
ezNL2SQL: A System for Network Devices Management with a Natural Language
Interface for Databases

Jasmina Bogojeska1

IBM Research - Zurich
Switzerland

jbo@zurich.ibm.com

David Lanyi1, 2

IBM Research - Zurich
Switzerland

david.lanyi@continental.com

Mirela Botezatu1, 3

IBM Research - Zurich
Switzerland

mirela.botezatu@gmail.com

Dorothea Wiesmann3

IBM Research - Zurich
Switzerland

wiesmanndr@google.com

Abstract—To enhance and accelerate the work of network
management experts of large IT environments, we present
ezNL2SQL. It is a fast and flexible system that provides a
natural language interface to a database in a domain-specific
setting, where column and table names do not correspond to their
underlying entities and a large labelled corpus is not available.
Our system comprises three main components: linguistic index,
natural language query analyzer and SQL generator, and an
easy-to-use UI. Given an input question and a target database,
ezNL2SQL generates a valid SQL statement for querying data
that best satisfies the information request specified by the
question. The result is presented to the user in the most suitable
visual format. We demonstrate the usefulness and efficiency of
the system in a user study with network management experts
and a complex network security inventory database.

I. INTRODUCTION

A large amount of valuable information pertaining to the
network devices in large IT environments is stored in relational
databases accessible via SQL queries. Writing such queries,
however, is challenging and time consuming not only for
users without the necessary technical background but also
for users unfamiliar with the database schema. Providing an
intuitive, easy-to-use interface for querying the information
relevant for the network devices in a target IT environment
would significantly enhance the management and maintenance
of these devices. A natural language interface to a database
(NLIDB) is an easy-to-use and intuitive way for users to access
the information stored in relational databases as people use
natural language every day to communicate among each other.

The main focus of this paper is to describe a natural
language interface to a database (DB) for management of
network devices where the table and column names do not
correspond to the entities they represent and there is no
large amount of labeled data available. Related approaches
are not readily applicable to this setting, even though it often
occurs in practice. To achieve this, we design and implement
ezNL2SQL, a system composed of a static component that
projects the target database model into a linguistic space, and
a dynamic component that analyzes natural language queries,

1 Equal contribution.
2 Author’s new affiliation is Continental ADAS AI, Hungary.
3 Author’s new affiliation is Google Zurich, Brandschenkestrasse 110, 8002

Zürich

produces corresponding SQL statements, and retrieves the
result. The UI then displays the result in the most suitable
format (e.g., a certain type of chart or a table). The main
contributions of this work are the following:

1) Mapping Language. We devise a declarative language to
define associations between database objects and natural
language mentions;

2) Natural Language Query Analysis. We develop an
algorithm for discovering and disambiguating natural
language mentions of database objects, filter conditions
and functional operations in questions;

3) Query Generation. We render valid SQL statements
based on an abstract query model;

4) User Study. We evaluate the usefulness and performance
of our system in a user study with field experts using a
network security inventory database.

When storing information from a certain target domain in a
relational DB that needs to be accessed by users with different
backgrounds, one should, in parallel, be able to also provide
a natural language interface that enables intuitive information
access for all the interested users. Thus, the goal of our work
is to provide an easy-to-apply, general approach that enables
access to the domain information stored in a relational DB
using domain-specific vocabulary. To apply our approach one
needs to provide a mapping that associates the database objects
with their corresponding natural language entities in the target
domain which can easily be achieved by the DB experts who
create or maintain the target DB. Such mapping can later be
expanded using synonyms or word embeddings.

The remainder of this paper is organized as follows.
Section II describes the system architecture, Section III, IV and
V detail the internal components and Section V— discusses
results from the user study. We give details on the deployment
in Section VII, review related work in Section VIII and
conclude in Section IX.

II. SYSTEM OVERVIEW

The ezNL2SQL system has three components:
1) The static component – which consists of an annotated

database obtained by mapping the objects in the target
database model to a linguistic space using the DB
mapping language we develop for this purpose;

2) The dynamic component – a system for processing
questions, generating SQL queries and retrieving data.978-3-903176-32-4 c© 2021 IFIP

tb_inventory tb_alert
1 *

tb_feature

device_category

ip_address category feature_name

serial_number

“Which servers are affected with
http vulnerabilities released in the

past 2 weeks?”

