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Abstract—Cloud management has traditionally considered Ser-
vice Level Objectives (SLO) based on QoS metrics. However,
QoS-focused metrics have a limited effect on the Quality of
Experience (QoE) experienced by the clients. This paper proposes
a Kubernetes scheduler extension and resource rescheduling that
incorporates QoE metrics into SLOs. As a proof of concept, this
work evaluates the architecture using the QoE metric proposed
in the ITU P.1203 standard, in the context of video streaming
services co-located with other services. Experimental results show
that our scheduler improves the average QoE by 50% compared
to other schedulers, while resource rescheduling improved the
average QoE by 135%. In addition, our architecture eliminated
over-provisioning altogether.

Index Terms—Cloud Computing, Containers, Scheduler, QoE,
Deep Machine Learning

I. INTRODUCTION

Cloud computing has gained enormous momentum in the
last years with the rapid development of new technologies for
data storage, processing, and data transfer over the Internet
[1]. There are two agents in the cloud ecosystem: the cloud
provider (e.g., AWS, Google Cloud, Microsoft Azure), which
provides the resources (CPU, memory, disk, and network);
and cloud customers (e.g., Netflix, Dropbox), which use the
virtual resources to serve their clients. This is a pay-per-use
usage model, known as Infrastructure as a Service (IaaS) [2].

The IaaS model allows customers to use a shared set of
compute resources simultaneously via virtual machines (VMs)
and, recently, containers. The virtualization allows multiple
operating systems and multiple services on the same server
[3], in which services are co-located to improve resource
utilization [4]. However, there is a trade-off between high
resource utilization and interference among services due to co-
location. This interference appears when the demand from the
services exceeds the resources available on the shared host [5].
Hence, the likelihood of performance degradation increases
with the degree of service co-location [6]. In addition, latency-
sensitive services are the most affected [7].

Cloud providers guarantee customers a performance level
established in a Service Level Agreement (SLA) that spec-
ifies a set of Service Level Objectives (SLOs). The SLOs

are usually composed by one or more Quality of Service
(QoS) measurements [8]. Traditional cloud management uses
different QoS metrics for each type of service. While some
services require more compute resources (e.g. data analysis,
artificial intelligence, data warehousing), others require more
network resources (e.g. media streaming, web services) [9].
One way to guarantee the SLO established for each service is
to balance the service’s workloads between the various cloud
servers by scheduling resources [10]. However, as previously
mentioned, the co-location of different workloads with dif-
ferent QoS requirements generates interference, especially in
latency-sensitive services.

Further, a QoS-based SLO is usually insufficient, because
the QoS metrics themselves reflect poorly the end-user expe-
rience [11]. This is mostly because it is hard to define the
optimal values of QoS metrics to reach the desired QoE [12].
Hence, direct QoE measurement has become a more effective
form to analyze end-user engagement [13]. Several works
explore QoE management applied to network management
[14]. However, these works omit how QoE can be measured
and then exploited in cloud computing to improve the End-to-
end users QoE. Therefore, it is essential to create QoE-aware
cloud management techniques.

This work proposes a QoE-aware scheduler for cloud en-
vironments. The proposal is an extension to the Kubernetes
scheduler, adding QoE as an SLO metric. A predictor based
on machine learning estimates the QoE offered by the cloud.
Resource scheduling or rescheduling is based on this estimate.
This paper evaluates the architecture in the context of video
streaming services, however other services could be supported
as well, as long as there is a suitable QoE predictor for that
service. The main contributions of this paper are:

• A management system that uses QoE objectives as SLO
metrics.

• A novel model to predict video QoE in cloud envi-
ronments, following the ITU-T Recommendation P.1203
[15]. To the best of our knowledge, this is the first work
that uses a set of cloud computing resources (CPU, Mem,
Disk, Network) to predict QoE within the cloud.

• A QoE-aware container scheduler and rescheduling for
cloud environments based on containers.978-3-903176-32-4 © 2021 IFIP



Experimental results show that the mean over-provisioning
decreased by 75% with the QoE-aware scheduler and 100%
with the rescheduler. Further, the video QoE increased by 50%
compared to other schedulers. Finally, the video QoE increased
by 135% with rescheduling.

This paper is organized as follows. Section II dissects the
related work. Section III presents the background information.
Section IV details the system architecture. Section V describes
the data collection process. Section VI shows our dataset anal-
ysis and model building. Section VII explains the experimental
setup, followed by the results in Section VIII. Finally, Section
IX concludes this work.

