
Programmable Low-End Networks: Powering
Internet Connectivity for the Other Three Billion

André Scheibe, Willian Reichert, Luciano Gaspary, Weverton Cordeiro
Institute of Informatics (INF), Federal University of Rio Grande do Sul (UFRGS)

Porto Alegre, Brazil
{first.last}@inf.ufrgs.br

Abstract—We propose the following exploratory research ques-
tion: can we boost low-end networking through forwarding plane
programmability? The implications of a positive answer to this
question are manifold, unlocking low-end networks for innovative
use cases, such as powering affordable internet access to remote
communities and helping bridge the digital divide. As a first
step towards answering this question, we introduce and discuss
in this paper a conceptual architecture for programmable low-
end networking. In summary, we take advantage of Low Power
Wide Area Network (LPWAN) transceivers and use a reconfig-
urable pipeline of match+action stages to enable researchers and
practitioners to write lightweight networking protocols that can
seamlessly bring isolated communities to the Internet. We then
exercise our architecture through the design and implementation
of a Lightweight Tunnel Protocol, for optimized data communi-
cation over narrow-band links, with a throughput gain as high as
23%. Our results mainly provide evidence of programmable low-
end networks’ potentialities, helping us close the digital divide
and bring affordable Internet for the other three billion.

Index Terms—Low Power Wide Area Networks (LPWAN),
Programmable Forwarding Planes, P4, Community Networks

I. INTRODUCTION

Although Universal Internet Access was declared a funda-
mental human right [1], various challenges keep us far from
providing affordable access for all, for example, high capital
expenditure and service costs (e.g., satellite links for remote
communities), operation complexity, and maintenance hurdles.
Several public and private initiatives are attempting to mitigate
these challenges and provide affordable connectivity solutions,
including Internet.org [2], Loon [3], and A4AI [4]. There
also various joint industry & academic initiatives, like IETF
GAIA [5], as well as research contributions [6]–[8].

We argue in favor of low-end networking as a promising
direction to help bridge the digital divide and provide af-
fordable Internet access, mainly for remote communities with
no telecommunication coverage (other than expensive satellite
links). Low-end networking has been in the spotlight with the
rapid growth of the Internet of Things (IoT) [9]. One key
research challenge pursued in this context is how to provide
connectivity to low power and low data rate devices used in
several practical applications like asset tracking, smart cities
and homes, and environmental monitoring [10]. In particular,
Low Power Wide Area Networks (LPWAN) [11] are attracting
significant attention, mostly because of their ability to make

different trade-offs to address the diverse requirements of low-
end networking (long-range, narrow band, low power, and
high scalability), which are not met by prevalent (and legacy)
wireless technologies and cellular networks [9], [12].

Several factors make LPWAN a promising technology to
help connect remote communities and bridge the digital divide,
with economic factors as the most prevalent. Because of the
strict operational requirements of a majority of IoT devices
and sensors (e.g., preserve battery life and communicate data
over long distances), LPWAN mainly focuses on simplicity.
Consequently, acquisition and operational costs (e.g., hardware
and connectivity) are kept as low as possible. In contrast,
satellite links and other wired/wireless infrastructures (e.g., op-
tical fiber, directional antennas, or cellular networks) are often
prohibitive because of their high acquisition, deployment, and
operational costs, making them economically unfeasible for
smaller and lower-income communities in remote areas [13].

Despite the potentialities, LPWAN integration with tradi-
tional networks is done in an ad hoc fashion, thus hampering
widespread adoption for last-mile data communication in
remote communities [14]. One integration approach relies on
custom-tailored protocol gateways, which often depend on
or provide closed and vendor-specific interfaces. IETF has a
currently active WG (lpwan) that focuses on enabling IPv6
connectivity over selected LPWAN technologies.

We have seen in the past decade the advent of Software
Defined Networks (SDN) [15], [16] and Programmable Data
Planes (PDP) [17], [18]. Together, they enabled for the first
time in decades a rapid evolution in the way we think and
design computer networks, from closed-source and proprietary
solutions to open management standards, and forwarding ele-
ments whose behavior can be freely redefined using Domain-
Specific Languages (DSLs) like P4 [18] and Lyra [19]. SDN
and PDP enabled researchers and practitioners to quickly in-
troduce and test new ideas into networking, without depending
on device vendors to implement them on their products. As
a result, various fundamental networking questions have been
asked, mostly targeting high-end data communication, such as
data center and backbone networking [20].

In this paper, we take a step in the opposite direction of the
status-quo of programmable networking research on high-end
solutions by posing a radically different research question: can
we leverage the concept of programmable forwarding planes
to boost low-end networking? Note that a positive answer to978-3-903176-32-4 © 2021 IFIP

this question will foster community networking research [8]
by providing them access to a multitude of low-cost hardware
whose behavior could be redefined using open and inter-
operable standards. More importantly, it may also redefine the
IoT landscape by enabling the delivery of innovative protocols
and services through open and highly programmable LPWANs
for an increasingly interconnected world of things.

To answer the research question above, we propose in this
paper a conceptual architecture for programmable low-end
networking and use it in an exercise the design and implemen-
tation of a novel protocol for low-end networks. Our architec-
ture introduces ideas for the design of virtually programmable
LPWAN devices while promotes backward compatibility and
enables the usage of LPWAN in the context of forwarding
plane programmability. The protocol we designed using our
architecture, Lightweight Tunnel Protocol (LTP), maximizes
goodput on low-end networking devices with limited baud rate,
performing well to provide Internet connectivity in coexistence
with traditional TCP/IP protocols, with throughput gains as
high as 23%. More importantly, our exercise in the design and
implementation of LTP provides evidence of the feasibility of
redefining packet parsing and processing semantics of legacy
LPWAN devices to be more easily integrated with traditional
networks without requiring specialized devices like gateways.
In summary, we make the following contributions:

• A conceptual architecture for legacy LPWAN pro-
grammability, to enable researchers and practitioners to
redefine the behavior of existing LPWAN devices and
seamlessly integrate them with traditional networks;

• A Lightweight Tunnel Protocol (LTP), whose implemen-
tation exercises the concept of LPWAN programmability.
LTP supports data communication over narrow-band links
that is compatible with existing networking protocols and
provides comparatively smaller overhead;

• An open-source implementation of LTP on GitHub [21].
The remainder of the paper is organized as follows. We

cover background and related work in Sec. II. In Sec. III,
we introduce our conceptual architecture for programmable
low-end networking. In Sec. IV, we exercise our architecture
with the design and implementation of a novel Lightweight
Tunnel Protocol (LTP), suitable for networking using LPWAN
devices, whereas in Sec. V we provide an extensive evaluation
of our protocol. Finally, we close the paper in Sec. VI.