ANNOTATE TABLE tb_inventory AS (‘device’) (
 PK device_id,
 COLUMN serial_num ID AS (‘serial number’),
 COLUMN ip_addr ID AS (‘ip address’),
 COLUMN device_catagory CATEGORICAL USING SYNONYM
 AS (‘category’)
);

ANNOTATE TABLE tb_alert AS (‘vulnerability’) (
 PK alert_id,
 COLUMN category CATEGORICAL AS (‘security category’,
 ‘category’)
);

ANNOTATE TABLE tb_feature AS (‘network feature’) (
 PK feature_id,
 COLUMN feature_name ID AS (‘name’),
 COLUMN pub_date DATETIME AS (‘published’, ‘released’)
);

ANNOTATE FK tb_inventory.device_id -> tb_alert.device_id;
ANNOTATE FK tb_alert.alert_id -> tb_feature.alert_id;

SELECT t0.ip_address, t0.serial_number
FROM tb_inventory t0
INNER JOIN (
 SELECT DISTINCT c0.device_id
 FROM tb_alert c0
 INNER JOIN (
 SELECT DISTINCT c1.alert_id
 FROM tb_feature c1
 WHERE c1.feature_name = ‘http’
) c1 ON c1.device_id = c0.device_id
 WHERE (c0.pub_date >= '2017-02-13' AND
 c0.pub_date <= '2017-02-27')
) t1 ON t0.device_id = t1.device_id
WHERE t0.device_category = ‘server’

pub_date

1 *

LAL

SQL

Fig. 1: DB schema with linguistic annotation used for answering natural language questions

This component comprises several subcomponents,
namely: a DB object discovery, a DB filter assignment,
an aggregation assignment, and a disambiguation
component described in detail in Section 4, and the SQL
query generation component described in Section 5;

3) The UI component – a user-friendly interface for posting
questions and retrieving answers from the system.

The system is depicted in Figure 2. The linguistic annotations
for the database are stored in an annotation file, which is
parsed to produce what we call a serialized annotated database
object. Serialization is used to persist the annotated database
object in the file system and thus provide an in-memory,
lightweight, annotated DB object. This object contains the
semantic graph of the database – a graph whose nodes are
database tables and whose edges are foreign key relationships
between the tables. In addition, it contains an inverted index,
which stores the mapping from each database entity to its set of
corresponding aliases. Aliases can be explicit – the synonyms
for the database entity name stored in the annotation file –
or implicit – the values for a categorical column contained
in the database. Most of the dynamic part of our system is
contained in the resolving component, which contains all the
logic for translating an input question into an SQL statement.
Note that this system is able to provide an NLIDB for an
arbitrary annotated database.

III. LINGUISTIC ANNOTATION

An integral step in processing natural language questions is
to identify mentions of database-related objects in the question

text. Our goal is to identify mentions of (1) tables, (2) columns,
(3) values of columns, (4) functional operations and (5) foreign
key relationship between tables.

A. Annotation Model

The ezNL2SQL system requires a target database annotated
with natural language terms, which we denote as linguistic
annotation. It comprises a set of clauses that associate
elements of the DB schema with one or more representative
natural language aliases. For example, an annotation could
associate a table tbl alert with the nouns “vulnerability”,
“security notice” and “alert”, and its column pub date
with “released” and “published”. The annotation provides an
abstraction of the DB schema in natural language semantics.
In our view, this simplification is reasonable as it is often
cumbersome to specify a full ontology without relevant
expertise and an ontology on its own does not account for
the diversity of language use in questions. In addition, the
linguistic annotation model yields a simple way to construct
an index for detecting database-relevant mentions in question
texts.

In the remainder of this section we introduce the Linguistic
Annotation Language (LAL) – an easy-to-use SQL-like formal
language for linguistic database annotation.

1. General Syntax and Grammar. The annotation syntax
is designed to be simple and readable – similar to the
widely used SQL Data Definition Language (DDL) to enable
easy adoptation by DB experts. The formal grammar of the
language is specified in Grammar 1.