II. RELATED WORK

There have been many studies on scheduling virtual ma-
chines on the cloud [16]. In recent years, containers have
gained popularity as virtualization technology, due to the lower
overhead compared to virtual machines. Hence, container
scheduling has become an emerging research topic [17], [18].

In [5] the authors propose a scheduler for Kubernetes based
on the service’s resource demands. For example, if a service
uses more network than CPU resources, it should be allocated
on a server with more available bandwidth than processing
power. However, it is difficult to predict the service’s resource
usage beforehand [19]. Like our work, the authors consider
the degradation in the services due to service co-location.

In [20] the authors propose a multi-objective container
scheduling algorithm in which they consider the servers’ CPU
and memory usage and the time to transmit the container
image over the network. They also take into account the
characteristics of the services to associate them with the
servers. However, the authors overlooked the effect of co-
location. Their proposal does not use rescheduling to mitigate
overloads. This work reschedules the containers when there is
a QoE degradation caused by co-location.

In [21], the authors improve network QoS by scheduling
network-aware containers in a multi-tenant scenario. Specifi-
cally, the authors improve bandwidth utilization by decreasing
network fragmentation, while minimizing processing delay.

An extension of the Kubernetes scheduler for latency-
sensitive services in fog computing was proposed in [22]. The
goal is to minimize service response time. In their proposal, the
various servers are located in different regions. The scheduler
analyzes each location’s network status and chooses the server
with the lowest Round Trip Time (RTT). However, the authors
consider only the network load.

KCSS [23] selects a server based on multiple criteria, using
the technical algorithm for the Priority Order for Similarity
to the Ideal Solution (TOPSIS) [24]. TOPSIS chooses a
solution (server) whose distance from the best solution and the
worst solution is minimal using the n-dimensional Euclidean
distance. The authors used three criteria related to the work
nodes’ resource usage: maximize the CPU, disk, and memory
usage rate. Thus, the objective is to compact the containers in
order to use the maximum resources possible from the servers.
KCSS is generic, allowing to use and combine other criteria

and resources. Due to this generalization, we use this algorithm
to compare with our work.

Table II compares the related works to our proposal. It
shows if the works consider co-located services, the max-
imization objective, where the metrics are collected, and
if the proposal employs QoE metrics. Ours stands out for
considering other co-located services, and by collecting server
and container metrics to maximize the service’s QoE, based
on the estimation of the end-user’s QoE.

TABLE I
COMPARISON WITH THE RELATED WORK

Work Co-location Max.
objective

Source of
metrics QoE?

[5] Yes Execution time Server No
[20] No Response time Server No
[21] No Network QoS Server No
[22] No Network QoS Server No

[23] No Computing
resource usage Server No

Our Yes QoE Server/Container Yes

III. BACKGROUND

This section discusses concepts related to our proposal.
It presents horizontal autoscaling and resource scheduling in
cloud computing. It also discusses how to measure the Quality
of Experience (QoE), and the Kubernetes platform.

A. Cloud Horizontal Autoscaling and Resource Scheduling

Cloud environments allow the use of resources on-demand;
that is, new instances of a service are spun up when the
demand exceeds the initially reserved value [25]. This is
known as horizontal autoscaling. Different performance met-
rics can be monitored, such as CPU, memory, and net-
work utilization. Horizontal autoscaling initiates a number
of instances I = {I1, I2, I3 . . . Ix} to allocate m resources
R = {R1, R2, R3 . . . Rm} on a cloud consisting of S =
{S1, S2, S3 . . . Sn} servers. Resource scheduling thus chooses
in which server Si to allocate each resource Rj .

B. Estimating QoE for HTTP Adaptive Video Streaming

ITU-T defines QoE assessment as the process of measuring
or estimating the QoE for a set of users of a service [26].
In other words, QoE measures the pleasure or discomfort
perceived by the users.

Video QoE assessment is a challenging task due to the many
networking factors that influence it: different client devices and
request patterns, varying network conditions, and significant
spatial and temporal variation in cloud computing performance
[27]. Furthermore, QoE is affected by human factors, such as
users’ expectations and perceptions.

The most commonly used video QoE definition is the
subjective Mean Opinion Score (MOS). MOS is standardized
in ITU-T recommendations [28], and is defined as a numeric
value going from 1 (poor) to 5 (excellent). This approach has
inherent difficulties: high cost, it is time-consuming, cannot be
used in real-time, and lacks repeatability. This motivated the



development of objective methods that predict the subjective
quality from network characteristics [29].

Some works in the literature use machine learning-based
video QoE prediction [30]–[32]. These works use network and
service characteristics to infer the MOS. These approaches
usually collect data such as delay, jitter, loss, and bandwidth.
Some characteristics from the client are also important, such
as the number of interruptions in the service, changes in the
video bit rate, and playback start time.

