
978-3-903176-32-4 © 2021 IFIP

High-Precision End-to-End Latency Guarantees
Using Packet Wash

Lijun Dong, Alexander Clemm
Futurewei Technologies Inc.

2330 Central Expressway
Santa Clara, CA, U.S.A

{lijun.dong, alex}@futurewei.com

Abstract— Many future networking applications demand

high-precision end-to-end latency guarantees. Past QoS schemes
have focused on scheduling and prioritization schemes for packets
in their entirety but further advances are needed. Packet Wash is
a recently proposed technology that allow for selective
prioritization of payload chunks within packets themselves. Its
primary intention is to reduce the number of packet drops when
network congestion occurs by providing an option to drop less
important payload portions first. However, Packet Wash opens up
other possibilities. This paper introduces the use of Packet Wash
to facilitate high-precision end-to-end latency guarantees. It
involves a novel QoS algorithm that allows to reduce packet dwell
time in routers by applying Packet Wash operations when the
packet is in danger of being late, trading off transmission of low-
priority chunks against improved latency.

Keywords— New IP, BPP, high-precision networking, latency
guarantees, dwell time, QoS, Qualitative Communications, packet
wash

I. INTRODUCTION

Today’s Internet technology is based on the best effort
principle (BE), which attempts to transport packets to their
intended destinations to the network’s best ability without any
assurance of the quality of service in such terms as end-to-end
latency or throughput. There is no denying that this approach has
been immensely successful. Not only has it proven highly
resilient to perturbations such as link failures and fluctuations in
traffic, but also it has allowed many services and applications to
converge on the same networking infrastructure over the years.
Underlying advances in link speeds and node reliability have
even allowed interactive near-real time services such as voice
and video conferencing to be supported, which was originally
thought of as almost impossible to do.

However, at the same time Internet Technology is
increasingly running into limitations that call into questions its
ability to continue to support ever-increasing demands of future
Internet applications. Many of those applications are
characterized by extreme demands in terms of service levels that
need to be supported by the network [1]. For example,
Holographic-Type Communication (HTC) requires extremely
low latency to be able to dynamically adjust content that is being
streamed based on user interaction such as changes in viewing
position and angle [2]. Operational Technology and Industry 4.0
applications, such as remote controllers for high-precision
assembly lines or robotic arms, require very precise
synchronization that today prevent them from being hosted in

the cloud or even away from the factory floor [3]. The Tactile
Internet includes applications to remotely control machinery
using haptic feedback, which requires control loops with
budgets of only very few milliseconds [4]. At the same time,
many of those applications are also very sensitive to violations
of service level objectives, resulting not merely in a degraded
experience but leaving applications virtually unusable. An
example concerns tactile Internet application, where missed
latency objectives result in an abrupt loss of the user’s sensation
of haptic feedback required to operate remote machinery safely.

As a result, high-precision networking that allows to deliver
communication services that are able to comply with stringent
service objectives is receiving renewed attention. The ability to
deliver such services is a prerequisite to unlock the economic
potential of future networking applications but simply cannot be
supported with current Internet Technology whose best-effort
paradigm results in service levels that cannot be guaranteed with
sufficient accuracy.

A major obstacle to high-precision networking in the
Internet results from the unpredictable nature of packet
collisions. When such collisions occur, packets must be queued
in a certain order until they can be transmitted. The depth of the
queue, i.e. the amount of data that is ahead of the packet, affects
the packet’s latency and is the dominating factor in the packet’s
dwell time, i.e. the amount of time that it spends in a node after
its initial reception until it is forwarded. QoS techniques
generally involve scheduling algorithms that determine which
packet gets to enter a queue first, as well as prioritization
schemes among multiple queues transmitting over the same
interface. The path to high-precision networking lies in advances
of such QoS algorithms.

Recently, a new technology referred to as Qualitative
Communication has been introduced. It is based on the idea of
allowing to structure packet payloads into chunks and associate
those chunks with different priorities. This provides the option
of selectively dropping a lower-priority chunk from a packet
when congestion occurs, as opposed to having to drop a packet
in its entirety. The operation to remove low-priority chunks from
a packet is also referred to as “Packet Wash”. Dropped chunks
are not important enough to trigger packet retransmission, thus
protecting low latency characteristics. At the same time, the
remaining (high-priority) chunks will by themselves still be
useful enough for the receiving application to continue to
function properly, with lost chunks affecting the experienced
quality only slightly. It is up to the sending application to

determine how to chunkify payload, specifically, which chunks
to label as less important (can be afforded to be dropped) than
others (which would affect applications more severely if
dropped and have to be retransmitted).

Packet wash was originally conceived as a way to reduce
packet loss and offer a way to salvage essential portions of
packets when collision occurs. However, it opens up additional
possibilities. Applying packet wash operations to packets
reduces the amount of data that needs to be transmitted, which
in turn reduces the amount of time that it takes to transmit the
packet and hence its dwell time. In addition to reducing its own
dwell time, it also reduces the dwell time of every packet behind
it in the queue.

