
Distributed Utility Maximization From the Edge in IP Networks

Youcef Magnouche1, Pham Tran Anh Quang1, Jérémie Leguay1, Xu Gong2, Feng Zeng2

Huawei Technologies Ltd., 1Paris Research Center, France, 2 Dongguan Research Center, China.

Abstract—To improve bandwidth sharing in IP networks, load
balancing and rate control are key traffic engineering ingredients.
In this context, we propose a fully distributed load balancing
and rate allocation mechanism that operates only from the
edge. Each access router is able to determine target rates over
multiple paths for different traffic aggregates based on already
available link state information and, some small and optional,
information received from other edge devices. Our distributed
utility maximization solution provides a feasible rate allocation
at each iteration with diminishing returns. Through numerical
results on a variety of instances, we show that it converges to
near optimal solutions after a few iterations. Thanks to packet-
level simulations on an SD-WAN scenario, we also show that it
can well prioritize traffic over centralized and legacy solutions.

I. INTRODUCTION

Traffic engineering [1] gathers a set of mechanisms to opti-
mize network performance and traffic delivery. While routing
optimization aims at finding efficient routes, Quality of Service
(QoS) mechanisms and load balancing control how bandwidth
is shared among the different paths. Traffic engineering plays
a crucial role in optimizing the use of network resources and
meeting QoS requirements of network users. To improve the
utilization of IP networks, load balancing is typically imple-
mented inside switches or routers using Equal Cost Multi-Path
(ECMP) [2], where a hash is calculated over packet headers
and used to select the outgoing path in a uniform manner,
or Weighted Cost Multi Pathing (WCMP) [3], where load
balancing weights are used to make decisions for each flows.
On top of load balancing, rate control and prioritization can
be enforced at the network layer to properly share bandwidth
among traffic classes.

The control of load balancing and rate allocation param-
eters can be realized by a centralized network entity, e.g.,
a Software-Defined Networking (SDN) controller or a Path
Computation Element (PCE) [4]. These centralized control
plane units leverage on a global view of the network to
decide about the most efficient way to steer traffic. Different
objectives can be optimized such as the overall congestion
or the QoS experienced by users. Since the seminal work by
Kelly et al. [5], the Network Utility Maximization (NUM)
framework is commonly used for bandwidth allocation or
rate control. The goal is to maximize the overall “utility,”
where user’s level of satisfaction is measured using a concave
function of the allocated data rate to that user (i.e., the utility
function). For instance, it has been applied for fair bandwidth
sharing over single and multiple paths, and efficiently solved in
a centralized controller with Lagrangian decomposition [6] or,
in the semi-distributed case with multiple domain controllers,
using ADMM [7]. However, the presence of a centralized

control entity may not be desirable for scalability, fault-
tolerance, or deployment reasons.

In this paper, we propose a distributed load balancing and
rate control solution that operates only from edge devices with
very little support from core nodes. Our goal is to maximize
the total network utility and push all the processing at the edge
(e.g., on access routers). The challenge is to yield a minimum
network overhead when coordination among edge nodes is
required. Such a solution is particularly useful for overlay
networks in the context of SD-WAN (Software-Defined Wide
Area Networks) [8]. It should also quickly converge towards
the optimal solution, i.e. generate a set of solutions with
diminishing returns over iterations, and it must ensure anytime
feasibility, i.e. that it does not violate capacity constraints at
any iteration.

A wide range of distributed solutions for bandwidth sharing
have been proposed [9], [10], [11], [12]. However, they
actively involve intermediate or core nodes with a request
/ answer protocol that allocates bandwidth on core links.
While they aim at maximizing the network utility, most of the
papers use max-min fairness and single path routing. Other
solutions rely on an explicit pricing of link bandwidth by
core nodes [13]. While active participation of core nodes is
still required, these pricing solutions do not guarantee that the
bandwidth allocation is feasible at all iterations. We direct the
reader to Sec. III for more details on related work.

Compared to the state of the art, our distributed solution
for load balancing and rate control operates only from the
edge. Edge nodes decide outgoing rates over multiple paths for
each of the traffic aggregates they manage. Iterative decisions
are taken by access routers to continuously optimize network
utility. The main advantages of our solution are threefold: 1)
it relies on already available link state information (e.g., link
loads) and it optionally requires a small additional signaling
between edge nodes only to coordinate decisions, 2) it ensures
a feasible solution at each iteration so that no traffic is lost
due to poor load balancing decisions, and 3) it continuously
improves network utility with diminishing returns over itera-
tions.

Our distributed algorithm for utility maximization is based
on a sub-gradient method that provides anytime feasibility.
It operates at the edge and requires a very low overhead.
Without loss of generality, we demonstrate its application
with a specific utility function that integrates for each traffic
aggregate a preference for outgoing paths and a priority. We
analyze through numerical results on various static instances
the convergence of the algorithm to optimal solutions. We
show that when starting from a bandwidth allocation that
minimizes the MLU, an optimality gap lower than 6% can978-3-903176-32-4 © 2021 IFIP

be achieved after a few iterations. We also show that a near-
optimal solution (i.e., gap less than 1.7%) is reached after
a sufficient number of iterations. In addition, we perform
NS3 [14] simulations on a realistic SD-WAN scenario and
show that the algorithm is able to well prioritize traffic and
handle paths preferences.

The rest of this paper is structured as follows. The system
architecture and problem formulation are introduced in Sec. II.
Sec. III reviews the state of the art. Sec. IV presents the
Lagrangian relaxation of the problem and the sub-gradient
algorithm to solve it. Sec. V details the decomposition of
the problem and the distributed procedure to generate feasible
solutions at all iterations. Sec. VI shows the performance
evaluation and Sec. VII concludes this paper.