Video streaming is migrating to cloud computing. The per-
formance of the cloud computing environment also contributes
to the users’ QoE. However, to the best of our knowledge,
this is overlooked in the state of the art video QoE predictors.
QoE forecasting should go beyond the existing methods, which
use only network metrics [14]. Cloud-based models should
incorporate metrics related to CPU, memory, and disk usage.

C. Kubernetes

Kubernetes1 is the most popular container-based virtual-
ization solution. It is an open source Docker management
tool. Fig 1 shows the Kubernetes architecture. It contains one
Master node and multiple Worker nodes. Each node is either
a physical or virtual machine over the service layer. The node
components are described below:
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Fig. 1. Kubernetes architecure

Master Node: The Master Node manages the cluster and
schedules the service deployments. The API server receives
commands from clients using HTTP and manages the Kuber-
netes objects. The kubectl Command-line interface (CLI) sends
commands to the API server. Another option is to use client
libraries. The Controller Manager monitors the etcd storage
component, which stores the cluster state. If the cluster state
changes, for example, a pod stopped abruptly, the Controller
Manager makes the necessary changes to restore the previous
state. Finally, the kube scheduler (KS) schedules each pod on
a specific node in the service layer.

Worker Node: The Kubernetes cluster is a set of worker
nodes running containerized services inside of pods. The
pod is the basic deployment unit in Kubernetes. One or
more containers can be created and grouped into a pod. The
containers inside a pod share the same IP Address, port space
(namespace) and data volumes. Meanwhile, pods are isolated
from each other. An end-user request is distributed to worker
nodes according to load balancing rules. The proxy receives
these requests and forwards them to pods.

1www.kubernetes.io/

Kubernetes horizontal autoscaling: the Horizontal Pod
Autoscaling (HPA) system performs horizontal autoscaling
based on reactive threshold-based rules for CPU or memory
utilization [3]. When the current resource usage is greater than
the threshold, HPA allocates new replicas of the container. The
containers to be allocated enter a waiting queue and remain in
a pending status until the Kubernetes scheduler (KS) allocates
them to a worker node.

To decide how many containers to scale, the HPA checks
the ratio between the current metric and the target value,
multiplied by the number of containers already allocated. For
example, a new replica will be created if there is only one
container with memory utilization of 200MB, and the target
is 100MB. After that, the workload is balanced among the
replicas through a proxy or an external load balancer [33].

Kubernetes Resource Scheduling (KS): KS searches for
a suitable worker node to deploy the containers in the waiting
queue. First, it verifies which worker nodes can receive the new
pod using filters. One example filter checks the amount of free
resources (CPU or memory) on a given worker node, or if that
node is compatible with the system configuration requested by
the container. After filtering, the scheduler employs a round-
robin approach to choose the most suitable worker node.

IV. SYSTEM ARCHITECTURE

We propose a video QoE-aware scheduler for cloud com-
puting environments. In the proposed architecture, the cloud
computing platform forms the Data Plane, while the Control
Plane schedules or reschedules the containers. In addition, the
Control Plane monitors if the SLO is being maintained. The
architecture is shown in figure 2 and described below.
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Fig. 2. System Architecture

A. Cloud environment

Our proposal employs the kubernetes engine. The Flannel
plugin2 was used for container communication. Also, each
worker node has a cAdvisor3 instance that stores the resource
usage metrics from worker nodes and containers.

B. Cloud Resource Monitor

This module collects resource usage metrics through each
of the cAdvisor API. The worker node and container resource

2https://github.com/coreos/flannel
3https://github.com/google/cadvisor



usage metrics are grouped to be transferred to the ML-based
QoE monitor. This grouping is necessary due to the order of
features in which the machine learning model was trained.

C. ML-Based QoE Monitor

The ML-based QoE Monitor provides real-time estimates
of the QoE that the cloud can offer to a user group, based
on resource usage from the worker nodes and containers. This
information can be used by a cloud provider to monitor and
manage cloud resources. Below we describe how our model
was created and its design decisions.

1) Definition of ML algorithm and model features: Our ma-
chine learning model was modeled using supervised machine
learning. We used regression algorithms since the output is a
numeric value. The predictor’s input includes resource usage
metrics from the worker node and the container. Formally, the
predictor is a function defined as:

f(c, w) 7→ QoEcloud ∈ R (1)

In the equation, c stands for the usage metrics of the container,
while w stands for the metrics of the worker node. Below, we
list each collected resource usage metric. Model training is
discussed in section VIII.