While packet wash operations should not be applied
indiscriminately, this does open the possibility to apply packet
wash operations when critical packets are in danger of missing
their latency objective. While the amount of time that can be
shaved off may be insignificant for an individual packet, this
time may add up when encountering queues of significant depth
that contain multiple packets to which wash operations can be
applied. This leads to a new QoS technique that facilitates the
meeting of end-to-end latency objectives by applying wash
operations to packets in a queue when required. We introduce
this technique in this paper.

The remainder of this paper is structured as follows: Section
II provides an overview of related work. Section III gives some
further background on “Packet Wash” and its enabling
technologies. Section IV presents in detail our algorithm and
system design. As the QoS technique needs to be applied at line-
rate, our system design takes into account the ability to be easily
implemented in hardware. Section V provides an assessment of
performance and effectiveness of our technique. Finally, Section
VI provides an outlook for future work and conclusions.

II. RELATED WORK

A lot of networking research over the past decades has
centered around the topic of QoS, devising technology that helps
to improve and optimize the quality with which best-effort
networking services are delivered to applications and navigating
tradeoffs such as utilization or fairness.

To this end, IETF has defined two complementary
foundational QoS architectures, DiffServ [5] and IntServ.
DiffServ is a multiplexing technique that is used to manage
resources such as bandwidth and queueing buffers between
different classes of traffic. DiffServ includes a feature, Explicit
Congestion Notification (ECN) [6], that utilizes two bits in an
IP packet’s DiffServ field to indicate to an end node that
congestion is being experienced, aiming to reduce packet loss
and delay by driving the sender to lower its transmission rate
until the congestion clears, without dropping packets. However,
ECN does not mitigate situations in which a congestion has
already occurred, which may still result in packet drops and the
need for retransmission, as well as in reduced throughput when
transmission rates get throttled too conservatively.

IntServ includes two services, Controlled Load Service [7]
and Guaranteed Service (GS) [8]. The latter is of particular
relevance, based on the concept of reserving resources in
advance to provide per-flow fixed bandwidth guarantees. GS

traffic is shaped at the ingress network edge, so the flow does
not consume more resources than have been reserved. To
support latency guarantees, flows need to be re-shaped on every
hop as collisions and resource contention between packets could
still occur and lead to the possibility of loss and unpredictable
latency variations. GS does not provide specific support for
dynamic bitrate adjustments and is arguably mainly suited for
constant bit-rate (CBR) traffic. Furthermore, no consideration
is given to specific end-to-end latency requirements of specific
packets or flows.

More recently, the IETF DetNet Working Group has
proposed the Deterministic Networking Architecture (DetNet)
[9]. The DetNet architecture intends to provide per-flow service
guarantees in terms of bounded delay, i.e. worst-case end-to-end
latency, as well as packet loss ratio and bounds on out-of-order
packet delivery. Similar to GS, DetNet’s most fundamental
limitation is in its targeted scope of CBR reservations, whereas
many future applications involve highly variable bitrates.

The rise of Software-Defined Networking (SDN) has led to
the introduction of alternative network architectures in which a
centralized controller (“God Box”) is able to provision paths in
near-real time. The fact that the controller possesses full
information about the entire network holds the promise that the
controller will be able to provide global optimization for the way
in which traffic is steered and provide precise control over what
service levels are incurred. In contrast, similar results would be
much harder to accomplish with a decentralized control plane in
which nodes have only very limited and localized information.
However, practical challenges that have not been adequately
addressed include the need to scale to millions of simultaneous
flows and inability to adapt to conditions in real time.
Scheduling and forwarding decisions need to be made at line
rate and in sub-microsecond time scales. Critical conditions such
as queue occupancy change rapidly in timeframes measured in
microseconds, whereas control traffic roundtrip latency may
take in the order of milliseconds.

Resource reservation and flow admission control with in-
band signaling are proposed in [10] to make sure an admitted
flow would have an end-to-end latency within a maximum
value. However, such guarantee is only eligible at the flow level.
Latency-Based Forwarding (LBF) is a recent proposal that
provides support for in-time and on-time services with precisely
specified end-to-end latency objectives using a distributed path
algorithm [11]. Each node on a path assesses whether the packet
is on track for meeting its latency objective and determines a
time budget for the packet to be forwarded. Local QoS actions
and scheduling decisions take this budget into account, allowing
packets to be slowed that can afford to while fast-tracking others
as needed. LBF is close in spirit to the work presented here.
Another proposal [12] builds on LBF and proposes an optimal
scheduling algorithm that minimizes the average dwell time for
all packets in the queue, but under the assumption that all
packets are able to meet their deadlines under the scheduling
algorithm. When this assumption cannot hold valid, the only
option the router has is to drop the failing packets completely.
Thus, relying merely on scheduling decisions to optimize dwell
time is not good enough, the work presented in this paper allows
to in addition make use of the possibility to reduce the time to

serialize and transmit packets in a queue by subjecting them to
wash actions when needed.