II. SYSTEM DESCRIPTION

As traffic evolves over time, load balancing and rate allo-
cation must be continuously adjusted to better use network
resources and maximize network utility. This section first
presents our distributed architecture where only edge devices
are controlling user traffic. Then, it illustrates a typical SD-
WAN scenario where it can be applied. Finally, it formulates
the optimization problem that the distributed agents need to
solve collaboratively.

A. Distributed Architecture

As illustrated in Fig. 1, edge devices are equipped with rate
allocation agents in order to continuously compute rate alloca-
tions and maximize network utility. Each agent manages a set
of OD flows for which they are the origin, also called tunnels
in the rest of the paper. Tunnels can be split over multiple paths
and rate allocations, on each path, are continuously updated
by agents. The set of candidate paths used by an agent for a
given tunnel can be provided by a local or an external path
computation module. Rate allocations can be strictly enforced
in the data plane or loosely used as load balancing weights.

Thanks to a link state protocol (i.e., OSPF or any other
protocol), each agent periodically receives updates about the
network state. In particular, the link states contain link loads
as feedback from past load balancing decisions. Link states
can be related to physical links or overlay links. They may
also include link capacities if they are not given a priori, or
if they evolve over time because of some background traffic.
Additionally, agents can receive useful information from other
agents to make decisions. In particular, two scalars called
aggregated utilities can be periodically received from all the
other agents when Polyak step-size is used (see Sec. V for
more details). Finally, agents also receive updates about the
traffic demand in each of the tunnel they handle from the
local monitoring.

The computation of rate allocations is performed by each
source device every time new information is received. It takes
as input the set of candidate paths for each tunnel, updated
traffic information for each tunnel, updated link state informa-
tion and (optionally) updated aggregated utilities received from

Fig. 1: Device architecture.

other agents. As output, each agent decides for the tunnels it
manages a target rate on outgoing paths.

To enforce target rate allocations, a traffic scheduling mod-
ule ensures that traffic evolves from the actual rates towards
the targeted ones. As mentioned before, rate allocations can
be loosely used as load balancing weights to take routing
decisions each time a new micro-flow arrives. The path
selection decision is made so as to move actual split ratios
towards the targeted ones. In some cases, if advanced data
plane mechanisms such as FlowLets [15] are used, micro-flows
can also be re-routed during their lifetime. As it creates more
opportunities to select paths, it accelerates the convergence of
split ratios towards their target. To ensure proper prioritization
of traffic in the data plane, packets can be marked with the
DSCP code that corresponds to the priority of their tunnel.
More advanced traffic scheduling techniques can be used to
exploit the computed rate allocations.

B. SD-WAN Use Case

Fig. 2 illustrates a typical SD-WAN network with one
headquarter site and three branch sites that are multi-homed
with MPLS and broadband Internet connectivity. Traffic can go
between the headquarter and remote sites, or it can be between
sites themselves. Origin-Destination (OD) tunnels are used to
carry traffic aggregates for the different types of application
classes (e.g., real-time critical, elastic critical, elastic non-
critical).

The network manager can define a desired Maximum Link
Utilization (MLU) for each link in the network based on
past observations. Typically, he or she may wish that the link
utilization stays below 90% to avoid problematic congestion
issues. The manager can also configure tunnel attributes that
can be used as part of the utility function. In the rest of the
paper, we consider for instance that he or she can set for
each tunnel a priority or a preference for each outgoing path.
Typically, users may prefer to use MPLS against broadband
Internet for their mission-critical applications.

C. Problem Formulation

Let’s consider a network G = (V,A), where V is the set of
nodes and A is the set of links, and a set of Origin-Destination

Fig. 2: SD-WAN scenario with one headquarter site and three
branch sites. Load Balancing (LB) agents are deployed on
access routers with two ports (Internet, MPLS).

(OD) tunnels K (commodities) that must be routed over a set
of pre-computed paths P k with k ∈ K. Given a set of source
nodes S ⊂ V , we denote by Ks ⊆ K, the set of tunnels
having the same origin s ∈ S. Let C : A → R+ be the arc
capacity function, d : K → R+ be the traffic demand function,
U : k → R be a concave utility function for each tunnel k.

Given a user defined maximum link utilization MLU ∈
]0, 1[, the rate allocation problem consists, for every tunnel
k ∈ K, in splitting the traffic demand dk over multiple paths
in P k such that arc capacities C̃ = C ×MLU are satisfied
and the total utility function is maximized.

The load balancing and rate allocation problem can be
solved in a centralized manner by solving a Linear Program-
ming (LP) model with the decision variables rkp representing
the allocated rate on path p ∈ P k for tunnel k ∈ K. The
problem can be formulated as follows

max
∑
s∈S

∑
k∈Ks

∑
p∈Pk

Uk(rkp) (1)

∑
p∈Pk

rkp = dk ∀k ∈ Ks,∀s ∈ S, (2)

∑
s∈S

∑
k∈Ks

∑
p∈Pk

a∈p

rkp ≤ C̃a ∀a ∈ A, (3)

0 ≤ rkp ∀k ∈ Ks,∀s ∈ S, ∀p ∈ P k.
(4)

Equalities (2) guarantee that all traffic is allocated and Con-
straints (3) guarantee that C̃ capacities are respected.

III. RELATED WORK

In the state of the art, several solutions have been proposed
to solve rate allocation and load balancing problems in a
distributed manner.

Distributed bandwidth reservation or rate allocation proto-
cols have been proposed in [16], [17]. In these solutions,
a bandwidth allocation request is sent from the source node
and processed greedily by core switches. Intermediate nodes
or core switches are the ones taking rate allocation decisions

using a specific utility function with fairness objective (max-
min in general). Routing can be given (in [16]) or not. Similar
mechanisms were designed for ATM networks to allocate
bandwidth for ABR (Available Bit Rate) traffic [9], [10], [11],
[12]. These solutions involve the active participation of core
nodes which add complexity in the network.