II. BACKGROUND AND RELATED WORK

There are several technologies already suitable for commu-
nity networking, like Cognitive Radio (CR) and TV white
spaces (TVWS). CR is an adaptive radio that uses dynamic
spectrum access techniques to reconfigure itself by detecting
and using available wireless frequencies in its vicinity to
avoid interference and enable concurrent communications [22].
TVWS, in turn, refers to the unused TV channels for both VHF
and UHF spectrum. In the past, unused channels were placed
between active ones to protect from broadcasting interference.
It has since been shown that they can provide broadband
communication links (and Internet access) while operating

without affecting TV channels. The use of lower-frequency
UHF signals also enables penetrating obstacles and covering
uneven ground without additional infrastructure. For these
reasons, developing and rural regions have been a key use case
for TVWS [23]. Despite their potentialities, CR and TVWS
often require licensing for operation and equipment that may
not be affordable for some communities.

We posit that LPWAN may also become an exciting tech-
nology for deploying community networks, either substituting
or complementing CR and TVWS, mostly because of its low
cost and easy deployment. There have been investigations
on using Software Defined Networking (SDN) for manag-
ing LPWAN, including flow forwarding management [24],
application-aware service provisioning [25], and integration of
heterogeneous networks [26]. In general, they are concerned
with providing an open interface for managing the resource-
constrained devices that compose the network. However, to the
best of our knowledge, bringing forwarding plane programma-
bility to LPWAN has not been approached in the literature yet.

The intrinsic nature of LPWAN makes it difficult to reshape
them for forwarding plane programmability. Their design
targets data communication over large geographical areas,
often with poor logistical infrastructure, lack of electrification,
challenging topography, etc., frequently trading-off complexity
(and cost) for limited data rate [9]. In contrast, a design con-
taining silicon for reconfigurable match-action tables would in-
crease the cost of LPWAN devices substantially, likely making
them economically prohibitive for their traditionally intended
use. Nevertheless, there has been research on forwarding plane
programmability in the context of LPWAN, e.g. for packet
aggregation/using disaggregation in IoT [27].

As we bridge the gap towards programmable low-end
devices, a remaining challenge for community networks will
become the optimal usage of narrow-band communication
channels for Internet traffic. There are several solutions that
provide network traffic optimization through header compres-
sion [28]–[34], header field removal [35], coding [36], and
packet aggregation [37]. Header compression solutions often
rely on the RObust Header Compression (ROHC) Framework
[38], which takes advantage of the fact that most data in packet
header fields remain static during a flow (e.g., source and
destination addresses, and most significant digits of packet
identification numbers). ROHC may not be feasible for usage
in scenarios with frequent packet loss, which is the case of
wireless communication over long distances typical of commu-
nity networks. Nevertheless, as we advance on programmable
low-end networking, lessons learned with the design and
implementation of such protocols will certainly benefit the
emergence of a novel generation of community networking
protocols designed and implemented for LPWAN.

III. PROGRAMMABLE LOW END NETWORKING

In this paper, we explore the possibility of using DSLs
for programming the data plane [18], [19] to express the
networking behavior of low-end networking devices. Our
main goal is to use data plane programmability (PDP) to

Programmable LPWAN Pipeline

LPWAN
Transceiver

LPWAN
Wrapper

Datagram Dispatcher

Match / Action Pipeline

Pr
og

ra
m

m
ab

le
Pa

rs
er

Match/Action
Stage

Match/Action
Stage

Pr
og

ra
m

m
ab

le
D

ep
ar

se
r

Host Interface

Fig. 1: Conceptual Programmable LPWAN architecture.

devise network protocols that can operate with devices with
limited data transfer capabilities and under hostile networking
conditions. A second but equally important goal is enabling
network developers and practitioners to take advantage of PDP
with existing (legacy) LPWAN devices, whose packet parsing
and processing semantics are predefined, often closed, and
cannot be changed with firmware upgrades.

To achieve these goals, we introduce a conceptual archi-
tecture for programming low-end devices. Fig. 1 provides an
overview of our architecture, depicting its main components
and their relationship. Our architectural design is inspired by
off-the-shelf Programmable SmartNICs, simplified to a trade-
off between robustness and implementation complexity/cost.

Our architecture includes an LPWAN transceiver (e.g., LoRa
SX1276/SX1278 [39]), that sends/receives datagrams over the
air and whose behavior we assume that cannot be redefined
through firmware upgrades. To use such transceivers in a pro-
grammable environment, we adopt a LPWAN Wrapper com-
ponent. The wrapper (a driver) interacts with the transceiver
to read/write data, following the transceiver’s specification.
The wrapper also serves as an entry point for programming
and configuring the transceiver, e.g., its baud rate, modulation
scheme, TX power, RX sensitivity, etc., and can be developed
using the vendor-provided SDK. An example is Ronoth Lo-
Stick [40], a USB LoRa Stick that provides an open-source
interface that can be programmed using Python.

The Datagram Dispatcher is responsible for packet ex-
change between the LPWAN Interface, the host (through the
Host Interface, which could be PCIe, USB, Ethernet, etc.), and
the Programmable LPWAN Pipeline. The pipeline is inspired
by the Very Simple Switch (VSS) model [41]. With such
architecture, a network developer can then write a P4 program
that redefines the packet parsing and processing semantics of
the LPWAN pipeline and use a P4 compiler to generate the
program/API that will define the device behavior.

In this paper, we take advantage of the conceptual architec-
ture above to design and implement a networking protocol for
low-end devices. Our instance of the conceptual architecture
uses Ronoth LoStick [40] as LPWAN Transceiver, a custom-
made Python program that interacts with LoStick to program
it and read/write data, and the software switch bmv2 for
emulating a Programmable LPWAN Pipeline. The following
section provides an in-depth discussion of the design and
implementation of our low-end networking protocol.

IV. LIGHTWEIGHT TUNNEL PROTOCOL

As an exercise for programmable low-end networking, we
propose a lightweight protocol for data transfer over an
unreliable wireless link, which we call Lightweight Tunnel
Protocol (LTP) for Internet over LPWAN. The goal of LTP is
to decrease the overhead in data communication between hosts
over narrow-band links, by replacing L2/L3 headers with a
protocol that uses tagging/labels to identify packets exchanged
between specific pairs of hosts. Next, we discuss the design,
implementation, and lessons learned with LTP. Later in Sec. V
we assess the potentialities of using LPWAN devices for data
communication over the Internet, by studying the technical
feasibility of our implementation of LTP using P4 [18].

A. Design Considerations

In our exercise, we intended to devise a protocol that
reduces the communication overhead due to link and network
layer packet headers. Instead of sending Ethernet and IP
headers for every packet of a TCP/IP flow, we send a smaller
header containing only a tag identifier, which translates to data
that devices can use to rebuild the original headers.