The work that is presented here is unique in the fact that it
proposes to leverage packet wash as a new tool, never used
before, in the arsenal to achieve better QoS. As such, it does not
represent a competing alternative for existing approaches but as
a complementary approach that can be combined with other QoS
approaches.

III. QUALITATIVE COMMUNICATION AND PACKET WASH

Qualitative Communication [13] was originally proposed to
mitigate re-transmission overhead and associated delay when
faced with slow or congested network conditions. Rather than
having to drop a packet and its payload in its entirety as the only
option when congestion occurs and queues are full, Qualitative
Communication allows incremental portions of payload,
referred to as chunks, to be dropped individually. Qualitative
Communication provides senders with the ability to structure
their payload into multiple chunks and assign them different
priorities. This allows senders to differentiate between high-
priority chunks that should not be dropped under any
circumstance and lower priority chunks that might be acceptable
to be dropped when it cannot be avoided. Chunk arrangement in
the packet payload to show priority difference relies on the
applications. Generally speaking, packet payload should be
arranged such that the least significant chunks are at the tail of
the packet payload. This way, dropping of a lower priority chunk
becomes a truncation operation that can be more easily
supported by hardware. Detailed encoding schemes (outside the
scope of this paper) have been devised for various types of
payload such as JPEG images, PNG images, and MPEG video
data. In another variation [14][15], chunks can all be assigned
equal priority, allowing any (but not all) chunks to be dropped
up to a certain limit, for example in conjunction with random
linear network coding schemes [16].

For any of this to happen, a new packet processing operation
is introduced that is referred to as “Packet Wash”. Packet Wash
provides the functionality that reduces the size of a packet by
selectively dropping chunks from the payload while ensuring
that overall packet integrity is maintained. Packet headers are
preserved and indication is given that the packet has in fact been
washed as opposed to having been corrupted or compromised.
Qualitative Communication and Packet Wash are included as
one of the defining features of New IP [17], a novel networking
protocol and framework that is aimed to address deficiencies of
existing Internet Protocols and that has been evolved from BPP
[18].

In some sense, Packet Wash exhibits certain commonalities
with performing on-demand lossful compression: Ideally,
packets are transferred in their entirety without any loss of
payload or chunks, otherwise there would be no need to send
them in the first place. However, under certain circumstances
the controlled dropping of certain chunks as a last resort may be
preferable over losing packet in their entirety, in particular when
this means that extra delay due to the need for retransmission
which otherwise would need to occur [19] can be avoided.
Under those circumstances, that loss of chunks may result in
slightly degraded quality of experience for applications that is
still acceptable and preferrable over the alternative of requiring

retransmission and imposing additional latency. This is similar
to the case of lossful compression where, for example,
bandwidth or storage space can be saved in exchange for slight
degradations in image quality, for example reductions in
resolution or color depth [20].

IV. A SYSTEM TO ACHIEVE HIGH-PRECISION LATENCY

OBJECTIVES USING PACKET WASH

A. Overall Concept

The basic concept behind our design is that packets that are
in danger of “being late” can potentially be accelerated if packet
wash is applied to the packet, and possibly also to other packets
ahead of it in the queue, in order to reduce the dwell time that
the packet spends in the router. This acceleration can be applied
irrespective of how the packets ended up in this particular order
and queue in the first place, which means that the mechanism
can applied in addition to and in conjunction with other QoS
mechanisms, such as clever scheduling algorithms and
prioritization schemes.

“Dwell time” is defined as the time that a packet spends in a
network node before it is forwarded to the next hop. It is
composed of three major components: (1) Processing delay: the
time it takes the node to process the packet header, including
tasks such as parsing and FIB lookup. (2) Queueing delay: the
time that the packet spends in the egress queue before being
transmitted. The queuing delay is affected by packet scheduling
(determining the packet’s placement into a queue) and the
accumulated transmission delay of packets that are ahead in the
queue. (3) Transmission delay: the time that it takes to serialize
the packet and transmit it over the wire, generally proportional
to the packet size.

In order to reduce dwell time, packet wash can be applied to
the following effect:

1. It can be applied to the packet itself. As a result, the
dwell time is shortened by the transmission delay that
would otherwise be imposed by the chunk that is being
dropped. The reduction in dwell time can be computed
by the following formula: 𝐷 = 𝑆/𝐵 , with 𝐷 referring
to the incurred transmission delay, 𝑆 as the size of the
dropped chunk, i.e. payload that no longer needs to be
transmitted, and 𝐵 as the link bandwidth. For example,
dropping a chunk of 625 octets, i.e. 5000 bits, translates
to a reduction in latency of 50 µsec in case of a 100
Mbps interface.

2. It can be applied to other packets that are ahead in the
queue but that have not yet been transmitted. In that
case, the dwell time can be reduced further proportional
to the amount of payload savings that can be achieved
across the packets in the queue. Expanding on the earlier
example, in case of a queue depth of 100 packets with a
wash potential of the same 625 octets (5000 bits) for just
20% of packets in the queue, savings of a full msec (20
packets * 50 µsec/packet) can be realized on a single
hop. (It should be noted that beyond packet wash, lower
priority packets ahead in the queue might also be
dropped in their entirety.)