Model inputs: The resource usage metrics were separated
into CPU, Disk, Memory, File system, and Network categories
We collect all metrics equally for the worker node (w) and the
container (c). The total number of collected metrics is 70. As
a matter of space, we do not detail each metric. However, the
cAdvisor4 and Docker5 documentation detail each metric.

CPU data: The CPU category contains CPU usage, CPU
user, and CPU system. This information is given in terms of
CPU time consumed, per CPU, in nanoseconds.

Disk I/O data: The Disk I/O category contains the number
of bytes read, and written, and the number of async, sync,
and total (sum of reads and writes). Each of these metrics is
collected from the I/O service and the serviced daemon.

Memory data: This category contains memory usage, max
usage, cache, RSS, mapped file, working set, failcnt, pgfault,
pgmajfault and swap. All values are in bytes.

Filesystem data: The filesystem category contains filesystem
capacity,filesystem usage, filesystem base usage, and filesysem
inodes. All values except inodes are in bytes.

Network data: The network category contains tx bytes, rx
bytes, tx packets and rx packets. This information is collected
for each network interface. In the containers, there is only
one interface (eth0). There are three interfaces in the worker
nodes, being: cni (Container Network Interface), that provides
network connectivity of containers; flannel, that allocates a
subnet to each worker node; and the server’s physical interface.

Model output: The ouput is the expected QoE for a group
of users U (QoEcloud), based on the ITU-T Recommendation
P.12036, which estimates the subjective Mean Opinion Scores
(MOS) for a video session. Besides considering the mean

4https://github.com/google/cadvisor/tree/master/metrics
5https://docs.docker.com/config/containers/runmetrics/
6https://www.itu.int/rec/T-REC-P.1203

value, the output considers the spread of QoE among users.
To deal with this, the QoEcloud formula incorporates fairness
F . Equation 2 shows how to obtain QoEcloud.

QoEcloud =
(
∑U

i=1QoEi) ∗ F
U

(2)

Fairness F is calculated using equation 3, where σ(X) is
the standard deviation function, H and L are the highest and
lowest allowable QoE values, respectively [34]. As we use
MOS to define the video QoE, the values of H and L are 1
and 5, respectively. Since F is normalized between 0 and 1,
the QoE also is normalized in the same interval.

F = 1− 2σ(QoE)

H − L
(3)

It is important to note that the calculation presented in
Equation 2 is used for training only, in order to produce the
labeled instances. The final model estimates QoEcloud directly.
Data collection and model training are discussed in sections
V and VIII-A, respectively.

2) Use of a time series-based model: Continuous-time QoE
prediction is a challenging task that requires accounting for
the instantaneous temporal effects of subjective QoE [35]. It
has been observed that the QoE is dynamic and continuously
time-varying, due to a series of QoE influencing events such
as rebuffering and rate adaptation [31]. We analyzed the inputs
to decide which machine learning techniques would be more
suitable for our dataset. This work considers that the inputs
represent a time series.

Our analysis uses the Auto Correlation Function (ACF).
ACF plots auto-correlation with its lagged values [36]. Figure
3 shows the auto-correlation plot of MOS for 40 lags. In the
x-axis, we have the lag(k), and the y-axis gives the auto-
correlation (rk) at each lag. The results show a very slow
decay in correlation between successive observations, indicat-
ing the presence of long range dependence. This phenomenon
characterizes strong temporal correlation in a time series [37],
and has been characterized as a common phenomenon in cloud
computing [38]–[40] and QoE prediction [31], [41].

Fig. 3. Autocorrelation plot of MOS at 40 lags

Because of that long term dependence, QoE predictions
demand more advanced prediction techniques. Therefore, we
use Recurrent Neural Networks (RNNs), specifically, Long
Short-Term Memory (LSTM). LSTM was introduced by [42]
to solve the vanishing gradient problem. Besides, there are



studies in the literature [38], [43] showing that LSTM models
handle long range dependencies better than GRU.

D. Scheduler Decision

The Scheduler Decision (SD) module performs scheduling
and rescheduling. Algorithm 1 describes its algorithm. The
csd procedure continuously checks for two conditions, being:
(i) a non-empty HPA queue; in this case, there is a pending
container p in the queue to be deployed (line 4). Queue status
is queried via the monitorHPAQueue() function of the kuber-
netes API; (ii) QoE degradation in the allocated (containers
C) (line 6). The checkBadQoE() function checks whether the
predicted QoE is below a QoE value (defined as SLO) for a
specific time interval T. Theses checks are done in parallel.