Other solutions use Lagrangian decomposition and rely
on an explicit pricing of link bandwidth by adjacent core
nodes [13]. Based on the traffic they observe, intermediate
nodes update dual variables related to link capacity constraints
based on a gradient iterate and they broadcast these link
prices in the network. Each source solves a local problem to
update its rate allocations. While active participation of core
nodes is still required, these solutions do not guarantee that
the bandwidth allocation is actually feasible at all iterations.
Indeed, primal-dual algorithms are known to fail at providing
feasible solutions at any iteration.

Distributed multi-path routing has also been studied. In
Halo [18] for instance, each core node decides local split ratios
for each flow aggregate. Routing is then decided in a hop-
by-hop fashion to minimize MLU (it can actually minimize
any convex function). While guaranteeing feasibility at every
iteration and convergence to the optimal, this solution actively
involves intermediate nodes in the decision-making process
and is thus not suitable for our problem.

Decentralized load balancing techniques [19], [20] have
been proposed to dynamically adjust at ingress nodes load
balancing policies based on path-based measurements about
the network congestion. Our work differs from these contribu-
tions by not involving core nodes to piggy back measurements
inside user traffic and by aiming at maximizing the network
utility for all aggregates.

To summarize, our method solves the distributed load bal-
ancing and rate allocation problem to maximize network utility
and operates only from the edge in a fully distributed fashion.
It converges with diminishing returns and provides anytime
feasibility.

IV. LAGRANGIAN RELAXATION

Lagrangian relaxation method is a well-known method
that permits to relax difficult constraints and penalize their
violations in the objective function. In general, the resulting
problem is easy to solve [21].

A. Problem Relaxation

We apply the Lagrangian relaxation on the compact formu-
lation in order to relax capacity constraints (3) and penalize
them in the objective function using Lagrangian multipliers
λ ∈ RA+ as follows.

min
λ
f(λ) (5)

0 ≤ λa ∀a ∈ A. (6)

where f(λ) is defined as the following linear program

max
r

∑
s∈S

∑
k∈Ks

∑
p∈Pk

Uk(rkp) +
∑
a∈A

λa(C̃a −
∑
s∈S

∑
k∈Ks

∑
p∈Pk

a∈p

rkp)

(7)

∑
p∈Pk

rkp = dk ∀k ∈ Ks,∀s ∈ S, (8)

0 ≤ rkp ∀k ∈ Ks,∀s ∈ S, ∀p ∈ P k. (9)

Problem (5)-(6) is called the Lagrangian dual problem. One
particularity of the Lagrangian relaxation is the fact that the
value of any solution of the Lagrangian dual problem is a dual
bound of the original problem, i.e., (1)-(4). Moreover, in the
case of convex programs, the optimal value of the Lagrangian
dual problem coincides with the optimal value of the initial
problem [21].

B. Sub-gradient Algorithm

The Lagrangian dual problem can be optimally solved using
the sub-gradient algorithm described in Alg. 1.

Algorithm 1: Sub-Gradient algorithm
Result: Optimal solution of Lagrangian dual problem
i = 0; step = 1;
λa(0) = 0 for all a ∈ A;
while not StopCondition() do

r∗ ←Solve optimization problem (7)− (9);
for a ∈ A do

ga = C̃a −
∑
s∈S

∑
k∈Ks

∑
p∈Pk

a∈p

r∗kp ;

λa(i+ 1) = max(0, λa(i) + step× ga);
end
step = UpdateStepSize(); i = i + 1;

end

The StopCondition() function returns "True" if stopping
criteria of the algorithm are met and "False" otherwise. Ideally
the sub-gradient algorithm can be stopped when all capacity
constraints are satisfied. However, in practice this can rarely
happen. Then, several criteria are used in the literature [22],
[23] as the strong duality conditions, the improvement of
the objective value within a given number of iterations or a
threshold on the number of iterations.

The UpdateStepSize() function permits to increase or de-
crease the size of the penalty. In the literature, a common
practice is to use step = 1

i , where i represents the iteration
counter. However, in [24], Polyak proposes the following step-
size function that does not depend on a counter

step = α
UB − LB
||g||2

such that, α is a positive scalar, UB is the objective value
of (7) − (9) and LB is the utility of the best found solution
of (1)-(4). This can be updated each time a solution of (7)−

(9) satisfies (3). In our setting, the optimization process never
stops. The main advantage of Polyak’s method is that the step-
size automatically adapts and does not depend on an iteration
counter. Later in the paper we refer to as Iterative and Polyak
for the two step-size functions.

V. DISTRIBUTED ALGORITHM

We now detail how to decompose the Lagrangian dual
problem into |S| subproblems for a distributed algorithm (i.e.,
one for each agent).