〈ldl〉 ::= (〈table annotation〉 | 〈fk annotation〉)

〈table annotation〉 ::= ‘ANNOTATE TABLE’ 〈table〉 ‘AS’ 〈aliases〉
‘(’ 〈pk〉 { , (〈col annotation〉 | 〈expr annotation〉) } ‘);’

〈pk〉 ::= ‘PK’ 〈col〉

〈aliases〉 ::= ‘(’ 〈alias〉 { , 〈alias〉 } ‘)’

〈alias〉 ::= ‘FL’〈text〉‘FL’

〈col annotation〉 ::= ‘COLUMN’ 〈col〉 〈type〉 ‘AS’ 〈aliases〉

〈expr annotation〉 ::= ‘EXPRESSION’ 〈expr〉 〈type〉 ‘AS’ 〈aliases〉

〈type〉 ::= (‘NUMERIC’ | ‘DATETIME’ | ‘ID’ | ‘TEXT’ |
〈categorical〉 | 〈boolean〉)

〈categorical〉 ::= ‘CATEGORICAL’ { ‘USING SYNONYM’ }

〈boolean〉 ::= ‘BOOLEAN’ 〈expr0〉 ‘AS’ 〈aliases〉 { 〈expr1〉 ‘AS’
〈aliases〉 }

〈fk annotation〉 ::= ‘ANNOTATE FK’ 〈table〉.〈col〉 ‘->’
〈table〉.〈col〉 { ‘DOWNSTREAM AS’ 〈aliases〉 } {
‘UPSTREAM AS’ 〈aliases〉 } ‘;’

Grammar 1: Formal grammar of the Linguistic Annotation
Language.

2. Table and View Annotations. The annotation model
contains clauses about tables and foreign key relationships.
An annotated table assigns a set of NL aliases, most often
nouns, to a certain table or view of the DB. It also specifies the
primary key of the table, which is important when rendering
a SQL query, e.g. to perform joins or count operations. The
current syntax only supports simple primary keys, but it is easy
to expand the language to accept compound primary keys as
well. A table annotation may encapsulate one or more column-
and column-expression annotations. A high-level view of the
system is given in Fig. 2.

3. Column Annotations. Column annotations are defined
inside the body of a table annotation. They assign one or more
natural language aliases to a column and specify the column
type. In contrast to DDL, the column type in LAL focuses on
the semantics rather than the logical or physical organization
of the data. The column type provides useful information when
translating NL questions to SQL. There are six column types
an annotation can specify:

1) ID: any value that is unique among the records and may
be used to identify a specific record;

2) CATEGORICAL: any data that specifies a categorical
classification for a record;

3) NUMERIC, DATETIME, BOOLEAN;
4) TEXT: everything else with no further assumptions on

semantics.
Some categorical columns can also be annotated as table

synonym when it is known that the category values can be
used as a synonym for the entity represented by the table.
For example, if the annotated table represents “devices”, and
there is a categorical column defining the device type such as
“router”, “switch” or “firewall”, the values of that column are

considered “devices” and will be treated as a mention of the
table itself.

4. Expression Annotations. In addition to annotating
columns of a table directly, LAL enables the annotation
of more general SQL expressions. Anything that can be
formulated in an unaggregated SELECT statement over table
columns can also be annotated in LAL. Using the full
capability of SQL in expression annotations (e.g. CASE-WHEN
constructs and other functions), one can define very complex
concepts or predicates about the target entity.

5. Foreign Key Annotations. It is important to have a
model of the relationships between the annotated tables. In
case a join operation is required to answer a question, the
foreign key (FK) annotations provide information on how valid
look-ups can be performed across the tables in the DB. FK
annotations specify pairs of tables that are in a one-to-many
relationship. With LAL, one can specify NL aliases for either
or both of the upstream (many-to-one) and downstream (one-
to-many) directions.

B. Natural Language Index

Once the DB annotation model is available, we build the
inverted index of the linguistic aliases, where each index term
is associated with one or more database objects via a mention
type. Based on how the aliases might be used in questions, we
index them assigning one or more of the following mention
types (each pointing to their respective DB object):

1) Table mentions for all alias terms of table annotations;
2) Column mentions for all alias terms of column

annotations;
3) Foreign key upstream and downstream mentions for

alias terms of FK annotations;
4) Boolean mentions for value aliases of Boolean-typed

columns. The index reference also contains information
on which of the two possible states the alias refers to;

5) Category mentions for all unique values of categorical
columns;

6) Table synonym mentions for all unique values of
categorical columns marked with the USING SYNONYM
directive;

7) ID mentions for all unique values of ID columns.

The index is used to find DB-related mentions in the input
question. Note that for categorical and ID-type annotations
we also add the distinct values of the respective columns to
the index. Note that to prevent bad matches and exploding
complexity, too short or too long terms and stopwords are not
indexed. In addition, we make sure that no index term from a
categorical or ID column masks out a more generic linguistic
alias, such as that of a table.