While applying packet wash and dropping chunks is
acceptable as a last resort, these operations should not be applied
lightly and only when truly necessary. After all, why would
senders otherwise attempt to send these chunks in the first place.
Therefore, a determination needs to be made when a packet’s
dwell time needs to be reduced. In general, this will be the case
of an in-time service in which an end-to-end latency guarantee
is given that must not be exceeded but which is at acute risk of
being violated. To make this determination, the following
processing needs to take place (Fig. 1), analogous to similar
processing that occurs in conjunction with LBF [11]:

In the first step, the remaining Global Latency Budget (𝐺𝐿𝐵),
i.e. the time that is remaining to deliver the packet to its
destination, is determined. One way to determine the 𝐺𝐿𝐵 is to
subtract the latency that the packet has incurred so far from the
packet’s end-to-end latency objective. With New IP, the
objective can be carried along with the metadata for the latency
measurement as part of the packet.

Fig. 1. Assessment of Local Latency Budget (LLB)

Next, the Local Latency Budget (𝐿𝐿𝐵) that the packet can
spend at this particular node needs to be determined. This
determination needs to factor in the remainder of the path that
still needs to be traversed, specifically the number of hops as
well as the lower bound on the remaining path latency (i.e. the
“non-negotiable” portion of the path latency that includes the
propagation latencies, but not the more variable queueing
latency). This data (remaining path latency, number of hops) can
be attached to the destination’s Forwarding Information Base
(FIB) entry at the node. It can be provisioned using a controller
or signaled to the node using IGP extensions that include e.g.
link latencies.

Using this data, the 𝐿𝐿𝐵 can now be computed. First, the
remaining path latency is subtracted from the 𝐺𝐿𝐵, providing
the variable portion of the latency across all the remaining
nodes. From this, the local node’s portion can be determined
using a heuristic: It can be fully allocated to the local node. If
the 𝐿𝐿𝐵 is exhausted, it leaves no margin for nodes further
downstream. It can be divided by the number of hops for a fairer
allocation. Or it can be allocated in another manner, for example
allocating the node a larger portion, taking the stance that extra
actions to accelerate the packet should be avoided unless
absolutely required while still leaving a small remaining margin
for nodes further downstream.

The 𝐿𝐿𝐵 can subsequently be used to schedule the packet
accordingly. For example, Smallest Deadline First Scheduling
(SDFS) [21] results in packets being scheduled in incremental
order of their deadline, with the packets with the nearest
deadline being scheduled first. In addition, to the point of this
paper, when the 𝐿𝐿𝐵 is so low that it would be missed once
queuing delay is incurred, packet wash operations will be
triggered. However, in cases where a packet is beyond being
salvaged, for example when the 𝐿𝐿𝐵 is already negative, no
action would be taken or the packet might simply be discarded.

B. System design

The basic design of our system is depicted in Fig. 2. In
essence, we are introducing two additional processing stages,
one that is applied when the packet is enqueued, the other when
the packet is dequeued for transmission. Both stages are
hardware-friendly in their design and straightforward to add as
part of a packet processing pipeline.

When a packet is enqueued, the Wash Trigger Assessor
evaluates whether a packet is in danger of being late. This is
done by comparing the local latency budget (determined as
described earlier) and comparing it against the expected
queueing and transmission delay (determined by the current
queue depth and the interface bandwidth). If the 𝐿𝐿𝐵 is less than
the expected queuing and transmission delay, the packet is
considered a “Wash Trigger Packet” (WTP) and the “wash now”
state (wns) for the queue is activated.

More precisely, for a packet 𝑖 that requires in-time
guarantee, the input to the wash trigger assessor includes the
packet per-hop deadline (𝐿𝐿𝐵) and the packet dwell time in the
router according to queue depth/occupancy (𝑇). The Wash
Trigger Assessor checks whether the condition 𝑇 ≤ 𝐿𝐿𝐵 can
be satisfied. If that is the case (i.e. the dwell time remains below
the permissible latency budget), no further action is needed and
the packet is simply queued. If on the other hand the condition
cannot be met, the Wash Trigger Assessor computes the amount
of time that needs to be shaved off, or amount of payload that
needs to be shaved off (named as Needed Truncation Amount,
i.e. 𝑁𝑇𝐴). 𝑁𝑇𝐴 is calculated as (𝑇 − 𝐿𝐿𝐵) ∗ 𝐵 , where 𝐵 is
the egress bandwidth. If 𝑁𝑇𝐴 is an amount that could be met
by washing the packets that are currently in the queue, the queue
is put into “wash now” state.

As packets are dequeued for transmission, they are put
through the second new processing stage, the Washer. The
Washer applies wash operations to every washable packet as
long as wns is active.