Scheduling works as follows. The function monitorH-
PAQueue() returns the containers to be deployed. Then, the
scheduler procedure searches for a suitable worker node to
deploy pi, taking as parameters the container set (C) and the
available worker nodes (W). This procedure then estimates
the QoE for the deployment in worker node wj (line 12).
Finally, in line 13, the algorithm chooses the worker node (w)
that maximizes the QoE above the SLO. Then, container p is
deployed to worker node w (line 14).

The need for rescheduling is checked on the second part
of the csd procedure (lines 6-8). The checkBadQoE function
returns true when there is a QoE degradation in the container ci
due to co-location with other services. This triggers a container
reschedule. In the proposed algorithm, rescheduling deletes the
container from the current worker node and deploys a new
container. For that end, we first call the rescheduler procedure
(line 7). This procedure searches for a suitable worker node
to deploy a new container. Unlike the scheduler algorithm,
rescheduling uses as parameters only the current container and
the available worker nodes (W). After choosing a worker node
that maximizes QoE, the container is deleted from the original
worker node (line 20). Section VII estimates the time spent
on scheduling and rescheduling using real cloud traces.

V. DATA COLLECTION FOR THE PREDICTOR

Figure 4 depicts the environment used to collect data from
video sessions and train the QoE predictor. The training
instances were obtained from clients watching the video on
a cloud environment. The collection was done in decreasing
rounds from 7 clients to one. Each round has five repeti-
tions. The main goal in this phase was to cover the high-
est amount of behavioral possibilities from the cloud. This

Node

ContainerVideo Server

Stress-ng tool

Fig. 4. Data collection environment

setup is composed of seven notebooks as clients connected
to the cloud via a switch, one worker node, and a DASH

Algorithm 1 Container scheduler decision algorithm
1: procedure CSD(C,W, SLO, T )
2: while True do
3: P ← monitorHPAQueue()
4: for each pi ∈ P do
5: scheduler(pi, C,W )
6: for each ci ∈ C do . QoE Monitoring
7: if checkBadQoE(ci, SLO, T ) then
8: rescheduler(ci,W )
9: procedure SCHEDULER(p, C,W )

10: for each ci ∈ C do
11: for each wj ∈W do
12: QoEi,j ← predictor(ci, wj)

13: w ← max(X) {∀X ∈ QoE | X > SLO}
14: deploy container p in w
15: procedure RESCHEDULER(container, W )
16: for each wj ∈W do
17: QoEj ← predictor(container, wj)

18: w ← max(X) {∀X ∈ QoE | X > SLO}
19: deploy new container in w
20: delete container

server in a docker container. The DASH server uses NGINX
(https://nginx.org/en/) and serves the Big Buck Bunny video
(https://peach.blender.org). The encoding used H.264 with
segments of 2 seconds. Also, the video streams use resolutions
varying between 320x180 and 1920x1080. Finally, the clients
watch the video using Firefox.

A. Data Collection and Processing

To collect data from video sessions under different co-
located conditions, we use the Linux stress-ng tool to generate
random CPU, memory, and disk workloads on the worker
node. We also simulated the extra workload on the network
interface of the worker node using Iperf. This simulates
services such as machine learning training processes, storage
systems, and video streaming. CPU stress ranged from 1 to
128 instances of CPU stressors and 30 instances of memory
stressors, with 350 MB for each instance. This created constant
CPU load between 40% and 95%, and the memory usage
increases continuously, reaching up to 90% and decreasing
gradually. Disk I/O stress ranged randomly from 1 to 40
processes, which each writing and reading 200MB. These
variations on worker node conditions can trigger the DASH
client’s adaptation algorithm and cause video quality switches.
The load generation procedure was also used during the
experiments. As discussed in IV-B, we collected worker node
and container resource usage metrics and grouped by second.

The client stores the playback stalls time and timestamps
for each video session. Also, the video server logged the
resolution and bitrate played by the clients at each second. We
use this information to calculate the MOS based on the ITU-
T Recommendation P.1203 [15] using the software developed
by [44]. This software requires devices type, display size, and



viewing distance as parameters to calculate MOS. In our case,
we use PC, 1920x1080, and 150 cm, respectively.

VI. DATASET ANALYSIS, PREPARATION AND MODEL
BUILDING

The final dataset is composed of 35.420 instances and 70
features, and one target value (video QoE of a user group).
Feature selection and model training are described below.