The protocol should also rely on the notion of virtual tunnels
between pairs of devices. For this reason, its packets focus on
single-hop communication, just like Ethernet. Finally, it should
support any upper-layer protocols. To keep it simple, we as-
sume that features like packet retransmission and checksuming
are already handled by these protocols. In this context, LTP is
akin to any L2 protocol, providing data communication over
a virtual channel between pairs of devices.

B. LTP Overview

Without loss of generality, we describe LTP using an
illustrative scenario two groups of users, each connected to
a switch, as shown in Fig. 2. The uplink port of both switches
is connected to a programmable LPWAN device, which the
switches use to exchange data between them. We assume a
fully distributed scenario; each programmable LPWAN device
has its SDN controller, and SDN controllers cannot directly
communicate with each other.

LTP enables data exchange over a narrow band wireless
link, with minimal protocol overhead. To this end, we create
tag identifiers for each pair of hosts that need to communicate
over the air. These tags are single-hop only. Fig. 2 provides
an overview of communication between Hosts A and B. Host
A sends a packet to B using TCP/IP, through Programmable
LPWAN Device (device) 1 (d1). Upon receiving the packet,
d1 looks up for a set of rules in its match+action tables that
translate the IP addresses of A and B into a tag that univocally
identifies the pair. In case such a tag does exist, d1 strips the
Ethernet and IP headers, builds a tag header (which will now
contain the packet payload), and sends it over the air using
the LPWAN antenna. After receiving the LTP packet, device
2 (d2) looks up the tag. In case d2 does find a corresponding
pair of IP addresses for A and B in its match+action tables, it
strips the LTP header, reconstructs the Ethernet and IP headers,
and sends the rebuilt TCP/IP packet to the target host B.

A

Traditional TCP/IP
Domain

Traditional TCP/IP
Domain

Proposed Lightweight Tunnel
Protocol (LTP) Domain

Switch 2

Ether + IP + Data
Packet

Ether + IP + Data
Packet

Switch 1
B

LTP + Data
Packet

SDN
Controller

P4Runtime

Fig. 2: Scenario using programmable LPWAN devices and a
Lightweight Tunnel Protocol (LTP) for wireless networking.

LTP Packet
Type

Device Id
Number

Tag Id
Number

Next Header
Type

Fig. 3: LTP packet header.

C. LTP Packet Header Format

Fig. 3 shows LTP packet header format. A challenge we
faced in the design of the packet parser for such protocol was
devising a strategy to disambiguate standard TCP/IP packets
from LTP ones. To make the parser (and protocol) agnostic
of any environment particularities (e.g., port receiving LTP
packets), we adopted in our packet header a special field LTP
Packet Type. It will assume a known value that the parser
can look ahead (using P4 lookahead()) to distinguish LTP
from Ethernet frames. It is thus imperative that values for this
field do not collide with valid MAC address prefixes [42].

Since we are dealing with data communication over the air,
multiple programmable LPWAN devices may be initiating LTP
tunnels between pairs of hosts at any instant. We thus need
to ensure that created tag identifiers do not collide. In other
words, we need to avoid that two devices, one initiating a tun-
nel for hosts A and B, and another initiating a tunnel for C and
D, at the same instant, do not use the same identifier for both
tunnels. We address this issue by including in the LTP header
a Device Id Number field, which contains the identifier
of the device initiating the tunnel. In this case, each device
can locally decide on a tag identifier when creating a tunnel
without risking using an already assigned tag identifier. Note
that our design assumes that devices have a unique identifier
in the network (defined a priori). We complete the LTP header
with the Tag Id Number field, which univocally represents
a pair of hosts A and B, and Next Header Type field,
which identifies the next protocol header.

D. LTP Handshake

In case hosts A and B have not yet exchanged data, d1 and
d2 will need to create a tunnel before any packet exchange
between them can occur. Fig. 4 provides an overview of the
handshake process for establishing a communication tunnel
for A and B. Upon receiving a TCP/IP packet from Host
A, d1 generates a tag identifier Y and builds an LTP SYN
packet, which includes its device identifier X. In addition to
the tag identifier, this packet will contain the IP header as well
as upper layer headers and data as payload. Deviced1 also

Prog. Device 1 Prog. Device 2

*	Packet	received	from	host
*	Build	LTP	SYN	packet

*	Write	tunnel	forwarding	rules *	Write	tunnel	forwarding	rules
*	Rebuild	IP	packet

*	Send	IP	packet	to	local	hosts

*	Received	reply	from	a	host
*	Build	LTP	data	packet
*	Update	forwarding	rules

*	Tunnel	online
*	Rebuild	IP	packet

*	Send	IP	packet	to	target	host

LTP SYN + IP + Payload

LTP + Payload

Fig. 4: Lightweight Tunnel Protocol (LTP) handshake.

writes in its forwarding tables the set of rules to rebuild the
original TCP/IP packet given the tag identifier extracted from
received LTP packets. Upon receiving the LTP SYN packet
with encapsulated IP header and payload, d2 extracts from
the LTP header the device identifier X (of the device that
originated the LTP SYN packet) and the tag identifier Y. It
also extracts from the encapsulated IP header the IP addresses
of A and B. The device then matches the extracted information
against its forwarding tables, sending to the controller for
rule writing/update if necessary. The device then rebuilds the
TCP/IP packet and sends it to host B.

In the event that B replies to the IP packet, d2 will extract
the IP addresses and look them up in its forwarding table for
the corresponding tag identifier. The device will then build an
LTP data packet and send it over the air. Finally, when d1
receives the LTP data packet, it will extract the tag identifier,
look it up in its forwarding table for the IP addresses, and
rebuild the IP packet and send it to the target host A. At this
point, both devices will see the tunnel as online.

E. LTP Implementation and State Machine

We depict in Fig. 5 an excerpt of the P4 code related to
the implementation of LTP1. In Fig. 6 we depict a finite state
machine (implemented in the excerpt code shown) designed
for establishing tunnels under LTP, considering the scenario
shown in Fig. 2, and highlighting the roles of the source
and destination devices involved in the tunnel. Note that
we maintain a state machine for each tunnel independently.
Conceptually, any tunnel starts in the TUNNEL_CLOSED state.

Each device maintains two forwarding tables. The first is
ip_exact table (lines 27-39 in Fig. 5), that matches the
src and dst addresses of IP packets, and whose main action
is ltp_hdr_build(). This action takes as input a packet
with Ethernet and IP headers and builds an LTP header for
the packet. The second is ltp_exact (lines 41-52), which
matches the device and tag identifiers of the tunnel, and whose
main action is ip_hdr_build(). The action takes as input
an LTP packet with payload and rebuilds the Ethernet and IP
headers. The devices also maintain a dmac table (lines 54-65),
used for MAC learning and IP to MAC address translation.