Wash Trigger Assessor Queue Washer
Packet disposal/

transmission
Fig. 2. Wash trigger assessor and washer

Once the WTP is processed by the washer and disposed off
(transmitted or dropped), and no more WTP packets are in the
queue, wns becomes inactive again. The state transition is shown
in Fig. 3.

inactive
(F)

active
(T)

(WQD decrements to 0) or
(WTP counter decrements to 0)

(WTP detected/queued) or
(WQD>0)

start

Fig. 3. wns finite state machine

Maintaining wns for a queue can occur in one of two ways:

 Option 1: For each queue, a “wash trigger packet gauge”
is introduced that maintains the amount of current
WTPs in the queue. Upon classification of a packet as
WTP, the Wash Trigger Assessor marks the packet and
increments the wash trigger packet gauge” by 1.
Subsequently, the Washer decrements the gauge once
the WTP-marked packet is dequeued.

 Option 2: For each queue, a “wash queue gauge”
(𝑊𝑄𝐷) maintains the queue depth for the most recent
WTP. wns is active while 𝑊𝑄𝐷 > 0 . Whenever the
Wash Trigger Assessor encounters a packet that is
considered as a WTP, it sets 𝑊𝑄𝐷 to the current queue
depth. At the same time, the 𝑊𝑄𝐷 is decremented for
every packet that is dequeued while wns is active.

Option 2 is actually preferrable in that it is the easier to
implement as it does not require any internal packet marking. It
simply involves a simple assignment operation to re-set the
𝑊𝑄𝐷 whenever a WTP is encountered, and a simple decrement
operation whenever a packet is dequeued. It should also be
emphasized that any state (𝑊𝑄𝐷 and wns) applies to the queue
as a whole and is not specific to a flow or packet, minimizing
the amount of state that needs to be retained.

The proposed scheme can be implemented efficiently in
hardware per the following considerations: (1) when washable
chunks reside at the end of the payload (as opposed to in
arbitrary position), packet wash can be efficiently implemented
as a (hardware-friendly) truncation operation. (2) keeping track
of wash queue depth involves very simple arithmetic operations
(increment, decrement) on a per-queue basis, conducted upon
enqueue/dequeue operations, without needing to inspect
contents inside the queue. The logic for this is extremely simple
and does not involve multiple processing cycles. Although New
IP is the context in which the presented concepts are being
implemented, it could presumably be applied in conjunction
with other protocols. As chunks are encoded as part of the
payload, the presence of the scheme would be transparent to
nodes that do not support it. In the worst case, things will revert
to today's situation: retransmission will simply still be required
and end-to-end latency objectives may be missed. As a result,
the proposed scheme will not create any burden to the existing
networks.

The proposed scheme does mean that one sender’s traffic
with very aggressive latency targets might potentially affect
other senders’ traffic whose less important chunks might be
dropped. However, this will happen only within the legitimate
terms of either sender’s service, as the only packets that can be
affected are those that are deemed washable, by definition

concerning chunks that were designated as potentially
disposable by the sender.

C. Examples

The principle of applying packet wash against a queue is
depicted in Fig. 4. Packet 4, which is a WTP as well as washable,
arrives at the tail of the outgoing queue. It is WTP marked. The
number of washable packets in front of it including itself is 3
(Packet 1, 2, 4). Next, as shown in Fig. 5, the Packet 11 arrives
at the tail of the outgoing queue, it is WTP marked. By now,
packet 1 has already been transmitted out of the queue. The
Packet 11 is not washable. Thus, the number of washable
packets for the Packet 11 is 6 (Packet 2, 4, 6, 7, 8, 10).

4 3 2 1

The number of washable packets is 3 for
the enqueued WTP packet

Washable Packets

WTP Packet

front of queuetail of queue

Fig. 4. Washable packets example 1

11 10 9 8 7 6 5 4 3

The number of washable packets is 4 for the
enqueued WTP packet

front
of

queue

tail of
queue

2

Fig. 5. Washable packets example 2

A more complex example to illustrate the operation of the
system during runtime is depicted in TABLE I.

 “Packet arrival” indicates the arrival of new packet(s)
needing to be enqueued.

 “Packet dequeue” indicates the dequeuing of packet(s) for
transmission.

 “Packets in queue” contains all the packets that are currently
in the queue and scheduled to be transmitted (newest
arrivals on the left).

 “wns” indicates whether the wash now state is active or not.

 “# WTP” shows the number of WTPs in the queue. Each
time a newly arriving packet is classified as WTP, the
amount is incremented; when a WTP is dequeued, the
amount is decremented.

 “𝑊𝑄𝐷” maintains the queue depth for current WTPs, which
is the number of packets in the queue from the beginning of
the queue till the latest WTP.

 “Total 𝐴𝑊𝐴” (Total Allowable Wash Amount) maintains
the total number of units (e.g. chunks of the same size, or
multiples of some number of bytes) that are candidates for

washing currently in the queue. In this example, we assume
that each washable packet will yield 5 units.

 “Total 𝑁𝑇𝐴” (Total Needed Truncation Amount) maintains
the total number of units that need to be shaved off from the
washable packets in order for the WTPs to satisfy the
latency constraint in the current hop. Here, each WTP
packet’s 𝑁𝑇𝐴 is set as 10 units.