A. Problem Decomposition

In the program (7)−(9), it is easy to see that each constraint
of (8)-(9) associated with source s ∈ S, contains only variables
associated with tunnels of Ks. Therefore, we can decompose
them into |S| subsets, each associated with a source. However,
objective function (7) needs to be re-written as follows∑
a∈A

λaC̃a +max
r

∑
s∈S

∑
k∈Ks

∑
p∈Pk

(Uk(rkp)−
∑
a∈p

λar
k
p)

Therefore, the optimization problem (7)−(9) decomposes into
|S| independent sub-problems, one for each source. The sub-
problem for source s ∈ S is then defined as

max
r

∑
k∈Ks

∑
p∈Pk

(Uk(rkp)−
∑
a∈p

λar
k
p) (10)

∑
p∈Pk

rkp = dk ∀k ∈ Ks, (11)

0 ≤ rkp ∀p ∈ P k,∀k ∈ Ks. (12)

If Polyak step-size function is used, every source node s ∈ S
must be able to compute UB and LB. Hence, each source
node s ∈ S has to share, at each iteration, two scalars with
the other source nodes, representing the aggregated utilities:

• aggUts1 :
∑
k∈Ks

∑
p∈Pk

(Uk(r∗kp)−
∑
a∈p

λar
∗k
p)

• aggUts2 :
∑
k∈Ks

∑
p∈Pk

Uk(rkp)

where r∗ is the optimal solution of (10)−(12) and r is the best
feasible solution found. Hence, each source node can compute

• UB =
∑
a∈A λaC̃a +

∑
s∈S aggUt

s
1

• LB =
∑
s∈S aggUt

s
2

The distributed sub-gradient algorithm to solve the La-
grangian dual problem is presented in Alg. 2.

The getLinkUtilization() function returns the link load for
all links in the network. This information can be retrieved
from Link State Advertisement (LSA) in the OSPF protocol
for instance. The getAggregatedUtilities() function is called
only when Polyak step-size is used. It returns two vectors of
aggregated utilities associated with all the source nodes in S.
The StopCondition() and UpdateStepSize() functions are the
same as for Alg. 1.

Algorithm 2: Distributed Sub-Gradient algorithm
Result: Optimal solution of Lagrangian dual problem
i = 0; step = 1;
λa(0) = 0 for all a ∈ A;
while not StopCondition() do

for s ∈ S do
LU← getLinkUtilization();
Solve optimization problem (10)− (12);
for a ∈ A do

ga = C̃a − LUa;
λa(i+ 1) = max(0, λa(i) + step× ga);

end
aggUt1, aggUt2 ← getAggregatedUtilities();
step = UpdateStepSize(); i = i + 1;

end
end

B. Recovering feasible solutions

Even if optimally solving (5)-(6) gives the optimal value
of the original problem, the solution r may not satisfy C
capacities. Indeed, relaxing capacity constraints (3) may lead
to violations. In order to produce solutions satisfying C
capacities at each iteration of Alg. 2, i.e. ensure anytime
feasibility, the source of each tunnel solves an additional
subproblem given by constraints (10)− (12) together with the
following constraints, for all a ∈ A and for all s ∈ S∑

k∈Ks

∑
p∈Pk

a∈p

(rkp − r∗kp) ≤ Ca − LU∗a
|S|

(13)

where r∗ represents the rates at the previous iteration and
LU∗ the associated link utilization. Constraints (13) permit to,
artificially, divide the residual capacity of links by the total
number of sources, possibly using each link. Let r be the rate
obtained by solving (10)− (12) and (13) for every s ∈ S.

Proposition 1. If r∗ respects C capacities then r as well.

Proof. By summing constraints (13) we obtain∑
s∈S

∑
k∈Ks

∑
p∈Pk

a∈p

(rkp − r∗kp) ≤ Ca − LU∗a ∀a ∈ A.

Since
∑
s∈S

∑
k∈Ks

∑
p∈Pk

a∈p

r∗kp = LU∗a for all a ∈ A, then

∑
s∈S

∑
k∈Ks

∑
p∈Pk

a∈p

rkp ≤ Ca ∀a ∈ A.

And the result follows.

Even if the algorithm guarantees the satisfaction of the capac-
ities C it may violate capacities C̃ (i.e., downscaled capacity
with the user MLU). However, the algorithm will increase the
penalty on links violating the capacity constraints in order to
adapt the rates in the next iterations.

C. Practical Considerations

Fig. 3 shows the execution time line of the algorithm at
an edge device. Periodically, every X seconds in the figure
(e.g., blue arrows), the edge device retrieves from the local
monitoring an update about the traffic demand in each tunnel
(i.e., dk). Based on this, the algorithm starts a new optimiza-
tion phase and performs one sub-gradient iteration every time
new link state update is received (e.g., red arrows). New target
rate allocations are calculated every time updates about link
states and aggregated utilities are received. In practice, a new
iteration can be launched periodically. The computed rates are
then used to tune the rate of the actual flows and/or route new
flows and FlowLets when they arrive.

Fig. 3: Execution time line of the algorithm.

To avoid instabilities, measurements about traffic and link
loads can be averaged over a moving time window. Further-
more, the frequency of traffic demand updates (i.e., of new
optimization phases) must be sufficiently lower than the one
for algorithm iterations so that the algorithm has enough time
to work on a stable instance of the problem. As the different
agents execute this process in an asynchronous manner, loose
synchronization mechanisms can help nodes to start their
optimization phases all together. For instance, one may use
a modulo function over the sequence number of the LSA for
the link with smallest identifier.

D. Network Overhead

At the beginning of an optimization phase, every source
node optionally receives as link states an update of link
capacities (if not known already). And, at each iteration of the
subgradient algorithm, every source node receives an update
of the utilization of every link in the network (i.e., link
loads). Moreover, if Polyak step-size function is used, every
source node s ∈ S has to share two scalars, representing
the aggregated utilities, with the other source nodes at each
iteration. In the best case, the overhead is extremely low
as only already available link states (e.g., link loads) are
periodically exchanged.