1) Device 1 (Source): The tunnel negotiation for a pair of
hosts A and B initiates when A sends to the source device
(d1) a TCP/IP packet intended to B. The device checks that the

1Kindly note that the code shown in the paper differs in part from the actual
code in our repository, for the sake of legibility and space constraints.

1 control MyIngress(inout headers hdr, inout metadata meta,
2 inout standard_metadata_t std_meta) {
3 action drop() {
4 // omitted for brevity
5 }
6
7 action ltp_hdr_build(devAddr_t devId, tagAddr_t tagId, egressSpec_t port) {
8 // omitted for brevity
9 }

10
11 action send_to_cpu() {
12 // omitted for brevity
13 }
14
15 action ip_hdr_build(ipAddr_t ipSrc, ipAddr_t ipDst) {
16 // omitted for brevity
17 }
18
19 action set_dmac(macAddr_t macDst, egressSpec_t sw_port, macAddr_t macSrc) {
20 // omitted for brevity
21 }
22
23 action set_dmac_bcast() {
24 // omitted for brevity
25 }
26
27 table ip_exact {
28 key = {
29 hdr.ip.srcAddr: exact;
30 hdr.ip.dstAddr: exact;
31 }
32 actions = {
33 ltp_hdr_build;
34 send_to_cpu;
35 drop;
36 NoAction;
37 }
38 default_action = send_to_cpu();
39 }
40
41 table ltp_exact {
42 key = {
43 hdr.ltp.devId: exact;
44 hdr.ltp.tagId: exact;
45 }
46 actions = {
47 ip_hdr_build;
48 drop;
49 NoAction;
50 }
51 default_action = drop();
52 }
53
54 table dmac {
55 key = {
56 hdr.ip.dstAddr: exact;
57 }
58 actions = {
59 set_dmac;
60 set_dmac_bcast;
61 drop;
62 NoAction;
63 }
64 default_action = set_dmac_bcast();
65 }
66
67
68

69 apply {
70 tagReg_t reg;
71 bit<8> current_state;
72
73 if (!hdr.ltp.isValid() && hdr.ip.isValid()) {
74 ip_exact.apply();
75 reg = ((devAddr_t)hdr.ltp.devId) << DEV_ID_SZ | (tagAddr_t)hdr.ltp.tagId;
76
77 if (std_meta.egress_spec == CPU_PORT) {
78 // do nothing. send_to_cpu() already triggered
79
80 } else {
81 tunnel_state_machine.read(current_state, (bit<32>)reg);
82 if (current_state == TUN_ST_PNDG) {
83 hdr.ltp.type = LTP_TYPE_SYN;
84 current_state = TUN_ST_SENT;
85 tunnel_state_machine.write(reg, current_state);
86
87 } else if (current_state == TUN_ST_SENT) {
88 hdr.ltp.type = LTP_TYPE_SYN;
89
90 } else if (current_state == TUN_ST_RECV) {
91 current_state = TUN_ST_ACKD;
92 tunnel_state_machine.write(reg, current_state);
93
94 } else if (current_state == TUN_ST_ACKD) {
95 hdr.ip.setInvalid();
96 }
97 }
98 } else if (hdr.ltp.isValid()) {
99 ltp_exact.apply();

100
101 reg = ((devAddr_t)hdr.ltp.devId) << DEV_ID_SZ | (tagAddr_t)hdr.ltp.tagId;
102 tunnel_state_machine.read(current_state, reg);
103
104 if (std_meta.egress_spec == DROP_PORT) {
105 if (hdr.ltp.type == LTP_TYPE_SYN) {
106 send_to_cpu();
107 } else {
108 current_state = TUN_ST_DROP;
109 tunnel_state_machine.write(reg, current_state);
110 }
111 } else {
112 if (hdr.ltp.type == LTP_TYPE_SYN) {
113 current_state = TUN_ST_RECV;
114 tunnel_state_machine.write(reg, current_state);
115
116 } else (hdr.ltp.type == LTP_TYPE_DATA) {
117 if (current_state == TUN_ST_RECV) {
118 current_state = TUN_ST_DROP;
119 tunnel_state_machine.write(reg, current_state);
120
121 } else if (current_state == TUN_ST_SENT) {
122 current_state = TUN_ST_ACKD;
123 tunnel_state_machine.write(reg, current_state);
124 }
125 }
126 if (current_state == TUN_ST_DROP) {
127 drop();
128
129 } else {
130 dmac.apply();
131 hdr.ltp.setInvalid();
132 }
133 }
134 }
135 }
136 }

Fig. 5: Excerpt of the P4 code for the Lightweight Tunnel Protocol (LTP).

received packet is an ordinary TCP/IP packet (line 73) and tries
to look up the src and dst IP addresses to find a tag identifier
for this pair (line 74). In the case of a table miss, the default
action (line 38) is sending the packet to the controller. It also
marks the status of the tunnel as TUN_ST_PDNG (transition
S.1 in Fig. 6, and line 75 in Fig. 5).

The controller keeps the id number of the device connected
to it (X) and a list of active tunnels, which includes the tag
identifier of the tunnel and pairs of endpoint hosts. Upon
receiving a packet from the device (PacketIn event in the
SDN literature), the controller opens it, extracts the src and dst
IP addresses of A and B, assigns a tag identification number Y
for them, and writes in the device tables the forwarding rules
for the tunnel. More specifically, it writes the following rules:

• In the ip_exact table, a rule to match the IP of A and
B and trigger action ltp_hdr_build(). The action
receives as parameters the device id X, the created tag id

Y, and the port where the LPWAN antenna is connected;
• In the ltp_exact table, a rule to match the de-

vice and tag identifiers X and Y and trigger action
ip_hdr_build(). The action receives as parameters
the IP addresses of hosts A and B.

The controller also takes the opportunity to learn the MAC
address of the source host A, in case it is not yet present in the
dmac table (defined in lines 54-65). The controller does so by
writing a forwarding rule that triggers action set_dmac()
in case a table entry matches the IP address of A.

