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Abstract— Many future networking applications demand 

high-precision end-to-end latency guarantees. Past QoS schemes 
have focused on scheduling and prioritization schemes for packets 
in their entirety but further advances are needed.  Packet Wash is 
a recently proposed technology that allow for selective 
prioritization of payload chunks within packets themselves. Its 
primary intention is to reduce the number of packet drops when 
network congestion occurs by providing an option to drop less 
important payload portions first. However, Packet Wash opens up 
other possibilities. This paper introduces the use of Packet Wash 
to facilitate high-precision end-to-end latency guarantees. It 
involves a novel QoS algorithm that allows to reduce packet dwell 
time in routers by applying Packet Wash operations when the 
packet is in danger of being late, trading off transmission of low-
priority chunks against improved latency.  

Keywords— New IP, BPP, high-precision networking, latency 
guarantees, dwell time, QoS, Qualitative Communications, packet 
wash 

I. INTRODUCTION  

Today’s Internet technology is based on the best effort 
principle (BE), which attempts to transport packets to their 
intended destinations to the network’s best ability without any 
assurance of the quality of service in such terms as end-to-end 
latency or throughput. There is no denying that this approach has 
been immensely successful. Not only has it proven highly 
resilient to perturbations such as link failures and fluctuations in 
traffic, but also it has allowed many services and applications to 
converge on the same networking infrastructure over the years. 
Underlying advances in link speeds and node reliability have 
even allowed interactive near-real time services such as voice 
and video conferencing to be supported, which was originally 
thought of as almost impossible to do.   

However, at the same time Internet Technology is 
increasingly running into limitations that call into questions its 
ability to continue to support ever-increasing demands of future 
Internet applications. Many of those applications are 
characterized by extreme demands in terms of service levels that 
need to be supported by the network [1]. For example, 
Holographic-Type Communication (HTC) requires extremely 
low latency to be able to dynamically adjust content that is being 
streamed based on user interaction such as changes in viewing 
position and angle [2]. Operational Technology and Industry 4.0 
applications, such as remote controllers for high-precision 
assembly lines or robotic arms, require very precise 
synchronization that today prevent them from being hosted in 

the cloud or even away from the factory floor [3]. The Tactile 
Internet includes applications to remotely control machinery 
using haptic feedback, which requires control loops with 
budgets of only very few milliseconds [4]. At the same time, 
many of those applications are also very sensitive to violations 
of service level objectives, resulting not merely in a degraded 
experience but leaving applications virtually unusable. An 
example concerns tactile Internet application, where missed 
latency objectives result in an abrupt loss of the user’s sensation 
of haptic feedback required to operate remote machinery safely.   

As a result, high-precision networking that allows to deliver 
communication services that are able to comply with stringent 
service objectives is receiving renewed attention. The ability to 
deliver such services is a prerequisite to unlock the economic 
potential of future networking applications but simply cannot be 
supported with current Internet Technology whose best-effort 
paradigm results in service levels that cannot be guaranteed with 
sufficient accuracy.   

A major obstacle to high-precision networking in the 
Internet results from the unpredictable nature of packet 
collisions. When such collisions occur, packets must be queued 
in a certain order until they can be transmitted. The depth of the 
queue, i.e. the amount of data that is ahead of the packet, affects 
the packet’s latency and is the dominating factor in the packet’s 
dwell time, i.e. the amount of time that it spends in a node after 
its initial reception until it is forwarded. QoS techniques 
generally involve scheduling algorithms that determine which 
packet gets to enter a queue first, as well as prioritization 
schemes among multiple queues transmitting over the same 
interface. The path to high-precision networking lies in advances 
of such QoS algorithms.   

Recently, a new technology referred to as Qualitative 
Communication has been introduced. It is based on the idea of 
allowing to structure packet payloads into chunks and associate 
those chunks with different priorities. This provides the option 
of selectively dropping a lower-priority chunk from a packet 
when congestion occurs, as opposed to having to drop a packet 
in its entirety. The operation to remove low-priority chunks from 
a packet is also referred to as “Packet Wash”.  Dropped chunks 
are not important enough to trigger packet retransmission, thus 
protecting low latency characteristics. At the same time, the 
remaining (high-priority) chunks will by themselves still be 
useful enough for the receiving application to continue to 
function properly, with lost chunks affecting the experienced 
quality only slightly. It is up to the sending application to 



determine how to chunkify payload, specifically, which chunks 
to label as less important (can be afforded to be dropped) than 
others (which would affect applications more severely if 
dropped and have to be retransmitted).   