 Washable packets are depicted in green/italics. WTPs are
depicted in red/bold (and are washable for sake of this
example).

TABLE I. PARAMTERS AND STATE MAINTAINED IN A ROUTER

Packet
arrival

Packet
deq.

Packets
in

queue

wns #
WTP

𝑾𝑸𝑫 Total
𝑨𝑾𝑨

Total
𝑵𝑻𝑨

 ba F 0 0 5 0
c cba T 1 3 10 10
 a cb T 1 2 10 10

 b c T 1 1 5 5
 c {} F 0 0 0 0

d,e,f,g gfed F 0 0 15 0

h hgfed T 1 5 20 10
i,j d ijhgfe T 1 4 15 5
k kijhgfe T 2 7 20 15

l,m,n e,f,g nmlkij
h

T 2 4 10 5

 h nmlkij T 1 3 5 5
.. … … … … … …

In the example, the arrival of the packet c triggers wns. 𝑊𝑄𝐷
is set to 3. A single WTP is in the queue. As the packet a and b
are dequeued, 𝑊𝑄𝐷 is decremented accordingly. Once the
packet c is dequeued, 𝑊𝑄𝐷 is 0 and wns reverts to false. A few
packet later, a WTP k arrives at a point when wns is already true
(The packet h already triggers wns to be true). 𝑊𝑄𝐷 is reset to
the current depth of the queue (i.e. 7).

D. Avoiding Packet Overwash

In cases of a deep queue with many washable packets, there
is a chance of subjecting more packets to wash operations and
dropping more chunks than absolutely necessary to keep with
the WTP’s latency objectives. While dropping those chunks is
by definition acceptable, doing so should only occur as a last
resort in exceptional circumstances and still be avoided
whenever possible (otherwise they would not need to be sent in
the first place).

In order to avoid overwashing, the system can be refined to
keep track of the wash potential currently in the queue (“𝐴𝑊𝐴”
in TABLE I.), as well as the savings that are achieved as packet
wash operations are applied versus the amount determined to be
needed, respectively the savings that still need to be achieved
(“𝑁𝑇𝐴” in TABLE I.). In that case, once the 𝑁𝑇𝐴 for a queue
drops to 0, wash operations cease and wns returns to inactive.

Further tweaks are conceivable, for example to ensure that
WTPs are always subjected to washing before other packets, and
to try to apply different measures of “fairness” as opposed to
simply applying packet washes to the first packets in the queue

as long as it is needed. However, it should be noted that such
tweaks tend to add complexity combined with limited
incremental benefits.

V. PERFORMANCE EVALUATION

In this section, we evaluate how the proposed packet wash
mechanisms could improve the high precision end-to-end
latency guarantee performance. Since packet wash is
independently carried out at each intermediate router’s egress
point, as far as the per-hop deadline is met at each hop, the total
transmission latency could be within the requested bounded
latency and the packet is considered to be successful. Thus, we
consider a simplified topology with 𝑛 number of senders
sending packets to 𝑚 number of receivers. There is one
intermediate router between the senders and receivers, and all
packets towards the receivers require in-time guarantee and
buffered in the same outgoing queue as shown in Fig. 6. On the
other hand, every packet is washable and associated with a wash
allowance ratio, which is defined as the ratio of packet payload
size to the largest extend that is allowed to be truncated during
the transmission.

Queue

Router

Receiver 1

Receiver 2

Receiver m

Sender 1

Sender 2

Sender n
Fig. 6. Simplified topology

The following three scheduling schemes are included in the
performance evaluation and comparisons:

 First In First Out (FIFO): which is the same as FCFS in
[21]. The packets are scheduled according to their
arrival time at the outgoing queue of the router. The
packet which arrives earliest is scheduled first.

 Smallest Deadline First Schedule (SDFS) [21]: The
packets are scheduled to be transmitted by the
incremental order of deadline. The packet with the
smallest deadline is scheduled first.

 Smallest allowance First Schedule (SAFS): The packets
are scheduled to be transmitted by the incremental order
of wash allowance size, which is calculated as the
packet payload size multiplying with the wash
allowance ratio.

Two types of performances are being evaluated: (1) packet
delivery success ratio, which is defined as the ratio of the packets
that meet their corresponding deadlines. The unsuccessful
packets are dropped and cannot reach the receivers in time. (2)
resulted packet wash ratio, which is defined as the ratio between
the total truncated size and the total size of the packets’ payload.

We build a simulator written in C++. The packets are
generated randomly from a sender destinated to a receiver. The

packet size varies, the deadline of each packet is intentionally
set up such that the packet would be dropped if the SDFS
scheme is used, the wash allowance ratio may change in the
simulations.