To enrich the human-authored annotation model with more
diverse terms, we use WordNet to search for synonymous
formulations of specified linguistic aliases. For mention types
1-4, we extend the index with new unspecified synonyms as
returned by a WordNet lookup. One can further enrich this by
using word embeddings.

Fig. 2: High-level view of the system architecture

IV. NATURAL LANGUAGE QUERY ANALYSIS

In this section, we describe our question analysis method.
First, it discovers all database objects mentioned in the
question, it then performs disambiguation, and finally
discovers and resolves the filters and aggregation functions.

A. Database Objects Discovery

To find all database objects mentioned in the question,
which we will refer to as matched mentions, we implement
the following three steps:

1) Find all tables and table synonym matched mentions by
first generating all n-grams that end with a noun from the
question text and then retrieving the longest match from
the tables and table synonyms in the inverted index;

2) Discover the remaining matched mention types in a
greedy fashion by extracting all n-grams from the
question text and retrieving all possible exact matches
from the inverted index;

3) Fuzzy matching – find approximate matches in the
inverted index.

There are columns in the database that can contain very long
values and therefore are difficult to match exactly. To address
this, we devised a fuzzy-matching algorithm (described in
Algorithm 1) that is able to match incomplete mentions of
the values of such DB columns while ignoring the order of
the words.

B. Database Filters Assignment

The main task here is to recognize all different types of
filters and assign them to the correct database entity mentions
discovered in the target question. We distinguish four types of
filters and handle each of them separately: i) numeric filters, ii)
datetime filters, iii) expression filters, and iv) implicit filters.

1. Numeric Filters. Numeric filters can be simple numbers
that denote a filter for a certain database column, e.g., for the

Algorithm 1 Fuzzy Matching Algorithm
Input: Sequence of words (stemmed) corresponding to a given
question.

1) Find the longest list of words which are in the inverted
index of a column we want to fuzzy match.

2) Intersect the lists corresponding to these words and then
store the pairs (column name, value) as candidate fuzzy
matches for the sequence of words.

3) If the set resulting from the intersection in step (2) is
empty, the sequence is repeatedly restricted first forward
and then backward until candidate matches are obtained.

Output: All the matched subsequences in the question
together with the corresponding list of pairs (column name,
value).

question “Show me all alerts with priority 3.”, 3 is a filter
for the column Alerts. Numeric filters can also be specified as
quantifier phrase modifiers (QP) like for example “at least 3”
or “not more than 3”.

The procedure for associating numeric filters is given by:

• Discovering numeric filters in the question text using a
Stanford CoreNLP pipeline [7];

• Associating each filter to the closest database entity
mention;

• Converting the numeric filter to its corresponding SQL
filter.

An important step in this procedure is the association of
a filter to the correct entity mentioned in the question. We
address this problem by assigning the filter to the closest
entity mention. Thereby, closeness is quantified by first using
the distance (in number of words) between the filter and the
mentioned entity in the question and then, in case of ties,
using the distance between them in the parse tree. We clarify

our approach with examples. When a numeric filter is in the
immediate neigborhood of a numeric column mention with no
filter assigned, the target filter is associated with the column.
However, there are more complex cases. First, note that a
numeric filter can also be associated with a table mention and
not just with numeric columns. Consider the question “List
all servers with more than 3 open tickets” along with its parse
tree in Figure 3 and assume we have a table Servers and a
table Tickets. Both table mentions “tickets” and “server” are
at the same distance (in number of words) in the sentence from
the numeric filter (the QP) “more than 3”. In such cases, we
take the closest mention with non-empty numeric filter, using
the distance from the QP in the parse tree. More specifically,
since the QP node “more than 3” in Figure 3 is closer to the
NNS2 node corresponding to “tickets” than to the NNS1 node
corresponding to “servers” it will be assigned to “tickets”.

Fig. 3: Parse tree for the question: “List all servers with more
than 3 open tickets”.

In the third row of Table II, we provide example
queries containing numeric filters with their respective SQL
translations.

2. Datetime Filters. Temporal filters can be exact dates,
such as “December 11, 2017”, or temporal expressions such as
“next Wednesday at 3pm” that need to be converted to exact
dates. After such a conversion their resolution is similar to
the one of numeric filters with the difference that they need
to be associated to a datetime type of DB columns. We give
an example query containing datetime filter and its respective
SQL resolution in the second row of Table II

3. Expression Filters. Expression filters refer to DB-
specific expressions such as “expired” or “end-of-support”
which have individual definitions depending on their semantic
in the database. For example, warranty is expired if the
current time is smaller than the purchase date plus the
warranty duration. Such expression filters are not associated
with a specific DB column as the corresponding expression
already contains the necessary columns. For example, for the
question “Show me all devices which are out of support”, the
phrase “out of support” represents an expression CASE WHEN
END OF MAINTENANCE < DATE(CURRENT DATE)
THEN '1' ELSE '0' END that is specified in the DB
annotation.

