizes the Docker client

4etcd: https://etcd.io/
5Docker: https://www.docker.com/

as the virtualization driver. Each LCA monitors the service
instances it creates by collecting data regarding their usage
via a dedicated metrics channel offered by the service proxies.
If the LCA determines that a proxy has not been used for a
period of time, it retires the service instance by deleting it.
In the current implementation, any P2P node can ask an LCA
to spawn an instance of a given service; addressing access
control policies is planned in future work.

The LCA proactively caches service images via a local
cache, thus introducing the possibility of having cold standbys
for important services. This avoids the need for an LCA to
fetch and download the image when a service allocation is
requested. In a similar vein, we can allocate service instances
in a non-running state, creating warm standbys. We foresee
these standby modes to be useful for enabling applications and
services to continue operations in challenging environments
with intermittent Internet connectivity.

F. Service Proxies

While P2P-enabled services can be natively built using our
P2P library, in order to support compatibility with traditional
TCP/IP services, we introduce a P2P-enabled proxy that can
be used by TCP/IP clients and services alike to communicate
with other services over the P2P network. Services wishing
to advertise themselves can be represented by a P2P proxy in
a manner following the sidecar deployment pattern. Clients
wishing to access services over the P2P network can also
connect through the proxy.

Our proxy allows clients to communicate with other services
by tunneling their traffic over encrypted P2P connections. The
proxy takes care of discovering the closest available instance
of a target service that meets the service’s QoS requirements
(as defined in the service registry), and if none exists, the
proxy will take care of requesting a new allocation of a service
instance that meets the requirements. We currently support
proxying HTTP, TCP, and UDP traffic. Additionally, clients
can also request access through a P2P-based service chain.
The proxy will take care of setting up the series of VNFs
along the path, allocating new service instances if necessary.

The service(s) to connect to, and which type of traffic
to proxy, are configurable at run-time via an HTTP-based
management API. As shown in Fig. 3, the proxy opens
local TCP/IP sockets that are mapped to services in the P2P
network. Note that if a specific instance goes down, the socket
does not close, as the proxy will automatically discover an
alternative instance or allocate one if need be.

We now provide a brief description of the other proxy sub-
components shown in Fig. 3:
In-Memory Caching: The service proxies contain two in-
memory caches: a peer cache, and a registry cache. The peer
cache is used to store a set of peers representing instances of
a given service. Each peer in the peer cache is periodically
pinged to ensure liveliness and that they meet pre-defined
QoS latency requirements, with non-conformant peers being
removed. Additionally, the act of pinging also allows the proxy



Fig. 3: Design of P2P service proxy to enable interoperability with
traditional TCP/IP clients and services.

Fig. 4: Flow chart of process when establishing a connection with a service.

to get an estimate of the latency to each peer candidate. Simul-
taneously, the registry cache stores past results from querying
the service registry. The use of in-memory caching avoids
unnecessarily querying the registry and the DHT network, thus
reducing the latency for establishing a connection to a service
in subsequent connection attempts.
Scheduling: Each proxy contains a pluggable scheduling
module that is used when deciding which compute node to
request a new service allocation (and hence, which LCA
to contact). The scheduling module can obtain metrics (e.g.
available memory, CPU, etc.) regarding compute nodes capa-
ble of supporting the new service instance from Prometheus,
and filter them based on the service’s QoS requirements. Its
pluggability enables the heuristics to evolve or be swapped, for
example, to consider factors such as location in the network
(i.e. core, edge, on-premise equipment, etc.), or scheduling
policies (e.g. spread load, pack nodes to save energy, etc.).

G. Connection Management

Figure 4 shows the logical sequence of steps taken when
a client node (which itself may be a microservice) in
PhysarumSM wants to establish a connection with a service.
This process covers four possible scenarios:

1) The client node has past registry results cached, and
candidate peers for the target service cached. It can thus
immediately establish connectivity to the service.

2) The client node is connecting to the service for the first
time, and must query both the service registry and the
DHT to discover possible service instances. Instances
are found meeting the service’s QoS requirements, and
a connection can be made.

3) Similar to scenario 2, but no existing instances can be
found (or if they were found, they failed to meet the
service’s QoS requirements). A new service instance
must be allocated on a compute node able to meet
the service’s requirements. After successful allocation,
a connection can be made.

4) Similar to scenario 3, but no compute node is found
meeting the service’s requirements (or they were found,
but allocation failed). In this case, the connection attempt
returns a failure.

Once a connection is established, clients continue to monitor
the network QoS to the service instance. If the QoS experi-
enced by a client is inconsistent and close to the threshold of
the requirements, it may continuously disconnect and recon-
nect. To avoid this, we define two sets of QoS requirements in
the service registry, soft and hard. If a client’s perceived QoS
violates the soft requirement, but meets the hard requirements,
it waits and continuously monitors the quality to see if
conditions will improve, eventually disconnecting if the quality
fails to do so. If the quality violates the hard requirement, the
client immediately disconnects. Once disconnected, a search
for an alternative instance begins.