Packet wash was originally conceived as a way to reduce 
packet loss and offer a way to salvage essential portions of 
packets when collision occurs. However, it opens up additional 
possibilities. Applying packet wash operations to packets 
reduces the amount of data that needs to be transmitted, which 
in turn reduces the amount of time that it takes to transmit the 
packet and hence its dwell time.  In addition to reducing its own 
dwell time, it also reduces the dwell time of every packet behind 
it in the queue.   

While packet wash operations should not be applied 
indiscriminately, this does open the possibility to apply packet 
wash operations when critical packets are in danger of missing 
their latency objective. While the amount of time that can be 
shaved off may be insignificant for an individual packet, this 
time may add up when encountering queues of significant depth 
that contain multiple packets to which wash operations can be 
applied. This leads to a new QoS technique that facilitates the 
meeting of end-to-end latency objectives by applying wash 
operations to packets in a queue when required. We introduce 
this technique in this paper.    

The remainder of this paper is structured as follows:  Section 
II provides an overview of related work.  Section III gives some 
further background on “Packet Wash” and its enabling 
technologies.  Section IV presents in detail our algorithm and 
system design.  As the QoS technique needs to be applied at line-
rate, our system design takes into account the ability to be easily 
implemented in hardware. Section V provides an assessment of 
performance and effectiveness of our technique. Finally, Section 
VI provides an outlook for future work and conclusions.   

II. RELATED WORK 

A lot of networking research over the past decades has 
centered around the topic of QoS, devising technology that helps 
to improve and optimize the quality with which best-effort 
networking services are delivered to applications and navigating 
tradeoffs such as utilization or fairness.   

To this end, IETF has defined two complementary 
foundational QoS architectures, DiffServ [5] and IntServ. 
DiffServ is a multiplexing technique that is used to manage 
resources such as bandwidth and queueing buffers between 
different classes of traffic. DiffServ includes a feature, Explicit 
Congestion Notification (ECN) [6], that utilizes two bits in an 
IP packet’s DiffServ field to indicate to an end node that 
congestion is being experienced, aiming to reduce packet loss 
and delay by driving the sender to lower its transmission rate 
until the congestion clears, without dropping packets.  However, 
ECN does not mitigate situations in which a congestion has 
already occurred, which may still result in packet drops and the 
need for retransmission, as well as in reduced throughput when 
transmission rates get throttled too conservatively.  

IntServ includes two services, Controlled Load Service [7] 
and Guaranteed Service (GS) [8]. The latter is of particular 
relevance, based on the concept of reserving resources in 
advance to provide per-flow fixed bandwidth guarantees. GS 

traffic is shaped at the ingress network edge, so the flow does 
not consume more resources than have been reserved. To 
support latency guarantees, flows need to be re-shaped on every 
hop as collisions and resource contention between packets could 
still occur and lead to the possibility of loss and unpredictable 
latency variations.  GS does not provide specific support for 
dynamic bitrate adjustments and is arguably mainly suited for 
constant bit-rate (CBR) traffic.  Furthermore, no consideration 
is given to specific end-to-end latency requirements of specific 
packets or flows.  

More recently, the IETF DetNet Working Group has 
proposed the Deterministic Networking Architecture (DetNet) 
[9]. The DetNet architecture intends to provide per-flow service 
guarantees in terms of bounded delay, i.e. worst-case end-to-end 
latency, as well as packet loss ratio and bounds on out-of-order 
packet delivery. Similar to GS, DetNet’s most fundamental 
limitation is in its targeted scope of CBR reservations, whereas 
many future applications involve highly variable bitrates.  

The rise of Software-Defined Networking (SDN) has led to 
the introduction of alternative network architectures in which a 
centralized controller (“God Box”) is able to provision paths in 
near-real time. The fact that the controller possesses full 
information about the entire network holds the promise that the 
controller will be able to provide global optimization for the way 
in which traffic is steered and provide precise control over what 
service levels are incurred. In contrast, similar results would be 
much harder to accomplish with a decentralized control plane in 
which nodes have only very limited and localized information.  
However, practical challenges that have not been adequately 
addressed include the need to scale to millions of simultaneous 
flows and inability to adapt to conditions in real time.  
Scheduling and forwarding decisions need to be made at line 
rate and in sub-microsecond time scales. Critical conditions such 
as queue occupancy change rapidly in timeframes measured in 
microseconds, whereas control traffic roundtrip latency may 
take in the order of milliseconds.  