Fig. 7. Comparison of packet delivery success ratio when SDFS is adopted

Fig. 8. Comparison of packet delivery success ratio when FIFO is adopted

Fig. 9. Comparison of packet delivery success ratio when SAFS is adopted

Fig. 7, Fig. 8, and Fig. 9 show the comparison of packet
delivery success ratio with and without packet wash, under the
above three scheduling schemes respectively. Once the packet
wash allowance ratio is set up, the simulation for NoPacketWash
and WithPacketWash is re-run multiple times to get the average

success ratio for both. (As a side note, Figures 8 and 9 do show
slight variations in packet delivery success ratio for different
packet wash allowance ratios even when packet was not even
applied. This is explained by the fact that our simulation
generates random packets for each run, causing the success ratio
in each case to vary slightly.)

A packet’s dwell time is reduced by applying packet wash to
all packets in front of the packet and the packet itself. Since all
the packets under SDFS without packet wash would fail, the
packet delivery success ratio is 0, which has the worst
performance. However, by applying packet wash to the packets
in the queue, even with small wash allowance ratio (e.g. 10%),
the packet delivery success ratio of SDFS with packet wash is
dramatically increased to more than 80%. While the packet wash
allowance ratio increases, more number of packets under the
SDFS scheme can be delivered successfully to the receivers with
their deadlines being met. When FIFO or SAFS is employed,
originally without packet wash, the packet delivery success ratio
is around 35% or 53% respectively (The packet delivery success
ratio has small variance because the simulation is ran with
randomness for packet generation, but averagely it does not
differ much for FIFO or SAFS without packet wash).
Unsurprisingly, packet wash also significantly increases the
packet delivery success ratio when FIFO or SAFS is applied.

We can confidently conclude that the proposed packet wash
mechanism can improve the high precision end-to-end latency
guarantee performance under different packet scheduling
algorithms.

On the other hand, Fig. 10 compares the packet delivery
success ratio of FIFO, SDFS, and SAFS without packet wash,
while Fig. 11 compares the packet delivery success ratio of
FIFO, SDFS and SAFS with packet wash. In Fig. 11, the line of
SDFS collides with SAFS, because they have the exactly same
performance (this also applies to Fig. 12 for resulted packet
wash ratio performance). The packet generation procedure
results in the positioning of packets in the queue to be the same
whether they are ordered incrementally by deadline or by wash
allowance size.

Due to the packet generation procedure that is utilized in the
simulations, SDFS without packet wash results in nearly zero
packet delivery success ratio, in other words, all packets’ dwell
time exceed the corresponding configured deadline. FIFO and
SAFS achieves better success ratio performance. When the
proposed packet wash mechanism is applied, the packet delivery
success ratio of SDFS and SAFS is increased to over 80%,
which is especially exceptional for the scenario when SDFS is
applied (from 0 to 80% success ratio). SDFS is largely adopted
for scheduling flows in data centers, thus the proposed packet
wash mechanisms is of great importance and effectiveness in
such scenarios.

In addition, we observe from Fig. 12 that the resulted packet
wash ratio is quite stable (around 30% to 40%) to achieve the
high packet delivery success ratio for scenarios while SDFS or
SAFS is adopted. When the packet wash allowance ratio is very
small (e.g. 10%), the resulted packet wash ratio is small as well.
It indicates that the packets’ wash allowance is not fully used,
because the wash allowance is not big enough to change a
packet’s delivery failure to success. When a packet is dropped

due to missing its deadline, packet wash would not be performed
on the packets ahead in the queue.

Fig. 10. Comparison of packet delivery success ratio under different
scheduling schemes

Fig. 11. Comparison of packet delivery success ratio with packet wash under
different scheduling schemes

Fig. 12. Comparison of resulted packet wash ratio under different scheduling
schemes

On the contrary, the resulted packet wash ratio for scenarios
when FIFO is adopted increases constantly along with the packet
wash allowance ratio. It indicates that in order to achieve higher
packet delivery success ratio, FIFO does require packets ahead
in the queue to be truncated more than SDFS and SAFS.

Taking both performances into consideration, we find out
that SAFS is a scheduling policy that advances both FIFO and
SDFS. SAFS utilizes reasonable portion of the packet wash
allowance to achieve extremely high packet delivery success
ratio.

VI. CONCLUSIONS

The existing QoS techniques built on the Best Effort
principle of the current Internet can easily fail to comply with
the stringent end-to-end service objectives. Qualitative
Communications and the associated packet wash operation were
introduced to reduce the number of packet drops when network
congestion is encountered. This paper finds that the same
mechanisms can also be useful to enhance high-precision
services and facilitate end-to-end latency guarantees as
demanded by many emerging applications. A packet in danger
of being late can be accelerated by applying packet wash on
itself as well as packets ahead in the queue when feasible, i.e. in
conjunction with applications for which some controlled loss of
lower-priority payload chunks is acceptable. To this end, two
new processing stages are added to the egress interface that run
a lightweight and hardware-friendly algorithm. Simulations
confirm that proposed QoS technique improves the possibility
of satisfying stringent end-to-end latency deadline under any
scheduling schemes. Our proposed method is complementary to
existing QoS approaches and allows for their seamless
integration.