A. Feature Selection and scaling

This phase reduces the model training time without affecting
the predictor’s quality. We use Spearman correlation analysis
to conduct feature selection. Our final training dataset consists
of the features with a Spearman correlation higher than or
equal to 50; therefore, the input data amount was reduced
from 70 to 23. Table II shows the feature selection results.
This shows a strong negative association between the use of
computational resources of the working node and the container
with the MOS, indicating that high use can degrade video QoE.

TABLE II
SPEARMAN CORRELATION

Container metrics Corr. Worker node metrics Corr.
diskio read io service 0.64 cpu usage -0.71
disk read io serviced 0.66 cpu user -0.71
mem usage -0.54 diskio sync io service 0.64
mem cache -0.74 disk sync io serviced 0.66
rx bytes 0.60 disk write io serviced 0.66
rx packets 0.60 mem usage -0.71
tx bytes 0.57 mem cache -0.70
tx packets 0.59 working set -0.71

mem container pgmajfault 0.70
rx bytes cni 0.55
tx bytes cni 0.58

tx packets cni 0.59
rx bytes flannel 0.55

rx packets flannel 0.55
tx packets flannel 0.54

VII. EXPERIMENTAL SETUP

The experimental setup is based on Fig 2. The Kubernetes
engine v1.17.3 runs in four physical machines: one master
node and three worker nodes. For the master node, we use a
i5-3450S CPU@2.80GHz with 4GB of RAM and 1TB disk.
The worker nodes have the same compute configuration, a
i5-4460 CPU@3.20GHz with 16GB of RAM and 1TB disk.

We created a scenario where each worker node received a
different extra workload to simulate co-located services. We
use stress-ng and iperf to generate the loads. Table III shows
the values of this variation.

The containers were configured with 500MB of RAM limits
and 200MB of RAM requests. The CPU was limited with
4 cores and 1/4 of requests. The configuration also restricts
the CPU and memory usage of the container to the pre-
configured limits. The Kubernetes Python client API is used
to collect information from the cloud. We use seven notebooks
as clients playing videos using Firefox version 80. Finally, all
clients have the same screen size (information necessary to
calculate MOS); however, the hardware varies. These clients

are connected to the cloud through a Gigabit Ethernet Switch.
We evaluated three HPA policies with different memory

TABLE III
WORKLOAD EXTRA IN EACH WORKER NODE

CPU (%) Memory (%) Disk I/O Network
Worker 1 50 - 90 10 - 90 2GB 0
Worker 2 50 - 55 10 - 15 0 0
Worker 3 10 - 90 20 - 25 0 500MB

thresholds, being 50%, 80%, and 90%. The memory threshold
is defined in terms of bytes; in our case these correspond to
250 MB, 400 MB and 450 MB, respectively. We have a small
number of clients in our experiment to achieve these values, so
these values set as a threshold were based on the average usage
of the seven clients connected in the container. We conducted
30 experiments with clients watching the videos in a stress-
free environment and then stored the memory used. We take
the highest values for each repetition and then calculate the
average. On average, clients consume 3.75 MB of memory
in the worst case. Out of that value, we calculate the 50%
80%, and 90% memory thresholds, obtaining 1.87MB, 3MB
and 3.37MB, respectively. Also, as SLO value, we set the QoE
value to 3 and a time threshold of 10 seconds.

VIII. RESULTS

A. Model training

The model was trained using Keras version 2.2.4 on a
desktop equipped with an Core i5 CPU @ 3.20GHz and 16
GB of RAM. The dataset was divided into three parts: train
(70%), validation (20%), and test (10%). The test set was
used to obtain the final prediction error. Also, we performed
a variation on the LSTM hyperparameters manually. Table IV
shows the evaluated value and the chosen configuration.

TABLE IV
LSTM CONFIGURATION

Layers Neurons Dropout Timestamp
Evaluated 1, 2, 3 128, 64, 32 0.25, 0.50 10,20,30,60
Chosen 3 64, 32 0.25 30

Our model was created with three LSTM layers followed by
a MLP with one hidden layer. Each LSTM layers use 64, 32,
and 32 neurons, respectively. Also, as we deal with time series
prediction, the predictor uses 30 time intervals as inputs (thus
considering the resource usage of the previous 30 seconds).
To reduce overfitting, dropout parameters were set with 0.25.
We also use the same value to recurrent dropout, used in the
transformation from one recurrent unit to another. This process
is used as a regularizer method in neural networks.

The average value of the RMSE indicates the prediction
quality. Table V shows the obtained RMSE values. The results
indicate that the model predicts QoE with a low average error.

We evaluate the prediction time to examine if the model
can be used in a real environment. Table V shows the average
time when using a computer with Intel(R) Core(TM) i5-4460
CPU@3.20GHz and 16 GB of RAM.