After writing the rules above, the controller sends the
packet back to d1 (via PacketOut event). The device again
applies the ip_exact table and, since it now has a table
match (because of the rules that the controller just wrote),
the device triggers action ltp_hdr_build() to build an
LTP header for the packet. The device discards the original
Ethernet and IP headers and sends the packet to the port where

TUNNEL_CLOSED

TUN_ST_RECV

(S.2) Controller created tunnel identifier. LTP
SYN + IP packet sent to other end

TUN_ST_PNDG

TUN_ST_SENT

TUN_ST_ACKD

TUN_ST_DROP

(D.1) Received an LTP SYN + IP
packet from the other end

(S.1) Local host sent IP packet to a remote host for which a
tunnel does not exist. Packet sent to the controller

(S.3) Local host sent IP packet to same remote host,
but we did not receive a respective LTP Data from
the other end; resend LTP SYN + IP packet

(S.4) Received a LTP Data from
the other end. Tunnel online

(D.5) Received LTP Data from
a tunnel we do not maintain

(D.4) Received response from a local
host to the LTP SYN + IP packet

(SD) Sent/received another LTP
Data to/from the tunnel we maintain

(D.3) Received LTP Data,
but no local host replied
to the LTP SYN packet

Prog. LPWAN Device 2 (Destination) Prog. LPWAN Device 2 (Destination)

(D.2) Received an unknown
LTP Data

Fig. 6: State machine for tunnel negotiation under LTP.

the LPWAN antenna is connected. The device also evolves
the state machine for this tunnel to state TUN_ST_SENT
(transition S.2 in Fig. 6 and lines 82-85 in Fig. 5).

LTP does not aim for packet retransmission. In this context,
d1 may receive another ordinary TCP/IP packet – a retrans-
mission or a novel packet from another application – before
the tunnel is active, i.e., before receiving a tunnel ACK packet.
Device d1 sends the received packet using LTP SYN again as
packet type (transition S.3 and lines 87-88), remaining in state
TUN_ST_SENT. This choice ensures that LTP behaves as an
L2/L3 protocol and that any upper-layer protocol remains free
to deal with lost packets and expired timeouts.

Upon receiving an LTP data packet from the other end,
the device applies the ltp_exact table (lines 98-99). Since
the device already has the forwarding rules for the tun-
nel, the packet will trigger action ip_hdr_build(), to
rebuild the Ethernet and IP headers. The LTP header is
discarded. The state machine for this tunnel then evolves to
state TUN_ST_ACKD (transition S.4 and lines 121-124). For
subsequent LTP packets sent/received, the tunnel remains in
the TUN_ST_ACKD state (transition SD).

2) Device 2 (Destination): The tunnel negotiation in the
destination device (d2) starts when it receives an LTP SYN
from the source end (lines 98-99). If it is the first LTP
SYN received, d2 sends it to the controller, because of the
ltp_exact table miss (transition D.1 and lines 104-106).

The controller then receives the packet from d2, extracts the
tag id Y from the LTP SYN header and the IP addresses of A
and B from the IP header, and writes in the d2 ltp_exact
table a forwarding rule to rebuild IP headers from subsequent
LTP Data packets (that will not contain an IP header). The
controller does not write the rules to build LTP packets yet
since there is no confirmation that B is connected to d2. The
controller then sends the packet back to the device.

The device receives the packet from the controller, which
now matches an entry in the ltp_exact table and triggers
ip_hdr_build(), to rebuild the original TCP/IP packet.
At this point, the device evolves to state TUN_ST_RECV
(transition D.1 and lines 112-114). The device applies the
dmac table to populate the destination MAC address of host

B in the packet. In case its MAC address is not yet known,
the packet is sent in broadcast (default action, line 64).

Upon receiving a TCP/IP packet reply from host B, the
device applies the ip_exact table to build the LTP Data
packet. Note that, as the tunnel is in TUN_ST_RECV state,
d2 does not have the rules to build LTP packets from original
TCP/IP packets yet. For this reason, the packet triggers a
table miss, and the device sends it to the controller. The
controller then writes the ip_exact rule that triggers action
tlp_hdr_build(). The controller also learns the MAC
address of B, if not yet recorded in the dmac table. Finally,
the controller sends the TCP/IP packet back to d2.

The TCP/IP packet received from the controller now triggers
the tlp_hdr_build() action, for which the device builds
the TLP Data packet to send to the other end of the tunnel. The
tunnel transitions to state TUN_ST_ACKD (transition D.4 and
lines 90-92). At this point, the destination device considers the
tunnel online. Note that the tunnel must yet be acknowledged
as online by the other end, which may not occur immediately
because of packet loss. Such an event does not impact the
destination device, which still can see the tunnel as online.

There are two particular cases.The first is when a device
receives an LTP Data packet without having seen any prior
LTP SYN. In this case, it evolves the state machine for this
tunnel to TUN_ST_DROP (transition D.2). Further packets
from this tunnel are dropped. The second is when the device
sees an LTP Data packet for a tunnel to which its state machine
is still in TUN_ST_RECV state. It means that the target host
was connected to some other device (note that devices send
LTP packets over the air and that there are multiple devices
in the network). In this case, the device also evolves the state
machine for this tunnel to TUN_ST_DROP (transition D.3).

Finally, note that, in any state, a tunnel may expire be-
cause no packets were seen after a given time period. In
this case, the state machine for that tunnel evolves to state
TUNNEL_CLOSED. The controller may implement a clean-up
routine to remove entries of stalled tunnels.

V. EVALUATION

We assessed the technical feasibility of our architecture
for programmable low-end networks and evaluated the per-

 0

 100

 200

 300

 400

 500

 0 100 200 300 400 500 600 700 800 900

T
C

P
 T

h
ro

u
g
h
p
u
t
(K

b
p
s
)

Time (sec)

h1−h4
h3−h6
h5−h2

(a) Star topology, TCP

 0

 100

 200

 300

 400

 500

 0 100 200 300 400 500 600 700 800 900

U
D

P
 T

h
ro

u
g
h
p
u
t
(K

b
p
s
)

Time (sec)

h1−h4
h3−h6
h5−h2

(b) Star topology, UDP

 0

 100

 200

 300

 400

 500

 0 100 200 300 400 500 600 700 800 900

T
C

P
 T

h
ro

u
g
h
p
u
t
(K

b
p
s
)

Time (sec)

h1−h6
h2−h7
h3−h8

h4−h9
h5−h10

Aggregate

(c) Single shared medium

Fig. 7: LTP feasibility in scenarios with limited link capacity and competing flows.

formance of our proof-of-concept implementation of LTP. We
concentrated on the following research questions: (i) Can we
effectively use LPWAN devices along with LTP for last-mile
Internet access? (ii) What is the achievable throughout and
overhead imposed to communication over such narrow-band
links? (iii) What is the overall reduction in overhead compared
to TCP/IP? And (iv) What is the overall performance for a
standard file retrieval using HTTP for data transfer?

To answer these questions, we wrote LTP using P4 16, and
used mininet and bmv2 switch for experiments. We wrote the
controller in Python2.7, using scapy [43] for packet parsing.
Our source code and results are on GitHub [21]. We used
iperf3 for generating flows. We have a hardware prototype on
assembly, based on a Raspberry Pi 3 and LoRa for LPWAN,
with two antennas: LoStik USB LoRa device by Ronoth [40]
and a LoRa/LoRaWAN Raspberry Pi SX127X HAT module by
Dragino [39]. For these reasons, we used a 300 kbps narrow-
band link, achievable with the SX127X HAT module.