In the paper, we briefly discussed on how to avoid packet
overwashing. For future works, the fairness for packet wash will
be taken into further consideration. And the complexity of
achieving fairness and the benefits provided to the packets need
to be balanced and evaluated.

REFERENCES
[1] FG-NET-2030, Sub group 2, “New Services and Capabilities for Network

2030: Description, Technical Gap and Performance Target Analysis.”
https://www.itu.int/en/ITU-
T/focusgroups/net2030/Documents/Deliverable/NET2030.pdf, 2019.

[2] A. Clemm, M.T.Vega, H.K. Ravuri, T. Wauters, F. De Turck, “Toward
Truly Immersive Holographic-Type Communication: Challenges and
Solutions”. IEEE Communications Magazine Vol. 58 No. 1, January
2020.

[3] M. Wollschlaeger, T. Sauter, J. Jasperneite, “The Future of Industrial
Communication: Automation Networks in the Era of the Internet of
Things and Industry 4.0,” IEEE Industrial Electronics Magazine Vol. 11
No. 1, March 2017.

[4] M. Maier, M. Chowdhury, B. P. Rimal, D. P. Van, “The Tactile Internet:
Vision, Recent Progress, and Open Challenges,” IEEE Communications
Magazine Vol. 54 No. 5, May 2016.

[5] S. Blake, D. Black, M. Carlson, E. Davies, Z. Wang, W. Weiss, “An
Architecture for Differentiated Services,” RFC 2475, IETF, December
1998.

[6] K. Ramakrishnan, S. Floyd, D. Black, “The Addition of Explicit
Congestion Notification (ECN) to IP,” RFC 3168, IETF, September 2001.

[7] J. Wroclawski: “Specification of the Controlled-Load Network Element
Service.” RFC 2211, IETF, September 1997.

[8] S. Shenker, C. Partridge, R. Guerin: “Specification of Guaranteed Quality
of Service.” RFC 2212, IETF, September 1997.

[9] N. Finn, P. Thubert, B. Varga and J. Farkas: “Deterministic Networking
Architecture.” RFC 8655, IETF, October 2019.

[10] L. Han, Y. Qu, L. Dong, R. Li, “A Framework to Realize the Guaranteed
Service for Bandwidth and Latency for Future IP network,” 2020 Infocom
workshop on New IP: The Next Step.

[11] A. Clemm, T. Eckert, “High-Precision Latency Forwarding over Packet -
Programmable Networks,” IEEE/IFIP Network Operations and
Management Symposium, 2020.

[12] L. Dong, R. Li, “Packet Level In-Time Guarantee: Algorithm and
Theorems”, IEEE Globecom 2020.

[13] R. Li, K. Makhijani, H. Yousefi, C. Westphal, L. Dong, T. Wauters, and
F. De Turck, “A Framework For Qualitative Communications Using Big
Packet Protocol,” in NEAT’19: Proceedings Of The 2019 ACM Sigcomm
Workshop On Networking For Emerging Applications And Technologies,
pp. 22–28, ACM, 2019.

[14] L. Dong, R. Li, “In-Packet Network Coding for Effective Packet Wash
and Packet Enrichment,” 2019 IEEE Globecom Workshop on Future
Internet Architecture, Technologies and Services for 2030 and Beyond.

[15] L. Dong, K. Makhijani, R. Li, “Qualitative Communication Via Network
Coding and New IP,” IEEE HPSR 2020.

[16] J. K. Sundararajan, D. Shah, M. Medard, S. Jakubczak, M. Mitzenmacher,
J. Barros, “Network Coding Meets TCP: Theory and Implementation,”
Proceedings of the IEEE Vol. 99 No. 3 pp. 490-512, 2011.

[17] R. Li, K. Makhijani and L. Dong, “New IP: A Data Packet Framework to
Evolve the Internet,” IEEE HPSR 2020.

[18] R. Li, A. Clemm, U. Chunduri, L. Dong, and K. Makhijani, “A New
Framework And Protocol For Future Networking Applications,” ACM
Sigcomm Workshop on Networking for Emerging Applications and
Technologies (NEAT 2018), pp. 637–648, May 2018.

[19] N. Cardwell, S. Savage, T. Anderson, “Modeling TCP Latency,” IEEE
INFOCOM 2000.

[20] N. Ponomarkenko, S. Krivenko, V. Lukin, K. Dglazarian, J. Astola,
“Lossy Compression of Noisy Images Based on Visual Quality: A
Comprehensive Study,” EURASIP Journal on Advances in Signal
Processing, Article ID 976436, 2010.

[21] C. Wilson, H. Ballani, T. Karagiannis, and A. Rowtron, “Better never
than late: Meeting deadlines in datacenter networks,” SIGCOMM
Computer Communication Review, vol. 41, no. 4, p. 50, 2011.

[22] V. K. Gopalakrishna, Y. Kaymak, C. Lin and R. Rojas-Cessa, "PEQ:
Scheduling Time-Sensitive Data-Center Flows using Weighted Flow
Sizes and Deadlines," 2020 IEEE 21st International Conference on High
Performance Switching and Routing (HPSR).