VI. NUMERICAL RESULTS

The distributed algorithm and the compact model have been
implemented in C++, using CPLEX as a LP-solver. They were

Distributed (Polyak) Distributed (Iterative) Centralized
Instance |A| |V| |K| GAP20 GAP80 GAP200CPU20 CPU80 CPU200 GAP20 GAP80 GAP200CPU20 CPU80 CPU200 GAP CPU
Abilene 28 11 11 16.6 16.6 16.6 0.00 0.00 0.01 17.0 17.6 17.6 0.00 0.00 0.00 17.6 0.00
BtEurope 74 24 24 3.7 3.7 3.7 0.00 0.00 0.00 3.7 3.7 3.7 0.00 0.00 0.01 3.7 0.01
ColtTelecom 354 153 15 43.1 43.1 43.1 0.01 0.01 0.01 56.3 56.4 56.4 0.01 0.01 0.01 56.4 0.02
Geant 122 40 40 10.5 10.5 15.7 0.00 0.00 0.01 14.8 15.8 15.8 0.01 0.01 0.01 15.8 0.03
GTSCE 386 149 14 42.2 42.2 42.2 0.01 0.00 0.01 53.8 56.2 56.2 0.01 0.01 0.01 56.8 0.01
ITCDeltacom 322 113 11 49.3 49.3 49.3 0.00 0.00 0.01 49.3 49.3 49.3 0.01 0.01 0.01 49.3 0.01
Kentucky 1790 754 75 12.7 12.7 12.7 0.00 0.01 0.00 13.2 13.2 13.2 0.00 0.00 0.00 13.2 0.09
SD-WAN 46 15 15 40.2 40.2 40.2 0.00 0.00 0.00 36.5 40.2 40.2 0.00 0.00 0.00 41.9 0.00
US_Carrier 378 158 15 31.6 31.6 31.6 0.01 0.01 0.01 31.8 32.2 32.2 0.01 0.01 0.01 32.2 0.01
IPRAN_1 1114 485 500 55.6 55.6 55.6 0.01 0.01 0.75 57.7 57.9 57.9 0.01 0.01 0.76 58.8 0.00
IPRAN_2 1086 477 500 63.9 63.9 63.9 0.01 0.01 0.76 67.1 67.1 67.1 0.01 0.01 0.76 67.1 0.00

TABLE I: Numerical results comparing the distributed algorithm and the centralized method.

tested on an Intel(R) Xeon(R) CPU E5-4627 v2 of 3.30GHz
with 504GB RAM, running under Linux 64 bits. A maximum
of 1 thread has been used. In the following, we present
evaluation results on 1) static instances in a simplified network
environment and on 2) a dynamic SD-WAN instance in the
NS3 network simulator [25]. Without loss of generality, we
use for the evaluation a utility function that combines Priok,
the priority of tunnel k, Pref(k, p) the preference of tunnel
k for path p, and rkp the target rate allocated to tunnel k on
path p as follows

Uk(rkp) = Priok × Pref(k, p)× rkp

We compare the performance of the distributed algorithm
against a centralized solution solving the compact model to
optimality. The sub-gradient algorithm stops when the number
of iterations reaches a specified threshold (see below). Two
step-size functions are used: Iterative and Polyak with alpha =
2 (see sub-section IV-B).

A. Evaluation on Static Instances

In this first evaluation, the goal is to evaluate the con-
vergence of the distributed algorithm. We use three types of
synthetic instances:

1) Public instances: Abilene, BtEurope, Geant from
SNDLIB [26], ColtTelecom, GTSCE, ITCDeltacom,
Kentucky, US_Carrier from Internet topology zoo [27].

2) A SD-WAN instance with one headquarter site and three
sites (see Fig. 2).

3) Two large IPRAN, typical from radio access networks.
Link capacities and the traffic demand of tunnels are gen-

erated randomly. The source and destination of tunnels are
picked at random in all the instances, except for SD-WAN
where tunnels are between sites and the headquarter. Tunnels
are randomly ranked and the tunnel position represents its
priority (priorities start from 1). The maximum number of
paths generated per tunnel is 5. However, in practice, fewer
paths are used. For each tunnel, the paths are randomly ranked
and the path position represents its preference (preferences
start from 1).

The initial solution satisfying C capacities is obtained by
solving the load balancing problem that minimizes the maxi-
mum link utilization. Let θ∗ be the maximum link utilization
of this solution. The user target MLU to determine soft link

capacity constraints C̃ is calculated with MLU = Tanh(θ∗×
2.0) (see sub-section II-C).

Convergence. In Table I, three algorithms are compared
over all instances: the distributed algorithm with Polyak step-
size, the distributed algorithm with Iterative step-size and the
centralized method. Column heads are defined as follows:
• GAP20, GAP80 and GAP200: improvement percentage

over the initial solution and obtained by the distributed
algorithm after 20, 80 and 200 iterations, i.e.,

GAP =
Currrent_Objective− Initial_Objective

Initial_Objective

• CPU20, CPU80 and CPU200: CPU time of the distributed
algorithm after 20, 80 and 200 iterations. It is obtained by
summing the maximum CPU times of all source nodes
at each iteration.

• CPU, GAP: time and improvement percentage over the
initial solution obtained by the centralized method.

Table I displays the numerical results associated with all
instances. We notice that the distributed algorithm with Polyak
step-size gives a similar improvement after 20 and 80 itera-
tions. Moreover, except for Geant the improvements over the
initial solution are the same after 20, 80 and 200 iterations.
Compared to the centralized method (optimal), the algorithm
gives the optimal solution in 18% of the cases and near-
optimal solution (difference lower than 4% between GAP200
and GAP) in 81.8% of the instances.

The distributed algorithm with Iterative step-size gives
similar improvements after 20, 80, and 200 iterations in
63.6% of the instances. Moreover, the algorithm gives the
optimal solution in 72.7% of the cases. These results show
a fast convergence of the distributed algorithm with both step-
size functions. Indeed, significant improvements of the initial
solutions have been obtained after a few iterations.