4. Implicit Filters. Implicit filters denote matches or
fuzzy matches of categorical column values. For instance,
a column “Warranty” might have values like “limited” or
“lifetime”. Then, in a question such as “Show me all lifetime
devices.”, the word “lifetime” is an implicit filter for the
column “Warranty”.

C. Aggregation Assignment

Questions often specify aggregation functions over columns,
sometimes asking for the aggregated value as a result, and
other times specifying certain conditions for the aggregated
value. The aggregation assignment task consists of recognizing
the aggregation functions and assigning them to the correct
database entity mentions in the question. To achieve this, we
take the following steps:

1) Identify mentions of aggregation functions in the
question text;

2) Associate each aggregation function to the closest
numeric or datetime DB entity mention;

3) Interpret any existing filter assignment for the matched
mentions as a condition for the aggregated value.

Note that in step 1 above we use a fixed dictionary for
the most common mentions of the functions that correspond
to count, summarization, average, median, minimum or
maximum. These mentions are also added to the inverted
index.

D. Disambiguation of Overlapping Database Objects

Normally, in a DB schema each table relevant for the users
represents a different entity in the target domain. Therefore,
we assume that the phrases used to denote each table of
interest are different. This is, however, not the case for the
columns comprising the tables, the data in the tables or
the specified expressions. For example, in the use case in
our experiments end-of-life can be a phrase that is used to
denote both a column and an expression in the same table.
Furthermore, two columns in different tables can be referred
to using identical phrases. Thus, we devise an approach that
uses contextual information to disambiguate any ambiguous,
overlapping mentions discovered in the question text. To
disambiguate a set of overlapping matched mentions, our
approach implements the following rules:

1) Prioritize matched mentions associated with the closest
table matched mentions, tables of foreign key matched
mentions or tables associated with unambiguous
matched mentions (taken in the specified order of
importance) discovered in the question text;

2) Prioritize longer matched mentions;
3) Prioritize matched mentions with filters or aggregation

assigned.
Table I shows a few simple examples of disambiguation.

In the rare cases where ambiguous matched mentions
remain after the disambiguation, they are all kept and if an
attempt to generate the optimal SQL query fails, a feedback
on the ambiguities is provided to the user, such that he/she
can reformulate the question.

Question Disambiguation
Show all alert
descriptions
published

before 2013.

published refers to datetime columns in
three different tables, and only the column

that appears in the same table as alert
descriptions is kept

List all devices
that become

end of life this
year.

end of life refers to both a datetime column
and an expression in the same table, and
only the datetime column is kept because

of the modifier this year assigned to it

Show the end
of life date of

device X.

end of life and end of life date are
overlapping mentions, and only the end of
life date column is kept because it is more

specific (longer match)

TABLE I: Disambiguation examples.

V. SQL QUERY GENERATION

The final step of the NLI pipeline is to render a valid SQL
query over the annotated database schema that satisfies the
input given the intermediate question model. We now describe
our approach that generates the SQL query.

A. Computing the Join Graph

Let the undirected, unweighted graph GDB = (V,E)
represent the DB schema, where nodes v ∈ V are annotated
tables and edges e = (vi, vj) ∈ E, vi, vj ∈ V , are
annotated one-to-many foreign key connections among the
corresponding tables. The disambiguated set of DB entities
yields information about all tables and foreign keys referred
to in the input question. Then, let VT ⊆ V denote the set
of mentioned tables and MFK ⊆ E the set of mentioned
foreign keys discovered in the target question. The graph then
comprises one or several connected components. To formulate
a single query that answers the question, all mentioned tables
need to be within one of the connected components and joined
through a set of valid foreign key connections. If there is
no direct foreign key relationship that would connect all of
them, the goal is to construct the simplest possible subgraph
within the component that comprises all tables mentioned in
the question.