Resource reservation and flow admission control with in-
band signaling are proposed in [10] to make sure an admitted 
flow would have an end-to-end latency within a maximum 
value. However, such guarantee is only eligible at the flow level. 
Latency-Based Forwarding (LBF) is a recent proposal that 
provides support for in-time and on-time services with precisely 
specified end-to-end latency objectives using a distributed path 
algorithm [11].  Each node on a path assesses whether the packet 
is on track for meeting its latency objective and determines a 
time budget for the packet to be forwarded. Local QoS actions 
and scheduling decisions take this budget into account, allowing 
packets to be slowed that can afford to while fast-tracking others 
as needed. LBF is close in spirit to the work presented here. 
Another proposal [12] builds on LBF and proposes an optimal 
scheduling algorithm that minimizes the average dwell time for 
all packets in the queue, but under the assumption that all 
packets are able to meet their deadlines under the scheduling 
algorithm. When this assumption cannot hold valid, the only 
option the router has is to drop the failing packets completely. 
Thus, relying merely on scheduling decisions to optimize dwell 
time is not good enough, the work presented in this paper allows 
to in addition make use of the possibility to reduce the time to 



serialize and transmit packets in a queue by subjecting them to 
wash actions when needed.   

The work that is presented here is unique in the fact that it 
proposes to leverage packet wash as a new tool, never used 
before, in the arsenal to achieve better QoS. As such, it does not 
represent a competing alternative for existing approaches but  as 
a complementary approach that can be combined with other QoS 
approaches.  

III. QUALITATIVE COMMUNICATION AND PACKET WASH 

Qualitative Communication [13] was originally proposed to 
mitigate re-transmission overhead and associated delay when 
faced with slow or congested network conditions. Rather than 
having to drop a packet and its payload in its entirety as the only 
option when congestion occurs and queues are full, Qualitative 
Communication allows incremental portions of payload, 
referred to as chunks, to be dropped individually. Qualitative 
Communication provides senders with the ability to structure 
their payload into multiple chunks and assign them different 
priorities. This allows senders to differentiate between high-
priority chunks that should not be dropped under any 
circumstance and lower priority chunks that might be acceptable 
to be dropped when it cannot be avoided. Chunk arrangement in 
the packet payload to show priority difference relies on the 
applications. Generally speaking, packet payload should be 
arranged such that the least significant chunks are at the tail of 
the packet payload. This way, dropping of a lower priority chunk 
becomes a truncation operation that can be more easily 
supported by hardware.  Detailed encoding schemes (outside the 
scope of this paper) have been devised for various types of 
payload such as JPEG images, PNG images, and MPEG video 
data.    In another variation [14][15], chunks can all be assigned 
equal priority, allowing any (but not all) chunks to be dropped 
up to a certain limit, for example in conjunction with random 
linear network coding schemes [16].   

For any of this to happen, a new packet processing operation 
is introduced that is referred to as “Packet Wash”.  Packet Wash 
provides the functionality that reduces the size of a packet by 
selectively dropping chunks from the payload while ensuring 
that overall packet integrity is maintained. Packet headers are 
preserved and indication is given that the packet has in fact been 
washed as opposed to having been corrupted or compromised.  
Qualitative Communication and Packet Wash are included as 
one of the defining features of New IP [17], a novel networking 
protocol and framework that is aimed to address deficiencies of 
existing Internet Protocols and that has been evolved from BPP 
[18].   

In some sense, Packet Wash exhibits certain commonalities 
with performing on-demand lossful compression: Ideally, 
packets are transferred in their entirety without any loss of 
payload or chunks, otherwise there would be no need to send 
them in the first place. However, under certain circumstances 
the controlled dropping of certain chunks as a last resort may be 
preferable over losing packet in their entirety, in particular when 
this means that extra delay due to the need for retransmission 
which otherwise would need to occur [19] can be avoided. 
Under those circumstances, that loss of chunks may result in 
slightly degraded quality of experience for applications that is 
still acceptable and preferrable over the alternative of requiring 

retransmission and imposing additional latency. This is similar 
to the case of lossful compression where, for example, 
bandwidth or storage space can be saved in exchange for slight 
degradations in image quality, for example reductions in 
resolution or color depth [20].  

IV. A SYSTEM TO ACHIEVE HIGH-PRECISION LATENCY 

OBJECTIVES USING PACKET WASH 

A. Overall Concept 

The basic concept behind our design is that packets that are 
in danger of “being late” can potentially be accelerated if packet 
wash is applied to the packet, and possibly also to other packets 
ahead of it in the queue, in order to reduce the dwell time that 
the packet spends in the router. This acceleration can be applied 
irrespective of how the packets ended up in this particular order 
and queue in the first place, which means that the mechanism 
can applied in addition to and in conjunction with other QoS 
mechanisms, such as clever scheduling algorithms and 
prioritization schemes.   