While Polyak step-size is more adaptive for continuous
optimization, the distributed algorithm performs better with
Iterative step-size. Indeed, Polyak step-size is sensitive to the
alpha parameter that needs to be tuned for each instance.

The CPU times are relatively small for all algorithms, less
than 0.76 second on all the tests.

Overhead. In the following, we analyze the amount of traf-
fic received by each agent at each iteration of the distributed
algorithm. Consider, for example, a network of 500 source
nodes and 1000 links. Suppose that each scalar consumes 32

�

�

�

�

�

��

��

� ��� ��� ��� ��� ���� ����

��
�
��
��
��
	

�
�

��	
���

���� ���
� �
�

(a) VoIP, Video, and Web traffic.

�

�

�

�

�

��

��

��

� ��� ��� ��� ��� ���� ����

��
�
��
��
��
	

�
�

��	
���

(b) Total Traffic.

Fig. 4: Traffic of each service and total traffic.

bits and a duration of each iteration of 200ms. Therefore, if
Polyak step-size is used, every source s ∈ S receives, at each
iteration, the following information
• aggregated utilities: 2× 32 bits

0.2 s×1e6 bits×499 nodes = 0.159
Mb/second.

• link loads: 32 bits
0.2 s×1e6 bits × 1000 links = 0.16 Mb/second.

However, with Iterative step-size, only link loads are received
by each source at each iteration. This show the low overhead
required by the algorithm with the two step-size functions.

B. NS3 Simulations

Simulation settings. We present results using NS3 [25]
with OpenFlow 1.3 [28] to evaluate algorithms in a dynamic
environment. As the number of iterations may fluctuate be-
tween two traffic demand updates, we only use Polyak step-
size which does not rely on an iteration counter.

The simulation scenario is depicted in Fig. 2. It comprises
a single Headquarter (H) connected to three remote sites, i.e.
S1, S2, S3. There are 6 tunnels where 3 are from H to S1,
S3, and S3 and the other 3 are opposite tunnels from sites to
headquarter. Access routers have dual homing with Broadband
Internet and MPLS, having propagation delays of 60ms and
1ms respectively. The packet loss rate at transmission level on
Internet is 0.01% and null for MPLS.

We consider that each tunnel prefers MPLS over Internet
(i.e., Pref(k, p) equals 1 or 2, respectively for Internet
and MPLS), and that sites and their associated tunnels have
different priorities (i.e., Priok): low (1), medium (3) and
high (5) as shown in Table IIa. The traffic pattern in each
tunnel is diurnal and formed by 3 types of services: Voice
over IP (VoIP), Video, and Web. Each service has a specific
SLA (Service Level Agreement) requirement that we do not
directly optimize. We use DSCP to differentiate services
in the data plane with a strict priority queuing discipline.

Tunnel Identifier 1 2 3 4 5 6
Source - Dest. H-S1 S1-H H-S2 S2-H H-S3 S3-H

Priority (Priok) 5 (high) 3 (medium) 1 (low)

(a) Priority for each tunnel.
Service type VoIP Video Web
SLA requirement (delay) 30ms 75ms 100ms
Priority queue (DSCP code) 0 1 2

(b) Traffic types and corresponding priority queues.

TABLE II: Characteristics of tunnels and traffic in NS3.

�

���

���

���

���

�

���

���

� ��� ��� ��� ��� ���� ����

�
�
��
�
��
�	

�	
����

��	��	���� ��	��	���� ��	��	����

(a) ECMP (delay).

�

����

����

����

����

����

����

� ��� ��� ��� 	�� ���� ����

�
�
�
�
�
��
�	

��
�
��

������

���������� ���������� ����������

(b) ECMP (loss).

�

���

���

���

���

�

���

���

� ��� ��� ��� ��� ���� ����

�
�
��
�
��
�	

�	
����

��	��	���� ��	��	���� ��	��	����

(c) Centralized (delay).

�

�����

����

�����

����

�����

� ��� ��� ��� ��� ���� ����

�
�
�
�
�
��
�	

��
�
��

	
�����

��
��
��� ��
��
��� ��
��
���

(d) Centralized (loss).

�

���

���

���

���

�

���

���

� ��� ��� ��� ��� ���� ����

�
�
��
�
��
�	

�	
����

��	��	���� ��	��	���� ��	��	����

(e) Distributed (delay).

�

�����

����

�����

����

�����

� ��� ��� ��� ��� ���� ����

�
�
�
�
�
��
�	

��
�
��

	
�����

��
��
��� ��
��
��� ��
��
���

(f) Distributed (loss).

Fig. 5: End-to-end delay and packet loss rate for all priority
levels with distributed and centralized algorithms.

Table IIb summarizes the desired SLA requirements and the
corresponding priority queues for each traffic type.

The traffic pattern for each traffic type and the total traffic
are shown in Fig. 4. We generated micro-flows with typical
patterns of VoIP, Video and Web applications for a duration
of 300s. The inter-arrival time of flows follows an exponential
distribution. We randomly generated diurnal patterns by ad-
justing the mean of inter-arrivals of flows. The idea is to have
congestion episodes representing peak hours.

Each node in the network measures the link states and
broadcasts them periodically. The source of each tunnel,
therefore, is able to collect them. Link states are measured and
sent every 200ms, and averaged over a 1s window to mitigate
fluctuations. The source of each tunnel measures the current
traffic and averages it over a 5s moving window. The traffic
demand is an input of algorithms at the beginning of each
optimization phase (i.e., every 30) and the link states are the
inputs of Alg. 2 at each iteration (i.e., every 200ms). Every
time algorithms are called, every 30s or 200ms, new target
split ratios are computed and available to the data plane.