Let GM be the mention graph – a subgraph of the target
connected component G with a set of edges MFK , all nodes
of VT and all nodes representing the endpoints of edges in
MFK that are not present in VT . The goal now is to find a
tree of minimal size in G that contains all nodes from the
mention graph GM . This is the minimum Steiner tree problem
[4], a known NP-hard problem. To tackle this problem we
apply a minimum spanning tree heuristic similar to the one
introduced in BANKS [2]. More specifically, we use a multi-
root BFS started from all nodes in GM in parellel until they
meet, not starting to traverse a new BFS level until all other
searches have finished the preceding level for all nodes in GM .
Then, the solution is computed by constructing the resulting
subtree.

B. Rendering the SQL Output

Analyzing the discovered DB entities, filter specifications,
aggregations and the join graph, we obtain an intermediate

model of the query that can be converted into standard SQL.
To achieve this, we use a generic set of six rules:

1) The join graph contains the information on which tables
to include in the query through which foreign key
connections;

2) Mentions of DB columns or expressions over non-
aggregated tables with no filter specification give the
set of columns or expressions to select for the results;

3) The direction of foreign key connections suggests the
result cardinality, which specifies where and how to use
nested queries;

4) Mentions of aggregation functions over a column give
the aggregation level to use for each queried table, and
specify the aggregation itself;

5) For aggregated subqueries, mentions of columns with no
filter specification yield the columns for the group by
of the aggregation;

6) Matched filters for columns, expressions or aggregated
values, and direct matches of categorical or ID values
specify the filter conditions to apply.

The resulting query is rendered following the language
grammar of SQL. All queries are formulated as a SELECT
statement. The FROM clause is used for the subject table of
the query, which is defined as the first directly or indirectly
mentioned table in the question. Other tables appear in JOIN
clauses based on the join graph computed for the actual
query. When joining a table with a one-to-many relationship,
it is embedded into a nested subquery with all corresponding
WHERE conditions and aggregations applied, in order to keep
the cardinality of the result on the subject table’s level. As
many-to-one joins do not affect the cardinality of the results
they are not embedded into nested queries. Filter conditions are
rendered as WHERE clauses at the corresponding level of the
query, except when they are applied to an aggregated column.
Such filter conditions are put into the HAVING clause.

VI. EXPERIMENTS

To evaluate our system, we performed a user study where
the participants posed natural language questions and verified
the correctness of the answers returned by the system. The
main strength of our system is that it can be applied in a setting
where existing, related approaches are not applicable, namely
a domain-specific setting where the table and column names
do not correspond to the underlying entities and there is no
large manually curated question-SQL pairs dataset. Thus, the
main goal of the experiments is not to provide a comparative
study but to demonstrate that our system can successfully be
applied and used in practice in the aforementioned setting
where existing approaches are not readily applicable.

A. User Study

The ezNL2SQL system was built for a real-world database
that contains information such as type, support, vulnerabilities,
and firmware for the network devices of many clients. The
five participants in the study have different levels of expertise
in network management (from basic to advanced) and are

all aware of the type of information that resides in the
database. They pose different questions to the system to get the
information of interest. Some queries require simple mapping
to the entities of a single table to generate their corresponding
SQL statement. Others contain ambiguities, require more
complex join statements involving multiple tables, non-trivial
filter assignments, fuzzy matching or resolving complex
temporal expressions. Based on this, we group the queries
in our user study into two types, namely easy and difficult.
Example questions and generated SQL translations for both
types are given in Table II.

Question SQL Statement Generated Type
How many
routers are

there?

SELECT COUNT(DISTINCT t0_0.device_id)
FROM tb_inventory t0_0
t0_0 WHERE
(LOWER(t0_0.device_category)=’router’;

E

How many
of the field

notice alerts
are

published
after 2013?

SELECT COUNT(DISTINCT t1_0.alert_id)
FROM tb_fn_alerts t1_0
WHERE
t1_0.first_publish_date>’2013-12-31’;

D

Show me
switches

with more
than 3

security
vulnerabilities.

SELECT DISTINCT t0_0.hostname, t0_0.ip,
t0_0.serial_num, SUM(t3_0.agg_0)
FROM tb_inventory t0_0
INNER JOIN (
SELECT DISTINCT c0.device_id,
COUNT(DISTINCT c0.alert_id) AS agg_0
FROM tn_alerts c0
GROUP BY c0.device_id
HAVING COUNT(DISTINCT c0.alert_id)>3
) t3_0 ON t0_0.device_id=t3_0.device_id
WHERE
(LOWER(t0_0.device_category)=’switch’)
GROUP BY t0_0.hostname, t0_0.ip,
t0_0.serial_num;

D

TABLE II: Example questions from our user study and
their respective SQL translations generated by the ezNL2SQL
system. In the ”Type” column D stands for difficult and E for
easy.