“Dwell time” is defined as the time that a packet spends in a 
network node before it is forwarded to the next hop. It is 
composed of three major components: (1) Processing delay: the 
time it takes the node to process the packet header, including 
tasks such as parsing and FIB lookup. (2) Queueing delay: the 
time that the packet spends in the egress queue before being 
transmitted. The queuing delay is affected by packet scheduling 
(determining the packet’s placement into a queue) and the 
accumulated transmission delay of packets that are ahead in the 
queue. (3) Transmission delay: the time that it takes to serialize 
the packet and transmit it over the wire, generally proportional 
to the packet size.   

In order to reduce dwell time, packet wash can be applied to 
the following effect:   

1. It can be applied to the packet itself. As a result, the 
dwell time is shortened by the transmission delay that 
would otherwise be imposed by the chunk that is being 
dropped.  The reduction in dwell time can be computed 
by the following formula: 𝐷 = 𝑆/𝐵 , with 𝐷 referring 
to the incurred transmission delay, 𝑆 as the size of the 
dropped chunk, i.e. payload that no longer needs to be 
transmitted, and 𝐵 as the link bandwidth. For example, 
dropping a chunk of 625 octets, i.e. 5000 bits, translates 
to a reduction in latency of 50 µsec in case of a 100 
Mbps interface.  

2. It can be applied to other packets that are ahead in the 
queue but that have not yet been transmitted. In that 
case, the dwell time can be reduced further proportional 
to the amount of payload savings that can be achieved 
across the packets in the queue. Expanding on the earlier 
example, in case of a queue depth of 100 packets with a 
wash potential of the same 625 octets (5000 bits) for just 
20% of packets in the queue, savings of a full msec (20 
packets * 50 µsec/packet) can be realized on a single 
hop.  (It should be noted that beyond packet wash, lower 
priority packets ahead in the queue might also be 
dropped in their entirety.)  



While applying packet wash and dropping chunks is 
acceptable as a last resort, these operations should not be applied 
lightly and only when truly necessary. After all, why would 
senders otherwise attempt to send these chunks in the first place.   
Therefore, a determination needs to be made when a packet’s 
dwell time needs to be reduced. In general, this will be the case 
of an in-time service in which an end-to-end latency guarantee 
is given that must not be exceeded but which is at acute risk of 
being violated. To make this determination, the following 
processing needs to take place (Fig. 1), analogous to similar 
processing that occurs in conjunction with LBF [11]: 

In the first step, the remaining Global Latency Budget (𝐺𝐿𝐵), 
i.e. the time that is remaining to deliver the packet to its 
destination, is determined.  One way to determine the 𝐺𝐿𝐵 is to 
subtract the latency that the packet has incurred so far from the 
packet’s end-to-end latency objective. With New IP, the 
objective can be carried along with the metadata for the latency 
measurement as part of the packet.   

 
Fig. 1. Assessment of Local Latency Budget (LLB) 

Next, the Local Latency Budget (𝐿𝐿𝐵) that the packet can 
spend at this particular node needs to be determined. This 
determination needs to factor in the remainder of the path that 
still needs to be traversed, specifically the number of hops as 
well as the lower bound on the remaining path latency (i.e. the 
“non-negotiable” portion of the path latency that includes the 
propagation latencies, but not the more variable queueing 
latency). This data (remaining path latency, number of hops) can 
be attached to the destination’s Forwarding Information Base 
(FIB) entry at the node. It can be provisioned using a controller 
or signaled to the node using IGP extensions that include e.g. 
link latencies.   

Using this data, the 𝐿𝐿𝐵  can now be computed. First, the 
remaining path latency is subtracted from the 𝐺𝐿𝐵, providing 
the variable portion of the latency across all the remaining 
nodes.  From this, the local node’s portion can be determined 
using a heuristic: It can be fully allocated to the local node. If 
the 𝐿𝐿𝐵  is exhausted, it leaves no margin for nodes further 
downstream. It can be divided by the number of hops for a fairer 
allocation. Or it can be allocated in another manner, for example 
allocating the node a larger portion, taking the stance that extra 
actions to accelerate the packet should be avoided unless 
absolutely required while still leaving a small remaining margin 
for nodes further downstream.   

The 𝐿𝐿𝐵 can subsequently be used to schedule the packet 
accordingly. For example, Smallest Deadline First Scheduling 
(SDFS) [21] results in packets being scheduled in incremental 
order of their deadline, with the packets with the nearest 
deadline being scheduled first. In addition, to the point of this 
paper, when the 𝐿𝐿𝐵  is so low that it would be missed once 
queuing delay is incurred, packet wash operations will be 
triggered. However, in cases where a packet is beyond being 
salvaged, for example when the 𝐿𝐿𝐵  is already negative, no 
action would be taken or the packet might simply be discarded.   