The Alibaba cloud is described in [6]. According to the
authors, in 2018 the Alibaba cloud had 4.000 servers and 9.000



TABLE V
PREDICTOR PERFORMANCE

RMSE Execution Time (in µs)
Average ± CI (95%) 0.08 ± 0.03 12.57 ± 9.3
Median 0.10 15.20
Max 0.38 59.78

online services. Each of these services used a maximum of 128
containers. Given this scenario, we estimate the time spent to
schedule and reschedule these containers using Algorithm 1.
Scheduling would take approximately 6.43 seconds to choose a
server for a new container. For rescheduling, it would take 0.05
seconds to search for a new server for a given Ci. Considering
that the predictor can use the compute resources of the cloud
itself, the prediction time seems plausible.

B. Container Scheduling

This section compares the proposed scheduler with two
baselines: the default Kubernetes scheduler and KCSS [23].
Since Kubernetes and KCSS do not perform rescheduling,
we evaluate our scheduler and rescheduler in separate ex-
periments. We have named these experiments in the follow-
ing graphs and tables as QoE-S and as QoE-R (performing
both scheduling and rescheduling), respectively. Also, we
implemented two versions of KCSS, considering all worker
nodes metrics (Table II). The first one has as criteria the
maximization usage of these metrics (KCSS Max), while the
second the minimization (KCSS Min). Besides, we considered
three scenarios with different percentages of memory usage as
HPA threshold, being 50%, 80% and 90%. The following eval-
uations were made with the original video container deployed
on worker node 1. Finally, 30 repetitions were performed, and
results consider a confidence interval of 95%.

First, we analyze schedulers and rescheduler’s effects on
the number of scaled and used containers in each HPA policy.
The efficient use of cloud elasticity balances over-provisioning
and under-provisioning. The first leads to resource wastage
and extra monetary cost, while the latter causes performance
degradation [25]. Figure 5 shows the mean number of scaled
and used containers for each experiment in each of the HPA
policies. It was measured by the amount of container scaled
and analyzing those containers that received a request to
download the video, respectively.

There is a decrease in the mean amount of scaled containers
among HPA policies. Users can achieve 50% of memory usage
more quickly with 80% and 90% thresholds, which makes the
HPA scale more containers to balance the workload until it
is below the threshold. Consequently, this implies an increase
in the number of used containers. In the case of HPA with
a 50% threshold, seven containers were always used for each
experiment, that is, one user per container, which explains
the confidence intervals to be zero. It also explains the small
variation in the amount of scaled containers. However, in the
other policies, the confidence intervals show a greater variation
in the number of scaled containers. This is due to fluctuations
in the workload in the containers.
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Fig. 5. Mean number of scaled and used containers per HPA policy

Our proposal reduced the number of scaled containers in
both policies. Kube-Scheduler and KCSS had a mean number
of scaled containers similar to HPA 50%. However, in HPA
80% and 90%, the Kube-scheduler had a higher mean, while
the two versions of KCSS had a similar mean. Such im-
provement can be explained by how each schedule distributed
the new video containers among the worker nodes. Kube-
Scheduler, KCSS Max, and KCSS Min scheduled several of
these new containers for work node 1, where there was greater
interference due to high CPU, memory, and disk usage. In
contrast, our solution did not schedule any extra containers for
worker node 1. Besides, QoE-R deleted the original container
from worker 1 and scheduled it into a new worker node.

Figure 6 shows the mean number of scaled containers at
each worker node for each policy. Kube-scheduler had a
better mean distribution among the three nodes because it uses
Round-Robin. KCSS Min also had a good mean distribution
among the three workers; however, it was higher in workers 1
and 2. This is because KCSS Min tends to choose the worker
node with less resource usage. Due to the random use of
resources at each node, the CPU and memory utilization of
worker node 1 may be less than that of worker node 2 and
3, and vice-versa. However, in worker 3, the network usage is
always greater than in other workers, which justifies the lower
mean. KCSS Max, on the other hand, had a mean distribution
between worker 1 and 3. The maximization criterion aims to
compact the containers in those workers with higher resource
use. Thus, worker 1 was chosen due to its greater CPU,
memory, and disk usage, while node 3 was chosen by network
usage. In comparison with these workers, worker 2 had the
least variation and resource usage, so it was never chosen.

The way our proposals distributed the containers among the
work nodes contributes to the reduction of over-provisioning.
Table VI shows the over-provisioning for each experiment and
the percentage of decrease using our proposals. We omit HPA
90% because there was no over-provisioning.