A. LTP Feasibility

Here we concentrate on our the feasibility of LTP for
last-mile communication. To this end, we considered two
scenarios. The first one has 3 devices d1..d3 and 6 hosts
h1..h6, connected as follows: h1..h2 to d1, h3..h4 to
d2, and h5..h6 to d3. The devices are connected through a
256kbps link to a hub, in a star topology. The hub emulates
the shared wireless communication. The second scenario also
has 2 devices d1..d2, connected through a 256kbps link,
and 10 hosts h1..h10, with h1..h5 connected to d1 and
h6..h10 to d2. In both scenarios, MTU is 1500 bytes.

Fig. 7(a) and Fig. 7(b) show the results obtained for the
first scenario using TCP and UDP, respectively. Observe
that LTP enables each flow to obtain a roughly fair of the
communication medium, with smaller fluctuations observed
for UDP. Fig. 7(b) show the results obtained for the second
scenario, using TCP. Observe that, again, all flows obtain a fair
share of the 256kbps link. The curve “Aggregate” (that depicts
the overall throughput in the link) also shows that LTP enables
hosts to use the available bandwidth to its capacity.

B. Overall Performance under Varying Conditions

Here we concentrate on the performance of LTP considering
a variety of technical restrictions common to LPWAN devices:

narrow band links and small payloads. We consider a topology
with two hosts h1..h2 and two devices d1..d2, with h1
connected to d1, d2 to h2. Fig. 8 depicts the results achieved.

Note that LTP enables each flow to obtain a throughput
performance close to the nominal link capacity, regardless of
the scenario, with a stable flow between the pairs of hosts.
Table I presents the results achieved for various scenarios,
measured with 99% confidence level.

 0

 100

 200

 300

 400

 500

 600

 0 100 200 300 400 500 600 700 800 900

T
C

P
 T

h
ro

u
g
h
p
u
t
(K

b
p
s
)

Time (sec)

64k
128k

256k
512k

(a) 128 bytes MTU, TCP

 0

 100

 200

 300

 400

 500

 600

 0 100 200 300 400 500 600 700 800 900

U
D

P
 T

h
ro

u
g
h
p
u
t
(K

b
p
s
)

Time (sec)

64k
128k

256k
512k

(b) 128 bytes MTU, UDP

 0

 100

 200

 300

 400

 500

 600

 0 100 200 300 400 500 600 700 800 900

T
C

P
 T

h
ro

u
g
h
p
u
t
(K

b
p
s
)

Time (sec)

64k
128k

256k
512k

(c) 512 bytes MTU, TCP

 0

 100

 200

 300

 400

 500

 600

 0 100 200 300 400 500 600 700 800 900

U
D

P
 T

h
ro

u
g
h
p
u
t
(K

b
p
s
)

Time (sec)

64k
128k

256k
512k

(d) 512 bytes MTU, UDP

Fig. 8: LTP performance with varying link speed and MTU.

C. LTP Overhead Compared to Standard TCP/IP

Here we consider the same topology as in the previous
scenario, with a 256kbps link. Observe in Fig. 9 that LTP pro-
vides a flow performance superior to that of standard TCP/IP
for every MTU considered, with smaller MTUs providing
the highest gains. Considering that often LPWAN devices
are capable of data transmission in small chunks, higher
performance on small payloads is certainly a great advantage
for LTP over standard TCP/IP, with throughput gains ranging
from 6% to 23%, as shown in Fig. 9.

D. LTP Performance with Internet Traffic

In this scenario, we consider the same topology as in the
previous scenario, except that h2 is a router that provides
access to the Internet. In this case, h1 uses wget to retrieve

TABLE I: Experiments with various link speeds, payload lengths, and confidence level 0.99.

Link speed
(kpbs)

Payload size
(bytes)

LTP UDP/IP Gain %Avg SD CI Avg-CI Avg+CI Avg SD CI Avg-CI Avg+CI
1 64 128 57.1 0.15 0.08 57.03 57.18 46.3 3.05 1.54 44.73 47.80 23.44
2 64 512 61.1 0.09 0.05 61.01 61.10 56.5 2.75 1.39 55.11 57.88 8.07
3 128 128 114.0 0.41 0.21 113.76 114.17 93.1 2.58 1.30 91.83 94.42 22.38
4 128 512 121.9 0.55 0.28 121.62 122.18 113.0 4.95 2.49 110.51 115.49 7.88
5 256 128 227.8 3.04 1.53 226.27 229.33 184.4 3.82 1.92 182.48 186.32 23.54
6 256 512 243.8 0.91 0.46 243.37 244.29 229.6 4.73 2.38 227.22 231.98 6.20
7 512 128 447.3 7.52 3.79 443.55 451.12 364.7 4.19 2.11 362.59 366.81 22.66
8 512 512 487.8 1.52 0.77 487.00 488.53 453.4 7.89 3.97 449.43 457.37 7.58

 0

 50

 100

 150

 200

 250

 300

 0 100 200 300 400 500 600 700 800 900

U
D

P
 T

h
ro

u
g
h
p
u
t
(K

b
p
s
)

Time (sec)

With LTP Without LTP

 170

 240

 600 800

23.5% avg. gain

(a) MTU @ 128 bytes, UDP

 0

 50

 100

 150

 200

 250

 300

 0 100 200 300 400 500 600 700 800 900

U
D

P
 T

h
ro

u
g
h
p
u
t
(K

b
p
s
)

Time (sec)

With LTP Without LTP

 220

 250

 600 800

6.20% avg. gain

(b) MTU @ 512 bytes, UDP

 0

 50

 100

 150

 200

 250

 300

 0 100 200 300 400 500 600 700 800 900

U
D

P
 T

h
ro

u
g
h
p
u
t
(K

b
p
s
)

Time (sec)

With LTP Without LTP

 230

 260

 600 800

(c) MTU @ 1024 bytes, UDP

 0

 50

 100

 150

 200

 250

 300

 0 100 200 300 400 500 600 700 800 900

U
D

P
 T

h
ro

u
g
h
p
u
t
(K

b
p
s
)

Time (sec)

With LTP Without LTP

 220

 260

 600 800

(d) MTU @ 1500 bytes, UDP

Fig. 9: Flow performance with LTP and with standard TCP/IP.

a 16MB file from an HTTP server in the Internet. Name
resolution (DNS) traffic also went through the link over LTP.

 0

 5

 10

 15

 20

 25

 30

 35

 40

 45

0 2 4 6 8 10 12 14 16

T
h

ro
u

g
h

p
u

t
(K

B
/s

)

Downloaded size (Kbytes)

Nominal link speed
With LTP

Without LTP

 27

 33

3 4

Fig. 10: File retrieval from the Internet using wget.