B. System design 

The basic design of our system is depicted in Fig. 2. In 
essence, we are introducing two additional processing stages, 
one that is applied when the packet is enqueued, the other when 
the packet is dequeued for transmission. Both stages are 
hardware-friendly in their design and straightforward to add as 
part of a packet processing pipeline.    

When a packet is enqueued, the Wash Trigger Assessor 
evaluates whether a packet is in danger of being late. This is 
done by comparing the local latency budget (determined as 
described earlier) and comparing it against the expected 
queueing and transmission delay (determined by the current 
queue depth and the interface bandwidth). If the 𝐿𝐿𝐵 is less than 
the expected queuing and transmission delay, the packet is 
considered a “Wash Trigger Packet” (WTP) and the “wash now” 
state (wns) for the queue is activated.  

More precisely, for a packet 𝑖  that requires in-time 
guarantee, the input to the wash trigger assessor includes the 
packet per-hop deadline (𝐿𝐿𝐵 ) and the packet dwell time in the 
router according to queue depth/occupancy ( 𝑇 ). The Wash 
Trigger Assessor checks whether the condition 𝑇 ≤ 𝐿𝐿𝐵  can 
be satisfied. If that is the case (i.e. the dwell time remains below 
the permissible latency budget), no further action is needed and 
the packet is simply queued. If on the other hand the condition 
cannot be met, the Wash Trigger Assessor computes the amount 
of time that needs to be shaved off, or amount of payload that 
needs to be shaved off (named as Needed Truncation Amount, 
i.e. 𝑁𝑇𝐴). 𝑁𝑇𝐴  is calculated as (𝑇 − 𝐿𝐿𝐵 ) ∗ 𝐵 , where 𝐵  is 
the egress bandwidth. If 𝑁𝑇𝐴  is an amount that could be met 
by washing the packets that are currently in the queue, the queue 
is put into “wash now” state.   

As packets are dequeued for transmission, they are put 
through the second new processing stage, the Washer. The 
Washer applies wash operations to every washable packet as 
long as wns is active.  

Wash Trigger Assessor Queue Washer
Packet disposal/

transmission  
Fig. 2. Wash trigger assessor and washer 

Once the WTP is processed by the washer and disposed off 
(transmitted or dropped), and no more WTP packets are in the 
queue, wns becomes inactive again. The state transition is shown 
in Fig. 3. 
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Fig. 3. wns finite state machine 

Maintaining wns for a queue can occur in one of two ways: 

 Option 1: For each queue, a “wash trigger packet gauge” 
is introduced that maintains the amount of current 
WTPs in the queue. Upon classification of a packet as 
WTP, the Wash Trigger Assessor marks the packet and 
increments the wash trigger packet gauge” by 1.  
Subsequently, the Washer decrements the gauge once 
the WTP-marked packet is dequeued.  

 Option 2: For each queue, a “wash queue gauge” 
(𝑊𝑄𝐷) maintains the queue depth for the most recent 
WTP. wns is active while 𝑊𝑄𝐷 > 0 . Whenever the 
Wash Trigger Assessor encounters a packet that is 
considered as a WTP, it sets 𝑊𝑄𝐷 to the current queue 
depth. At the same time, the 𝑊𝑄𝐷 is decremented for 
every packet that is dequeued while wns is active.  

Option 2 is actually preferrable in that it is the easier to 
implement as it does not require any internal packet marking.  It 
simply involves a simple assignment operation to re-set the 
𝑊𝑄𝐷 whenever a WTP is encountered, and a simple decrement 
operation whenever a packet is dequeued. It should also be 
emphasized that any state (𝑊𝑄𝐷 and wns) applies to the queue 
as a whole and is not specific to a flow or packet, minimizing 
the amount of state that needs to be retained.   

The proposed scheme can be implemented efficiently in 
hardware per the following considerations: (1) when washable 
chunks reside at the end of the payload (as opposed to in 
arbitrary position), packet wash can be efficiently implemented 
as a (hardware-friendly) truncation operation.  (2) keeping track 
of wash queue depth involves very simple arithmetic operations 
(increment, decrement) on a per-queue basis, conducted upon 
enqueue/dequeue operations, without needing to inspect 
contents inside the queue. The logic for this is extremely simple 
and does not involve multiple processing cycles. Although New 
IP is the context in which the presented concepts are being 
implemented, it could presumably be applied in conjunction 
with other protocols. As chunks are encoded as part of the 
payload, the presence of the scheme would be transparent to 
nodes that do not support it. In the worst case, things will revert 
to today's situation: retransmission will simply still be required 
and end-to-end latency objectives may be missed. As a result, 
the proposed scheme will  not create any burden to the existing 
networks. 