When a new micro-flow arrives, it is assigned to a path
that minimizes the difference between target and actual split
ratios. In our implementation, the selected path is converted
into forwarding rules deployed at every OpenFlow switch.

Simulation results. Fig. 5 shows the evolution of the end-
to-end delay and the packet loss rate at network layer for
ECMP, centralized, distributed solutions. The difference in
end-to-end delay across priorities for ECMP is not remarkable
while it is noticeable for centralized and distributed algorithms
(i.e., higher priority has lower delay). Both centralized and

End-to-end delay (ms)
ECMP Centralized Distributed
Tunnel 1 (priority = 5, high)

Average 46.27 24.96 26.35
95-percentile 97.07 90.52 67.9

Tunnel 3 (priority = 3, medium)
Average 45.98 27.13 27.48
95-percentile 97.1 110.68 76.76

Tunnel 5 (priority = 1, low)
Average 50.39 28.16 45.82
95-percentile 109.85 117.81 127.8
End-to-end packet loss (%)

ECMP Centralized Distributed
Tunnel 1 (priority = 5, high)

Average 0.009 0.004 0.006
Tunnel 3 (priority = 3, medium)

Average 0.012 0.008 0.009
Tunnel 5 (priority = 1, low)

Average 0.01 0.007 0.009

TABLE III: End-to-end delay and packet loss rate.

distributed algorithms prefer MPLS to Internet; therefore, the
higher priority tunnels have more chance to be transferred over
MPLS which has a significantly lower propagation delay. The
evolution of the packet loss rates follow a similar pattern. They
increase when traffic is high and congestion happens (between
400s and 600s, and after 900s). ECMP has the highest peak
loss rate (5%) and there is no noticeable difference between
priorities. Meanwhile, the high priority (i.e., 5) in centralized
and distributed algorithms has a significantly low packet loss
rate.

Table III summarizes results for ECMP, centralized, and
distributed solutions with average and 95th percentile for end-
to-end delay and packet loss rate. Note that the 95th percentile
is 0 for the packet loss and that performance are similar
for opposite tunnels (i.e., 2, 4, 6). The end-to-end delay of
centralized and distributed algorithms are about 50% lower
than the ones of ECMP. The average end-to-end delay of the
distributed algorithm, except the low priority tunnel, is similar
to the one of the centralized algorithm. The packet loss rates of
distributed algorithm are slightly higher than one of centralized
algorithm. These results are explained by the fact that the
distributed algorithm places more traffic on Internet where the
propagation delay is higher.

We also measure the SLA violation rate which is the ratio
of flows violating their SLA requirements to the total number
of flows. Fig 6 shows the SLA violation rate over time for
ECMP, centralized, and distributed solutions. As expected,
ECMP has the highest violation rate while the centralized

�

����

����

����

����

���

����

����

� ��� ��� ��� ��� ���� ����

�
�
�
��
��
�	

�
�
�
��
	

�	
���
���� �������	��� �	��	�����

Fig. 6: Ratio of SLA violations (when DSCP is used).

End-to-end delay (ms)
Centralized Distributed
Tunnel 1 (priority = 5, high)

Average 23.54 26.99
95-percentile 89.44 67.41

Tunnel 3 (priority = 3, medium)
Average 23.81 28.28
95-percentile 109.72 72.11

Tunnel 5 (priority = 1, low)
Average 29.5 47.34
95-percentile 113.66 130.6

TABLE IV: End-to-end delay when DSCP is not used.

�

����

����

����

����

���

����

����

� ��� ��� ��� ��� ���� ����

�
�
�
��
��
�	

�
�
�
��
	

�	
����

���� �	����������

(a) Centralized algorithm

�

����

����

����

����

���

����

����

� ��� ��� ��� ��� ���� ����

�
�
�
��
��
�	

�
�
�
��
	

�	
����

���� �	����������

(b) Distributed algorithm

Fig. 7: Ratio of SLA violations (with DSCP vs. no DSCP).

algorithm has the lowest. The SLA violation rate increases
when traffic increases and we can observe that the distributed
algorithm needs some time to converge at the beginning.
Indeed, violations are steadily decreasing for the distributed
algorithm until the network becomes congested at 400s.

Fig. 7 demonstrates the effect of prioritization using Diff-
Serv in the data plane. When different DSCP codes are used
for all traffic types, SLA violations are remarkably decreased
even though the average delay is not improved as shown in
Table IV. DSCP puts different services into different priority
queues while every packet are put into the same queue when
DSCP is not used. This result shows that the performance
of algorithms are mainly due to the control plan algorithms
themselves, even though a consistent prioritization of traffic
in the data plane boosts the overall performance.

Discussion. While the distributed and centralized algorithms
are closed, the centralized solution performs best. Many pa-
rameters can be tuned to further improve the performance. On
the algorithm itself, the alpha parameter in Polyak step-size
can have an influence on the convergence rate. While from a
system perspective, the average window for link states could
either give a noisy feedback if too small, or give a too slow
feedback if too large.

VII. CONCLUSION

We have proposed a fully-distributed load balancing and
rate allocation algorithm that maximizes network utility and
that only operates from the edge using already available link
state information and some lightweight exchange of aggre-
gated utilities when Polyak step-size is used. The algorithm
converges with diminishing returns and generates a feasible
solution at each iteration. We demonstrated through numerical
results and network simulations that in most cases, it converges
to an optimal solution after a few iterations. The distributed
solution significantly helps to improve the QoS compared to
legacy load balancing solutions like ECMP.

REFERENCES

[1] N. Wang, K. H. Ho, G. Pavlou, and M. Howarth, “An overview of routing
optimization for internet traffic engineering,” IEEE Communications
Surveys Tutorials, vol. 10, no. 1, pp. 36–56, 2008.