Fig. 10 depicts the results achieved. Observe that LTP
provided a performance close to the nominal link speed
again, consistently outperforming standard TCP/IP throughout
the file transfer. The average throughput observed for LTP
was 29.9 KB/s, whereas for TCP/IP was 28.2 KB/s, thus
representing an average gain of around 6%.

VI. FINAL CONSIDERATIONS

The development of low-end technologies for community
networks has long attracted the attention of the research com-
munity [8], and the rise of programmable forwarding planes
offers an interesting novel path to be explored. In this context,
the advent of programmable low-end networking would have
great potential to unlock various networking technologies for

a multitude of novel use cases, e.g., LPWAN for community
networking deployment. In this paper, we contribute to the
low-end networking research agenda by introducing a concep-
tual architecture for LPWAN programmability and exercise the
architecture with the implementation of LTP, a novel protocol
for data communication over the Internet that is compatible
with existing TCP/IP protocols.

We emphasize that our architecture, while it does not
provide the features of a fully-fledged programmable network
interface, represents an important building block for exper-
imenting with P4 for LPWAN, a topic not yet approached
in the literature. About expected MAC layer, our goal is
not being LoRa-compliant, but solely using available low-
cost transceivers for data communication. Regarding LTP, we
emphasize that our goal was exploring the power of LPWAN
programmability to design a simple yet functional protocol
for low-end networking. It was out of our scope to design a
protocol superior to state-of-the-art solutions for data transmis-
sion optimization (like the family of solutions based on ROHC
[38]). We leave this aspect, as well as security and reliability
for LTP, for future research. Finally, we assume that controllers
will have a unique id to avoid conflicting rules regardless of
packet loss during tunnel setup. This assumption poses security
challenges in case of misbehaving controllers, and a potential
solution should likely use public-key infrastructure for tunnel
setup (which we envisage as future work).

One main contribution of our paper is laying the ground for
further research on programmable low-end networks so that
they become a feasible option to connect remote communities
and bridge the digital divide. All in all, such an option has
the potential to make networks powered by low-cost devices
flourish around the globe, fostering digital inclusion.

We are prototyping a pair of programmable low-end hard-
ware devices for experimenting with our solution in the
wild. As for future work, we intend to provide a hardware
implementation of our conceptual architecture, using as a basis
a Universal Software Radio Peripheral (USRP) B205mini-i
Software Defined Radio (SDR) 70Mhz to 6Ghz, equipped
with a Xilinx Spartan-6 XC6SLX150 FPGA, and a VERT900
Vertical Antenna (824-960 MHz, 1710-1990 MHz) dual-band.

ACKNOWLEDGEMENTS

This work has been supported in part by Coordenação de
Aperfeiçoamento de Pessoal de Nı́vel Superior (CAPES) -
Finance Code 001.

REFERENCES

[1] United Nations, “The promotion, protection and enjoyment of
human rights on the internet,” United Nations Digital Library, vol.
A/HRC/32/L.20, no. 32, pp. 1–4, June 2016. [Online]. Available:
https://digitallibrary.un.org/record/845728

[2] Internet.org, “Internet.org website,” 2020, available: https://info.internet.
org/en/.

[3] Loon, “Project Loon website,” 2020, available: https://loon.co/.
[4] A4AI, “A4AI Affordability Report 2018 [Online],” 2018, available:

https://a4ai.org/affordability-report/report/2018/.
[5] IETF GAIA Research Group, “IETF GAIA Research Group website,”

2020, available: https://datatracker.ietf.org/rg/gaia/about/.
[6] J. Crowcroft, A. Wolisz, and A. Sathiaseelan, “Towards an Affordable

Internet Access for Everyone: The Quest for Enabling Universal
Service Commitment (Dagstuhl Seminar 14471),” Dagstuhl Reports,
vol. 4, no. 11, pp. 78–137, 2015. [Online]. Available: http:
//drops.dagstuhl.de/opus/volltexte/2015/4971

[7] K. Heimerl, K. Ali, J. Blumenstock, B. Gawalt, and E. Brewer,
“Expanding rural cellular networks with virtual coverage,” in 10th
NSDI 2013). Lombard, IL: USENIX Association, 2013, pp. 283–
296. [Online]. Available: https://www.usenix.org/conference/nsdi13/
technical-sessions/presentation/heimurl

[8] B. Braem, C. Blondia, C. Barz, H. Rogge, F. Freitag, L. Navarro,
J. Bonicioli, S. Papathanasiou, P. Escrich, R. Baig Viñas, A. L. Kaplan,
A. Neumann, I. Vilata i Balaguer, B. Tatum, and M. Matson, “A case
for research with and on community networks,” SIGCOMM Comput.
Commun. Rev., vol. 43, no. 3, p. 68–73, Jul. 2013. [Online]. Available:
https://doi.org/10.1145/2500098.2500108

[9] U. Raza, P. Kulkarni, and M. Sooriyabandara, “Low power wide area
networks: An overview,” IEEE Communications Surveys & Tutorials,
vol. 19, no. 2, pp. 855–873, 2017.

[10] K. Mekki, E. Bajic, F. Chaxel, and F. Meyer, “A comparative study of
lpwan technologies for large-scale iot deployment,” ICT express, vol. 5,
no. 1, pp. 1–7, 2019.

[11] Datatracker, “IPv6 over Low Power Wide-Area Networks (lpwan),”
2020, available: https://datatracker.ietf.org/wg/lpwan/about/.

[12] M. Bembe, A. Abu-Mahfouz, M. Masonta, and T. Ngqondi, “A survey on
low-power wide area networks for iot applications,” Telecommunication
Systems, vol. 71, no. 2, pp. 249–274, 2019.

[13] S. Nandi, S. Thota, A. Nag, S. Divyasukhananda, P. Goswami, A. Ar-
avindakshan, R. Rodriguez, and B. Mukherjee, “Computing for rural
empowerment: enabled by last-mile telecommunications,” IEEE Com-
munications Magazine, vol. 54, no. 6, pp. 102–109, 2016.

[14] P. Thubert, A. Pelov, and S. Krishnan, “Low-power wide-area networks
at the ietf,” IEEE Communications Standards Magazine, vol. 1, no. 1,
pp. 76–79, 2017.

[15] N. McKeown, T. Anderson, H. Balakrishnan, G. Parulkar, L. Peterson,
J. Rexford, S. Shenker, and J. Turner, “Openflow: Enabling innovation
in campus networks,” SIGCOMM Comput. Commun. Rev., vol. 38, no. 2,
pp. 69–74, Mar. 2008.

[16] D. Kreutz, F. M. V. Ramos, P. E. Verı́ssimo, C. E. Rothenberg,
S. Azodolmolky, and S. Uhlig, “Software-defined networking: A com-
prehensive survey,” Proceedings of the IEEE, vol. 103, no. 1, pp. 14–76,
Jan 2015.