B. Results and Discussion

The ezNL2SQL system described in this paper was tested
by five participants who posed 164 different questions, out
of which 96 were difficult and the remaining 68 were
easy. The users verified the system answers as correct for
151 of the questions. The results by question type are
summarized in Table III. Analyzing the questions where our
system failed to provide the correct answer, we observe
that they either involve complex compositional aggregation
or complex negation. While our system supports simple
negation types (such as excluding, not including, non-...) that
are considered as filters and assigned to the corresponding
database entities, more complex negation types that require
a deeper understanding of the question text semantics and
addressing complex compositional aggregation are left for
future work.

The response time of the query resolution is between 100
and 250 milliseconds both for easy and difficult questions,
tested on an index containing more than 2 million terms, using
an Intel1 Core i5 2.60 GHz CPU laptop with 16 GB of RAM.

1Intel is a trademark of Intel Corporation in the U.S. and/or other countries.

Question Type Correct Answers
Easy 95.38%
Difficult 88.37%

TABLE III: Percentage of correctly answered questions for the
question types in the user study.

VII. DEPLOYMENT

Our NLI system has been deployed as a RESTful Web
Service, and it offers both a Web GUI and a CLI for
interaction. It authenticates users and limits their accessibility
based on their corresponding access levels. It serves questions
on a database comprising the information pertaining to the
networking devices of many different clients. It can be used
by both the clients and the technical support teams for the
networking equipment.

Our system processes NL questions reliably and fast, as
shown by our experiments, and retrieves the requested data
from the database. The user interface enables the user to post
questions of interest and, dependent on the size and type of
the data retrieved from the DB, to get the answer in the
most suitable format. The Web GUI supports various data
visualizations ranging from numbers and tables to different
types of charts, where the user can also easily switch from the
vizualization automatically chosen by the system to another
one. Last but not least, the system provides feedback on all
different mentions discovered in the target question along with
information on their corresponding types. In this way, the user
gets the information on how the system interprets the question.
Moreover, the user can provide feedback in case that a natural
language term has not been recognized by the system, which
contributes to the enrichment of the natural language aliases
for the corresponding DB entity.

VIII. RELATED WORK

The motivation for our work originates from PRECISE
[9, 10]. It relies on the assumption that the names for tables
and columns in the DB are NL names of their corresponding
entities and uses a graph-matching algorithm to find a mapping
between tokens and the database entities – subject to a set
of constraints. Our system, however, introduces a database
annotation language that can be used for every database
and allows a more flexible matching using a combination
of different rule-based and fuzzy-matching approaches. There
are approaches like [8, 14, 3] that assume a semantic graph
describing the database is available, or that a domain-specific
onthology is available [11], or use a high-quality grammar
[5] to translate NL queries to SQL. Moreover, the authors in
[6, 5] develop systems that rely on user feedback. Finally,
there are also learning-based approaches for devising natural
language interfaces to databases, such as the ones presented in
[12, 15, 1, 13]. One disadvantage of such models is, however,
that they require a large labelled corpus of question-query pairs
for each database and achieve accuracies insufficient for their
application in practice (around 60%). Note that existing work
is not readily applicable in the setting where DB column and

table names do not correspond to their underlying entities and
a large labelled corpus is not available.

IX. CONCLUSIONS AND FUTURE WORK

In this paper, we introduce a novel approach that aims
to assist and enhancing the management of network devices
by automatically translates a natural language question into
an SQL query that can be directly run against an existing
database. The approach has been developed and tested in
a challenging domain-specific setting that often occurs in
practice: where DB column and table names do not correspond
to the underlying entities and a large labelled corpus is not
available. While it is hard to apply existing work in this
setting, our ezNL2SQL features an easy-to-use DB annotation
language that enables its application to an arbitrary database.
We demonstrate the usefulness of our approach in a user study
with network management experts and a complex network
security inventory database, where it achieves 90% accuracy
in NL question to SQL translation.

A future enhancement of the system is to integrate support
for follow-up questions that ask for further details regarding
previously asked (complete, non-follow-up) questions. This
can be achieved by using a two-step approach. The first step
needs to correctly identify the follow-up questions given a
previously asked complete question. As follow-up questions
are incomplete, in the second step, a new question that reflects
the information requested in the follow-up question needs to be
constructed using the information from the previous complete
and the target follow-up question. This newly constructed
question can then be answered using our ezNL2SQL system.
We believe such support for follow-up questions adds value
to our system by contributing to a better user experience.