VI. EVALUATION

We present a set of experiments and benchmarks to func-
tionally validate our architecture and evaluate our prototype
implementation. All experiments were conducted on the SAVI
testbed using VMs, allocated with 2 CPU cores (Intel Xeon
E5-2650 v4) and 2 GB of memory, as compute nodes. The
VMs are virtualized on top of QEMU and KVM, and inter-
connected with Open vSwitches (OVS). The underlying phys-
ical servers that host the VMs are inter-connected via a mix
of 1GE and 10GE switches. All VMs run Ubuntu 18.04 with
a minimum kernel version of 4.15.0-96.

A. Discovery and Allocation

In the event that a service does not exist when a client makes
a request, a new one must be dynamically allocated on-the-fly
to service the client. We conduct an experiment to measure the
agility of the system in this scenario, using a simple HTTP
service that replies with a static payload message. For the
experiment, we pre-cache the container image in the compute
nodes to avoid having to fetch it from Docker hub, hence



Fig. 5: Cumulative distribution function (CDF) of the HTTP
request-response time when the requested service must be allocated.

Median of total time = 2.17s. Allocation median = 1.58s.

representing a cold standby. Figure 5 shows, as the solid blue
line, the cumulative distribution function of the total time from
when an HTTP request is made, to the system searching the
DHT and failing to discover a pre-existing instance, to the
system dynamically allocating a new instance on a remote
node, to when the HTTP response is received from the new
instance. The median time to request, search, allocate, and
respond is 2.17s. The dotted orange line shows the proportion
of that total time taken by just the allocation stage itself (i.e.
creating and launching a new container); with a median of
1.58s, the allocation stage comprises roughly 70% of the total
time. The remaining time, comprising the HTTP request, DHT
search, and HTTP response, has a median under 1s.

This experiment demonstrates how clients can rapidly
search for and request deployment of missing services in
a decentralized manner within seconds. Additionally, these
results serve to showcase the mitigation time of a client when
a service (or VNF) it was connected to suddenly becomes
unavailable or unable to meet the service’s QoS requirements.
In [4], we presented a centralized solution that took up to
10s to mitigate a QoS violation between a client and service
instance. Our P2P-based solution shows it can match, and on
average exceed, the centralized mitigation time.

Currently, the total time shown in Fig. 5 has a long tail be-
yond the 90th percentile. We have root-caused this behaviour
to libp2p’s DHT implementation, based on S/Kademlia [25],
which occasionally takes longer than expected to discover
the new service after it is allocated and launched. There are
ongoing efforts to improve the efficiency and performance of
the DHT implementation [26], and we believe future versions
will improve the performance of the DHT.

B. Throughput vs Service Chain Length

As explained in subsection V-F, our P2P service proxy
allows configuration to enable service chaining through multi-
ple P2P-enabled VNF services. When chaining through UDP
VNFs, there is the possibility of packet loss, which increases
as the chain grows. An experiment was conducted where we
chained a series of simple UDP echo services (to minimize
both latency and processing complexity that could lead to

Fig. 6: Degradation of throughput vs length of UDP service chain.
Throughput loss rate incurred per P2P hop is roughly 15 Mbps.

Fig. 7: Three-tier data pipeline use-case scenario. Sensors stream to mobile
aggregators (in buses), which streams to an end-service in a remote cloud.

further loss) to quantify the severity of loss per P2P hop. In
this experiment, we set the traffic source to transmit data at 800
Mbps, and additionally, we ensured that no two consecutive
services are on the same server (i.e. traffic from one service
to the next must traverse a switch and two hosts). Figure 6
reports the measured bandwidth at the receiving end of the
chain as the length of the chain grows from 1 service (i.e.
simple client-server model) to 10 services.

It can be seen that on average, each UDP service added
to the chain incurs a loss of approximately 15 Mbps in
throughput. Code profiling indicates that the current bottleneck
is due to the cryptographic operations involved to encrypt the
P2P connections. This experiment shows the applicability of
PhysarumSM for service chain applications needing through-
put at rates up to hundreds of Mbps.

C. Data Pipeline Example

We present a motivating use-case scenario using a data
processing pipeline application. Figure 7 shows the scenario,
where sensors are deployed at the side of a road, and data is
streamed to aggregators that are deployed in buses (i.e. mobile
compute nodes) that periodically drive by. For each sensor
stream, the aggregators pre-process the data to transform it
into an intermediary format that is then streamed to a storage
and analytics service deployed in a remote cloud. All three
stages in the pipeline communicate over P2P.