C. Video QoE improvement

We also measured the QoE improvement due to QoE-aware
scheduling and rescheduling. We perform this analysis only
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Fig. 6. Mean number of containers scaled per worker node

TABLE VI
MEAN OVER-PROVISIONING REDUCTION

Kube-
Scheduler

KCSS
Max

KCSS
Min QoE-S QoE-R

HPA 50% 79.56% 79.76% 79.04% 60.22% 44.40%
QoE-S

decrease (%) 24.30% 24.49% 23.81%

QoE-R
decrease (%) 44.19% 44.28 43.77%

HPA 80% 39.47% 47.05% 31.25% 11.76% 0%
QoE-S

decrease (%) 70.20% 75% 62.36%

QoE-R
decrease (%) 100% 100% 100%

with the 80% and 90% HPA policies since these are more
realistic scenarios. Table VII shows that the proposed QoE-S
improves the QoE by 42.85%, 50% and 36.36% (from 2.1,
2, 2.2 to 3). This improvement occurs because the scheduler
chooses other worker nodes that improve the QoE. However,
this improvement was limited by the end-users with a degraded
QoE in the container allocated in worker 1. Our scheduler kept
the SLO at the proposed limit with a variation of 0.03. At the
same time, it reduced the mean time of playback stalls by
53.8%, 50% and 51.11%, from 19, 21 and 18 to 8.8. This
is because the scheduled containers located at worker nodes
2 and 3 contributed to a better response to user requests.
Likewise, the mean number of resolution changes was reduced
by 96.84%, 97.14% and 96.66%, from 21, 22 and 19.1 to 11.

On the other hand, using QoE-R, we obtained a QoE close to
the maximum value (5), and the reduction on the playback stall
time was close to half a second. In this case, the stops occur
only at the beginning of the video playback, caused by the
extra load on worker 1. This contributed to a QoE that is lower
than 5. Container rescheduling on the cloud accounted for
56.6% of the QoE’s improvement, from 3 to 4.7. Comparing to
the Kube-scheduler, KCSS Max and KCSS Min, the increase
reached 123.80%, 135%, and 113.63%, respectively. Also, the
average number of resolution changes has been reduced to
zero because the model predicts a QoE decay in advance, and
reschedules the container before the resolution changes.

However, using 90% as the HPA threshold, there was an

TABLE VII
QUALITY PERCEIVED BY THE USERS USING 80% AS HPA THRESHOLD

Mean QoE Mean playback
stalls time

Mean # of
resolution
changes

Kube-Scheduler 2.1 ± 0.15 19 ± 7 21 ± 0.9
KCSS Max 2 ± 0.14 21 ± 8 22 ± 8
KCSS Min 2.2 ± 0.11 18 ± 6 19.1 ± 0.3

QoE-S 3 ± 0.03 8.8 ± 2.3 11 ± 0.7
QoE-R 4.7 ± 0.04 0.6 ± 0.3 0

under-provision, which resulted in similar results for the Kube-
scheduler, KCSS Max, KCSS Min and the QoE-S, being,
respectively; mean QoE value: 1.3±0.12, 1.2±0.11, 1.5±0.18,
1.4±0.4; mean of playback stalls time: 30±5.5, 31±5.1, 29±5,
31±4.4; number of resolution changes: 28±0.6, 29±0.8,
27±0.3, 28±0.8. Although the QoE-S schedules the new
container in another worker node, this was not enough to
improve the end-users’ QoE, nor to reduce playback stalls
time and resolution changes. This is because there were not
enough scaled containers to be scheduled at other worker
nodes. However, QoE-R for 90% had the same result as for
80%. This was expected since the scheduler works regardless
of HPA policies. The scheduling decision depends only on
QoE monitoring, that is, as in HPA 80%, the model predicted
QoE degradation and rescheduled the container, without taking
into account the HPA operation.

IX. CONCLUSIONS

This work proposed a QoE-aware container scheduler and
rescheduler for the cloud. Our system extends the Kubernetes
scheduler to use QoE as SLO metrics. We created a predictor
based on machine learning that estimates the QoE offered by
the cloud, and we proposed an algorithm that schedules or
reschedules resources based on this estimate. The proposal
was evaluated experimentally in the context of video streaming
services co-located with other services.

The results showed that the proposal decreased the average
number of scaled containers by up to 55.26% and 71.05%,
respectively. Likewise, the scheduler and rescheduler reduced
over-provisioning by up to 75% and 100%, while the average
QoE was increased by at 50% and 135%, respectively.

Future work will expand this proposal by adding predictors
for other services, such as audio transmission and web.
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