The ezNL2SQL has been developed for English; however
our system can easily be ported to other languages such as
French, Italian, or Spanish, especially as these languages are
already supported by the Stanford CoreNLP pipeline [7].

X. ACKNOWLEDGEMENTS

The authors would like to gratefully acknowledge Robert
Labori for supporting this research, and Biliana Bojilova,
Slavcho Mitov, Maxim Mavrudiev, Zhivko Dimov and
Kaloyana Vasileva-Mitova for the system evaluation and
their valuable feedback and discussions during the system
development.

REFERENCES

[1] Fuat Basik, Benjamin Hättasch, Amir Ilkhechi, Arif
Usta, Shekar Ramaswamy, Prasetya Utama, Nathaniel
Weir, Carsten Binnig, and Ugur Cetintemel. DBPal: A
learned NL-interface for databases. In Proceedings of the
2018 International Conference on Management of Data
(SIGMOD). ACM, 2018.

[2] Gaurav Bhalotia, Arvind Hulgeri, Charuta Nakhe,
Soumen Chakrabati, and S. Sudarshan. Keyword
searching and browsing in databases using banks. In

Proceedings of the 18th International Conference on
Data Engineering, pages 431–440. IEEE, 2002.

[3] Catalina Hallett, Donia Scott, and Richard Power.
Composing questions through conceptual authoring.
Computational Linguistics, 33(1):105–133, 2007.

[4] FK Hwang and Dana S Richards. Steiner tree problems.
Networks, 22(1):55–89, 1992.

[5] Srinivasan Iyer, Ioannis Konstas, Alvin Cheung, Jayant
Krishnamurthy, and Luke Zettlemoyer. Learning a neural
semantic parser from user feedback. In ACL, 2017.

[6] Fei Li and H. V. Jagadish. Constructing an interactive
natural language interface for relational databases. Proc.
VLDB Endow., 8(1):73–84, September 2014.

[7] Christopher D. Manning, Mihai Surdeanu, John Bauer,
Jenny Finkel, Steven J. Bethard, and David McClosky.
The Stanford CoreNLP natural language processing
toolkit. In Association for Computational Linguistics
(ACL) System Demonstrations, pages 55–60, 2014.

[8] Frank Meng and Wesley W. Chu. Database
query formation from natural language using
semantic modeling and statistical keyword meaning
disambiguation. Technical report, 1999.

[9] Ana-Maria Popescu, Alex Armanasu, Oren Etzioni,
David Ko, and Alexander Yates. Modern natural
language interfaces to databases: Composing statistical
parsing with semantic tractability. In Proceedings of
the 20th International Conference on Computational
Linguistics, COLING ’04, Stroudsburg, PA, USA, 2004.
Association for Computational Linguistics.

[10] Ana-Maria Popescu, Oren Etzioni, and Henry Kautz.
Towards a theory of natural language interfaces to
databases. In Proceedings of the 8th International
Conference on Intelligent User Interfaces, IUI ’03, pages
149–157, New York, NY, USA, 2003. ACM.

[11] Diptikalyan Saha, Avrilia Floratou, Karthik
Sankaranarayanan, Umar F. Minhas, Ashish R. Mittal,
and Fathma Özcan. ATHENA: an ontology-driven
system for natural language querying over relational
data stores. In Proceedings of the VLDB Endowment,
2016.

[12] L. R. Tang and R. J. Mooney. Using multiple
clause constructors in inductive logic programming
for semantic parsing. In Proceedings of the 12th
European Conference on Machine Learning, pages 466–
477, Freiburg, Germany, 2001.

[13] Semih Yavuz, Izzeddin Gur, Yu Su, and Xifeng Yan.
What It Takes to Achieve 100In Proceedings of the 2018
Conference on Empirical Methods in Natural Language
Processing (EMNLP), 2018.

[14] Guogen Zhang, Wesley W Chu, Frank Meng, and Gladys
Kong. Query formulation from high-level concepts for
relational databases. In Proceedings User Interfaces to
Data Intensive Systems, 1999, pages 64–74. IEEE, 1999.

[15] Victor Zhong, Caiming Xiong, and Richard Socher.
Seq2SQL: Generating structured queries from natural
language using reinforcement learning. arXiv, 2017.