Our scenario consists of 48 sensors, where each one is
deployed in a container with 1 CPU core and 100 MB of



Fig. 8: Sensor-to-aggregator latency of a sensor. Aggregators are different
instances on different compute nodes/buses.

memory to emulate a resource-constrained IoT device. The
passing buses are emulated using remote VMs with 2 CPUs
and 2 GB of memory, and their link latency to each sensor
is dynamically varied from a maximum of 10ms down to a
minimum of 1ms, and back up to 10ms. Additionally, the
sensors’ links are capped at 1 Mbps. To simulate an out-of-
range bus, the connection is killed once the latency surpasses
10ms. Each bus drive-by takes roughly 100s, and buses are
spaced at most 55s apart so that there will often be a bus
within the optimal range.

The aggregator service is registered with a 5ms soft latency
requirement and a 10ms hard limit. Figure 8 shows the sensor-
to-aggregator latency of the underlying network versus the
application latency, taken from the perspective of a specific
sensor node. As the network latency steadily increases, rep-
resenting a bus moving away, the application latency also
increases. At roughly t=25s, the network latency surpasses
5ms, but the sensor continues monitoring the network latency
to see if the condition persists. At roughly t=36s, the sensor
requests a new aggregator instance be spawned on a nearby
bus, and switches its connection. The pattern repeats as the
second bus proceeds to move away, slowly increasing the la-
tency and eventually triggering the sensor to request allocation
and switch aggregators, at t=71s, to an approaching third bus.

D. System Overhead

We monitor the resource utilization to determine the over-
head of the various components in PhysarumSM. The mea-
surements, collected by Prometheus and summarized in Ta-
ble I, are for the data pipeline application. The service proxy
results are shown for each stage of the pipeline (averaged per
instance). Logically, the service proxy’s CPU and bandwidth
utilization will be different for other applications. For the
ping monitor, its bandwidth usage by roughly 13.31 kbps per
peer, though this can be reduced by increasing the inter-ping
interval. For the service registry, each lookup request transfers
7.91 kB of data (connection setup + request + response). The
low overhead demonstrates the feasibility of deploying our
system in dynamic edge nodes with limited resources.

Finally, we measure the network latency overhead due to
the P2P service proxies. Using a simple HTTP service, we
compared the RTTs between the P2P overlay versus a direct
underlay connection, repeating for 10,000 iterations. This

TABLE I: Resource Utilization of Components (Data Pipeline App.)
CPU model: Intel Xeon E5-2650 v4

Component RAM (MB) CPU (%) Network
Ping Monitor
(Bootstrap) 32.11 4.76 13.31 kbps per peer

Service Registry 48.53 0.89 7.91 kB per lookup
LCA 35.79 0.99 175.98 kbps

Service Proxy
(Sensor) 40.47 0.88 65.45 kbps

(Aggregator) 36.88 0.49 107.74 kbps
(Analytics) 24.49 0.21 35.7 kbps

experiment was done within a single VM to reduce the effects
from switches and links. For each P2P proxy in the path, the
RTT increases by roughly 700µs (or 350µs unidirectional).

VII. CONCLUSION AND FUTURE WORK

As the number of networked mobile devices grows and their
compute capabilities increase, it becomes possible to harness
them as an extended edge/fog cloud. However, their mobility
results in a dynamic edge with an ever-changing topology and
erratic network connectivity. This presents a problematic en-
vironment for composite applications and services built using
the NFV and microservices architectures, whose performance
is dependent on the placement of their constituent parts relative
to one-another. Traditional orchestration systems located in
far-away clouds are thus unable to contend with the mobility
and expected scale of devices in a timely manner.

In this paper, we investigated a decentralized approach
to give clients that need a particular service the ability to
independently discover available nearby instances, or dy-
namically allocate a new one. We proposed a P2P-based
architecture that meets these goals, implemented a prototype
called PhysarumSM, and evaluated it on a multi-tier cloud
environment. The evaluations demonstrated how clients are
able to discover instances meeting a given QoS requirement in
under a second without centralized management. If performant
instances do not exist, they can be dynamically allocated on a
nearby host. Thus, this work represents a critical step towards
scalable, highly-available, and mobility-friendly composite ap-
plications and services in dynamic edge networks.

As future work, we plan to explore a variety of directions.
To further enhance the system’s ability to survive network
partitions, we seek to enable node-to-node image transfers.
Additionally, using trend analysis on historical data enables
proactive service placement and image caching for warm and
cold stand-bys. Adding access control capabilities will aug-
ment the system’s security, guarding against unauthorized ac-
cess and enabling multi-tenancy over the same DHT network.
Algorithms for dynamically tuning the DHT parameters will
provide adaptability to changing network conditions. Lastly,
we plan to investigate opportunities to utilize our P2P system
as a backup mechanism to provide reliability and auto-healing
in geo-distributed OpenStack or K8s deployments that rely on
centralized control plane services.
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