The proposed scheme does mean that one sender’s traffic 
with very aggressive latency targets might potentially affect 
other senders’ traffic whose less important chunks might be 
dropped.  However, this will happen only within the legitimate 
terms of either sender’s service, as the only packets that can be 
affected are those that are deemed washable, by definition 

concerning chunks that were designated as potentially 
disposable by the sender.     

C. Examples 

The principle of applying packet wash against a queue is 
depicted in Fig. 4. Packet 4, which is a WTP as well as washable, 
arrives at the tail of the outgoing queue.  It is WTP marked. The 
number of washable packets in front of it including itself is 3 
(Packet 1, 2, 4). Next, as shown in  Fig. 5, the Packet 11 arrives 
at the tail of the outgoing queue, it is WTP marked. By now, 
packet 1 has already been transmitted out of the queue. The 
Packet 11 is not washable. Thus, the number of washable 
packets for the Packet 11 is 6 (Packet 2, 4, 6, 7, 8, 10). 

4 3 2 1

The number of washable packets is 3 for 
the enqueued WTP packet 

Washable Packets

WTP Packet

front of queuetail of queue

 
Fig. 4. Washable packets example 1 
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The number of washable packets is 4 for the 
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queue
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Fig. 5. Washable packets example 2 

A more complex example to illustrate the operation of the 
system during runtime is depicted in TABLE I.  

 “Packet arrival” indicates the arrival of new packet(s) 
needing to be enqueued.   

 “Packet dequeue” indicates the dequeuing of packet(s) for 
transmission.   

 “Packets in queue” contains all the packets that are currently 
in the queue and scheduled to be transmitted (newest 
arrivals on the left).  

 “wns” indicates whether the wash now state is active or not.  

 “# WTP” shows the number of WTPs in the queue. Each 
time a newly arriving packet is classified as WTP, the 
amount is incremented; when a WTP is dequeued, the 
amount is decremented.  

 “𝑊𝑄𝐷” maintains the queue depth for current WTPs, which 
is the number of packets in the queue from the beginning of 
the queue till the latest WTP.  

 “Total 𝐴𝑊𝐴” (Total Allowable Wash Amount) maintains 
the total number of units (e.g. chunks of the same size, or 
multiples of some number of bytes) that are candidates for 



washing currently in the queue. In this example, we assume 
that each washable packet will yield 5 units.   

 “Total 𝑁𝑇𝐴” (Total Needed Truncation Amount) maintains 
the total number of units that need to be shaved off from the 
washable packets in order for the WTPs to satisfy the 
latency constraint in the current hop. Here, each WTP 
packet’s 𝑁𝑇𝐴 is set as 10 units.  

 Washable packets are depicted in green/italics. WTPs are 
depicted in red/bold (and are washable for sake of this 
example). 

TABLE I.  PARAMTERS AND STATE MAINTAINED IN A ROUTER 

Packet 
arrival 

Packet 
deq. 

Packets 
in 

queue 

wns # 
WTP 

𝑾𝑸𝑫 Total 
𝑨𝑾𝑨 

Total 
𝑵𝑻𝑨 

  ba F 0 0 5 0 
c  cba T 1 3 10 10 
 a cb T 1 2 10 10 

 b c T 1 1 5 5 
 c {} F 0 0 0 0 

d,e,f,g  gfed F 0 0 15 0 

h  hgfed T 1 5 20 10 
i,j d ijhgfe T 1 4 15 5 
k  kijhgfe T 2 7 20 15 

l,m,n e,f,g nmlkij
h 

T 2 4 10 5 

 h nmlkij T 1 3 5 5 
.. … … … … … …  

 

In the example, the arrival of the packet c triggers wns. 𝑊𝑄𝐷 
is set to 3. A single WTP is in the queue. As the packet a and b 
are dequeued, 𝑊𝑄𝐷  is decremented accordingly. Once the 
packet c is dequeued, 𝑊𝑄𝐷 is 0 and wns reverts to false. A few 
packet later, a WTP k arrives at a point when wns is already true 
(The packet h already triggers wns to be true).  𝑊𝑄𝐷 is reset to 
the current depth of the queue (i.e. 7).   