[2] “Multipath Issues in Unicast and Multicast Next-Hop Selection,” RFC
2991, Nov. 2000.

[3] J. Zhou, M. Tewari, M. Zhu, A. Kabbani, L. Poutievski, A. Singh, and
A. Vahdat, “Wcmp: Weighted cost multipathing for improved fairness
in data centers,” in Proceedings of the Ninth European Conference on
Computer Systems, 2014, pp. 1–14.

[4] D. Kreutz, F. M. Ramos, P. E. Verissimo, C. E. Rothenberg, S. Azodol-
molky, and S. Uhlig, “Software-defined networking: A comprehensive
survey,” Proceedings of the IEEE, vol. 103, no. 1, pp. 14–76, 2014.

[5] F. P. Kelly, A. K. Maulloo, and D. K. Tan, “Rate control for commu-
nication networks: shadow prices, proportional fairness and stability,”
Journal of the OR society, vol. 49, no. 3, 1998.

[6] B. McCormick, F. Kelly, P. Plante, P. Gunning, and P. Ashwood-Smith,
“Real time alpha-fairness based traffic engineering,” in Proc. of HotSDN,
2014.

[7] Z. Allybokus, K. Avrachenkov, J. Leguay, and L. Maggi, “Multi-path
alpha-fair resource allocation at scale in distributed software-defined
networks,” IEEE Journal on JSAC, vol. 36, no. 12, 2018.

[8] Z. Yang, Y. Cui, B. Li, Y. Liu, and Y. Xu, “Software-defined wide area
network (SD-WAN): Architecture, advances and opportunities,” in Proc.
IEEE ICCCN, 2019.

[9] Y. Afek, Y. Mansour, and Z. Ostfeld, “Phantom: a simple and effective
flow control scheme,” Computer Networks, vol. 32, no. 3, 2000.

[10] B. Awerbuch and Y. Shavitt, “Converging to approximated max-min flow
fairness in logarithmic time,” in Proc. IEEE INFOCOM, 1998.

[11] Y. Bartal, M. Farach-Colton, S. Yooseph, and L. Zhang, “Fast, fair and
frugal bandwidth allocation in ATM networks,” Algorithmica, vol. 33,
no. 3, pp. 272–286, 2002.

[12] Y. T. Hou, H.-Y. Tzeng, and S. S. Panwar, “A generalized max-min rate
allocation policy and its distributed implementation using the abr flow
control mechanism,” in Proc. IEEE INFOCOM, 1998.

[13] D. P. Palomar and M. Chiang, “A tutorial on decomposition methods
for network utility maximization,” IEEE Journal on Selected Areas in
Communications, vol. 24, no. 8, pp. 1439–1451, 2006.

[26] S. Orlowski, M. Pióro, A. Tomaszewski, and R. Wessäly, “SNDlib 1.0–
Survivable Network Design Library,” in Proc. INOC, 2007.

[14] G. F. Riley and T. R. Henderson, “The ns3 network simulator,” in
Modeling and tools for network simulation. Springer, 2010.

[15] E. Vanini, R. Pan, M. Alizadeh, P. Taheri, and T. Edsall, “let it flow:
Resilient asymmetric load balancing with flowlet switching.”

[16] L. Jose, S. Ibanez, M. Alizadeh, and N. McKeown, “A distributed
algorithm to calculate max-min fair rates without per-flow state,” Pro-
ceedings of the ACM on Measurement and Analysis of Computing
Systems, vol. 3, no. 2, pp. 1–42, 2019.

[17] F. Skivée and G. Leduc, “A distributed algorithm for weighted max-min
fairness in mpls networks,” in International Conference on Telecommu-
nications. Springer, 2004, pp. 644–653.

[18] N. Michael and A. Tang, “Halo: Hop-by-hop adaptive link-state optimal
routing. networking,” IEEE/ACM Transactions on, PP (99), pp. 1–1,
2014.

[19] M. Alizadeh, T. Edsall, S. Dharmapurikar, R. Vaidyanathan, K. Chu,
A. Fingerhut, V. T. Lam, F. Matus, R. Pan, N. Yadav, and G. Varghese,
“Conga: Distributed congestion-aware load balancing for datacenters,”
ACM SIGCOMM Comput. Commun. Rev., Aug. 2014.

[20] N. Katta, M. Hira, C. Kim, A. Sivaraman, and J. Rexford, “Hula: Scal-
able load balancing using programmable data planes,” in Proceedings
of the ACM Symposium on SDN Research, 2016.

[21] R. K. Ahuja, T. L. Magnanti, and J. B. Orlin, “Network flows: theory,
algorithms, and applications. 1993,” Google Scholar Google Scholar
Digital Library Digital Library, 1993.

[22] P. Putz, Subgradient optimization based Lagrangian relaxation and
relax-and-cut approaches for the bounded-diameter minimum spanning
tree problem. na, 2007.

[23] M. B. Hasan and M. Toha, “An improved subgradiend optimization
technique for solving ips with lagrangean relaxation,” Dhaka University
Journal of Science, vol. 61, no. 2, pp. 135–140, 2013.

[24] B. T. Polyak, “Introduction to optimization. optimization software,” Inc.,
Publications Division, New York, vol. 1, 1987.

[25] G. F. Riley and T. R. Henderson, The NS3 Network Simulator, 2010.
[27] S. Knight, H. Nguyen, N. Falkner, R. Bowden, and M. Roughan, “The

internet topology zoo,” IEEE Journal on JSAC, oct 2011.
[28] L. J. Chaves, I. C. Garcia, and E. R. M. Madeira, “OFSwitch13:

Enhancing NS3 with OpenFlow 1.3 Support,” in NS3 Workshop, 2016.