[17] P. Bosshart, G. Gibb, H.-S. Kim, G. Varghese, N. McKeown, M. Iz-
zard, F. Mujica, and M. Horowitz, “Forwarding metamorphosis: Fast
programmable match-action processing in hardware for sdn,” in ACM
SIGCOMM 2013. New York, NY, USA: ACM, 2013, p. 99–110.

[18] P. Bosshart, D. Daly, G. Gibb, M. Izzard, N. McKeown, J. Rexford,
C. Schlesinger, D. Talayco, A. Vahdat, G. Varghese et al., “P4: Pro-
gramming protocol-independent packet processors,” ACM SIGCOMM
Computer Communication Review, vol. 44, no. 3, pp. 87–95, 2014.

[19] J. Gao, E. Zhai, H. H. Liu, R. Miao, Y. Zhou, B. Tian, C. Sun, D. Cai,
M. Zhang, and M. Yu, “Lyra: A cross-platform language and compiler
for data plane programming on heterogeneous asics.” New York, NY,
USA: Association for Computing Machinery, 2020.

[20] W. L. da Costa Cordeiro, J. A. Marques, and L. P. Gaspary, “Data plane
programmability beyond openflow: Opportunities and challenges for
network and service operations and management,” Journal of Network
and Systems Management, vol. 25, no. 4, pp. 784–818, Oct 2017.

[21] UFRGS Networks Group, “GitHub - ProgrammableLowEndNetworks
repo,” 2021, available: https://github.com/ComputerNetworks-UFRGS/
ProgrammableLowEndNetworks.

[22] J. Mitola and G. Q. Maguire, “Cognitive radio: making software radios
more personal,” IEEE personal communications, vol. 6, no. 4, pp. 13–18,
1999.

[23] Ofcom, “TV white spaces - A consultation on white space device
requirements,” 2012, available: https://www.ofcom.org.uk/consultations-
and-statements/category-2/whitespaces.

[24] T. Luo, H.-P. Tan, and T. Q. Quek, “Sensor openflow: Enabling
software-defined wireless sensor networks,” IEEE Communications let-
ters, vol. 16, no. 11, pp. 1896–1899, 2012.

[25] S. Bera, S. Misra, S. K. Roy, and M. S. Obaidat, “Soft-wsn: Software-
defined wsn management system for iot applications,” IEEE Systems
Journal, vol. 12, no. 3, pp. 2074–2081, 2016.

[26] P. Gallo, K. Kosek-Szott, S. Szott, and I. Tinnirello, “Sdn@ home: A
method for controlling future wireless home networks,” IEEE Commu-
nications Magazine, vol. 54, no. 5, pp. 123–131, 2016.

[27] S.-Y. Wang, C.-M. Wu, Y.-B. Lin, and C.-C. Huang, “High-speed data-
plane packet aggregation and disaggregation by p4 switches,” Journal
of Network and Computer Applications, vol. 142, pp. 98–110, 2019.

[28] J. Sun, P. Dong, Y. Qin, T. Zheng, X. Yan, and Y. Zhang, “Improving
bandwidth utilization by compressing small-payload traffic for vehic-
ular networks,” International Journal of Distributed Sensor Networks,
vol. 15, no. 4, p. 1550147719843050, 2019.

[29] W.-E. Chen, W.-C. Chien, C.-F. Lai, and H.-C. Chao, “Promising
framework of ethernet header compression in industrial internet of
things,” in 2019 International Conference on Intelligent Computing and
its Emerging Applications (ICEA). IEEE, 2019, pp. 134–139.

[30] C. Feres and Z. Ding, “Low complexity header compression with lower-
layer awareness for wireless networks,” in IEEE ICC 2019. IEEE, 2019,
pp. 1–7.

[31] J. S. da Silva, F.-R. Boyer, L.-O. Chiquette, and J. P. Langlois, “Extern
objects in p4: an rohc header compression scheme case study,” in
2018 4th IEEE Conference on Network Softwarization and Workshops
(NetSoft). IEEE, 2018, pp. 517–522.

[32] R. Garg and S. Sharma, “Modified and improved ipv6 header compres-
sion (mihc) scheme for 6lowpan,” Wireless Personal Communications,
vol. 103, no. 3, pp. 2019–2033, 2018.

[33] D. Kidston and P. Hugg, “Impact of header compression on tactical
networks,” in MILCOM 2018-2018 IEEE Military Communications
Conference (MILCOM). IEEE, 2018, pp. 1–6.

[34] Y. Niu, C. Wu, L. Wei, B. Liu, and J. Cai, “Backfill: An efficient
header compression scheme for openflow network with satellite links,” in
2016 International Conference on Networking and Network Applications
(NaNA). IEEE, 2016, pp. 202–205.

[35] J. Saldana, F. Pascual, D. De Hoz, J. Fernández-Navajas, J. Ruiz-Mas,
D. R. Lopez, D. Florez, J. A. Castell, and M. Nuñez, “Optimization
of low-efficiency traffic in openflow software defined networks,” in
International Symposium on Performance Evaluation of Computer and
Telecommunication Systems (SPECTS 2014). IEEE, 2014, pp. 550–555.

[36] D. Gonçalves, S. Signorello, F. M. Ramos, and M. Médard, “Random
linear network coding on programmable switches,” in 2019 ACM/IEEE
Symposium on Architectures for Networking and Communications Sys-
tems (ANCS). IEEE, 2019, pp. 1–6.

[37] T.-P. Wang and Y.-C. Chen, “Adaptive packet aggregation for header
compression in vehicular wireless networks,” in 2011 IEEE International
Conference on High Performance Computing and Communications.
IEEE, 2011, pp. 935–939.

[38] L.-E. Jonsson, G. Pelletier, and K. Sandlund, “The robust header
compression (rohc) framework,” Internet Requests for Comments, RFC
Editor, RFC 4995, July 2007.

[39] Dragino, “Raspberry Pi HAT featuring GPS and LoRa® technology,”
2020, available: https://www.dragino.com/products/lora/item/106-lora-
gps-hat.html.

[40] Ronoth, “LoSitck - USB LoRa Device – Ronoth,” 2020, available: https:
//ronoth.com/products/lostik.

[41] P4-16, “P4-16 Language Specification,” 2020, available: https://p4.org/
p4-spec/docs/P4-16-v1.0.0-spec.html.

[42] Iana, “Ethernet Numbers,” 2020, available: https://www.iana.org/
assignments/ethernet-numbers/ethernet-numbers.xhtml.

[43] Scapy, “Scapy - Packet crafting for Python2 and Python3,” 2020,
available: https://scapy.net/.