D. Avoiding Packet Overwash 

In cases of a deep queue with many washable packets, there 
is a chance of subjecting more packets to wash operations and 
dropping more chunks than absolutely necessary to keep with 
the WTP’s latency objectives. While dropping those chunks is 
by definition acceptable, doing so should only occur as a last 
resort in exceptional circumstances and still be avoided 
whenever possible (otherwise they would not need to be sent in 
the first place).   

In order to avoid overwashing, the system can be refined to 
keep track of the wash potential currently in the queue (“𝐴𝑊𝐴” 
in TABLE I. ), as well as the savings that are achieved as packet 
wash operations are applied versus the amount determined to be 
needed, respectively the savings that still need to be achieved 
(“𝑁𝑇𝐴” in TABLE I.). In that case, once the 𝑁𝑇𝐴 for a queue 
drops to 0, wash operations cease and wns returns to inactive.   

Further tweaks are conceivable, for example to ensure that 
WTPs are always subjected to washing before other packets, and 
to try to apply different measures of “fairness” as opposed to 
simply applying packet washes to the first packets in the queue 

as long as it is needed. However, it should be noted that such 
tweaks tend to add complexity combined with limited 
incremental benefits.  

V. PERFORMANCE EVALUATION 

In this section, we evaluate how the proposed packet wash 
mechanisms could improve the high precision end-to-end 
latency guarantee performance. Since packet wash is 
independently carried out at each intermediate router’s egress 
point, as far as the per-hop deadline is met at each hop, the total 
transmission latency could be within the requested bounded 
latency and the packet is considered to be successful. Thus, we 
consider a simplified topology with 𝑛  number of senders 
sending packets to 𝑚  number of receivers. There is one 
intermediate router between the senders and receivers, and all 
packets towards the receivers require in-time guarantee and 
buffered in the same outgoing queue as shown in Fig. 6. On the 
other hand, every packet is washable and associated with a wash 
allowance ratio, which is defined as the ratio of packet payload 
size to the largest extend that is allowed to be truncated during 
the transmission. 

Queue

Router

Receiver 1

Receiver 2

Receiver m

Sender 1

Sender 2

Sender n  
Fig. 6. Simplified topology  

The following three scheduling schemes are included in the 
performance evaluation and comparisons: 

 First In First Out (FIFO): which is the same as FCFS in 
[21]. The packets are scheduled according to their 
arrival time at the outgoing queue of the router. The 
packet which arrives earliest is scheduled first. 

 Smallest Deadline First Schedule (SDFS) [21]: The 
packets are scheduled to be transmitted by the 
incremental order of deadline. The packet with the 
smallest deadline is scheduled first. 

 Smallest allowance First Schedule (SAFS): The packets  
are scheduled to be transmitted by the incremental order 
of wash allowance size, which is calculated as the 
packet payload size multiplying with the wash 
allowance ratio.   

Two types of performances are being evaluated: (1) packet 
delivery success ratio, which is defined as the ratio of the packets 
that meet their corresponding deadlines. The unsuccessful 
packets are dropped and cannot reach the receivers in time. (2) 
resulted packet wash ratio, which is defined as the ratio between 
the total truncated size and the total size of the packets’ payload.  

We build a simulator written in C++. The packets are 
generated randomly from a sender destinated to a receiver. The 



packet size varies, the deadline of each packet is intentionally 
set up such that the packet would be dropped if the SDFS 
scheme is used, the wash allowance ratio may change in the 
simulations.  

 
Fig. 7. Comparison of packet delivery success ratio when SDFS is adopted 

 
Fig. 8. Comparison of packet delivery success ratio when FIFO is adopted 

 
Fig. 9. Comparison of packet delivery success ratio when SAFS is adopted 

Fig. 7, Fig. 8, and Fig. 9 show the comparison of packet 
delivery success ratio with and without packet wash, under the 
above three scheduling schemes respectively. Once the packet 
wash allowance ratio is set up, the simulation for NoPacketWash 
and WithPacketWash is re-run multiple times to get the average 

success ratio for both.  (As a side note, Figures 8 and 9 do show 
slight variations in packet delivery success ratio for different 
packet wash allowance ratios even when packet was not even 
applied. This is explained by the fact that our simulation 
generates random packets for each run, causing the success ratio 
in each case to vary slightly.)  

A packet’s dwell time is reduced by applying packet wash to 
all packets in front of the packet and the packet itself. Since all 
the packets under SDFS without packet wash would fail, the 
packet delivery success ratio is 0, which has the worst 
performance. However, by applying packet wash to the packets 
in the queue, even with small wash allowance ratio (e.g. 10%), 
the packet delivery success ratio of SDFS with packet wash is 
dramatically increased to more than 80%. While the packet wash 
allowance ratio increases, more number of packets under the 
SDFS scheme can be delivered successfully to the receivers with 
their deadlines being met. When FIFO or SAFS is employed, 
originally without packet wash, the packet delivery success ratio 
is around 35% or 53% respectively (The packet delivery success 
ratio has small variance because the simulation is ran with 
randomness for packet generation, but averagely it does not 
differ much for FIFO or SAFS without packet wash). 
Unsurprisingly, packet wash also significantly increases the 
packet delivery success ratio when FIFO or SAFS is applied.  

We can confidently conclude that the proposed packet wash 
mechanism can improve the high precision end-to-end latency 
guarantee performance under different packet scheduling 
algorithms.  

On the other hand, Fig. 10 compares the packet delivery 
success ratio of FIFO, SDFS, and SAFS without packet wash, 
while Fig. 11 compares the packet delivery success ratio of 
FIFO, SDFS and SAFS with packet wash. In Fig. 11, the line of 
SDFS collides with SAFS, because they have the exactly same 
performance (this also applies to Fig. 12 for resulted packet 
wash ratio performance). The packet generation procedure 
results in the positioning of packets in the queue to be the same 
whether they are ordered incrementally by deadline or by wash 
allowance size.  

Due to the packet generation procedure that is utilized in the 
simulations, SDFS without packet wash results in nearly zero 
packet delivery success ratio, in other words, all packets’ dwell 
time exceed the corresponding configured deadline. FIFO and 
SAFS achieves better success ratio performance. When the 
proposed packet wash mechanism is applied, the packet delivery 
success ratio of SDFS and SAFS is increased to over 80%, 
which is especially exceptional for the scenario when SDFS is 
applied (from 0 to 80% success ratio). SDFS is largely adopted 
for scheduling flows in data centers, thus the proposed packet 
wash mechanisms is of great importance and effectiveness in 
such scenarios. 

In addition, we observe from Fig. 12 that the resulted packet 
wash ratio is quite stable (around 30% to 40%) to achieve the 
high packet delivery success ratio for scenarios while SDFS or 
SAFS is adopted. When the packet wash allowance ratio is very 
small (e.g. 10%), the resulted packet wash ratio is small as well. 
It indicates that the packets’ wash allowance is not fully used, 
because the wash allowance is not big enough to change a 
packet’s delivery failure to success. When a packet is dropped 



due to missing its deadline, packet wash would not be performed 
on the packets ahead in the queue.   

 
Fig. 10. Comparison of packet delivery success ratio under different 
scheduling schemes 

 

Fig. 11. Comparison of packet delivery success ratio with packet wash under 
different scheduling schemes 

 
Fig. 12. Comparison of resulted packet wash ratio under different scheduling 
schemes 

On the contrary, the resulted packet wash ratio for scenarios 
when FIFO is adopted increases constantly along with the packet 
wash allowance ratio. It indicates that in order to achieve higher 
packet delivery success ratio, FIFO does require packets ahead 
in the queue to be truncated more than SDFS and SAFS.  

Taking both performances into consideration, we find out 
that SAFS is a scheduling policy that advances both FIFO and 
SDFS. SAFS utilizes reasonable portion of the packet wash 
allowance to achieve extremely high packet delivery success 
ratio. 

VI. CONCLUSIONS 

The existing QoS techniques built on the Best Effort 
principle of the current Internet can easily fail to comply with 
the stringent end-to-end service objectives. Qualitative 
Communications and the associated packet wash operation were 
introduced to reduce the number of packet drops when network 
congestion is encountered. This paper finds that the same 
mechanisms can also be useful to enhance high-precision 
services and facilitate end-to-end latency guarantees as 
demanded by many emerging applications. A packet in danger 
of being late can be accelerated by applying packet wash on 
itself as well as packets ahead in the queue when feasible, i.e. in 
conjunction with applications for which some controlled loss of 
lower-priority payload chunks is acceptable.  To this end, two 
new processing stages are added to the egress interface that run 
a lightweight and hardware-friendly algorithm. Simulations 
confirm that proposed QoS technique improves the possibility 
of satisfying stringent end-to-end latency deadline under any 
scheduling schemes. Our proposed method is complementary to 
existing QoS approaches and allows for their seamless 
integration.   

In the paper, we briefly discussed on how to avoid packet 
overwashing. For future works, the fairness for packet wash will 
be taken into further consideration. And the complexity of  
achieving fairness and the benefits provided to the packets need 
to be balanced and evaluated.  
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